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Abstract

In order to analyze data from cancer genome sequencing projects, we need to be
able to distinguish causative, or “driver,” mutations from “passenger” mutations that
have no selective effect. Toward this end, we prove results concerning the frequency of
neutural mutations in exponentially growing multitype branching processes that have
been widely used in cancer modeling. Our results yield a simple new population genet-
ics result for the site frequency spectrum of a sample from an exponentially growing
population.
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1 Introduction

It is widely accepted that cancers result from an accumulation of mutations that increase the
fitness of tumor cells compared to the cells that surround them. A number of studies (Sjöblom
et al. (2006), Wood et al. (2007), Parsons et al. (2008), The Cancer Genome Atlas (2008) and
Jones et al (2008, 2010)) have sequenced the genomes of tumors in order to find the causative
or “driver”mutations. However, due to the large number of genes being sequenced, one also
finds a large number of “passenger” mutations that are genetically neutral and hence have
no role in the disease.

To explain the issues involved in distinguishing the two types of mutations, it is useful
to take a look at a data set. Wood et al. (2007) did a “discovery” screen in which 18,191
genes were sequenced in 11 colorectal cancers, and then a “validation” screen in which the
top candidates were sequenced in 96 additional tumors. The 18 genes that were mutated
five or more times mutated in the discovery screen are given in Table 1. Here NS is short
for nonsynonymous mutation, a nucleotide substitution that changes the amino acid in the
corresponding protein. The top four genes in the list are well known to be associated with
cancer.

• Adenomatous polyposis coli (APC) is a tumor suppressor gene. That is, when both
copies of the gene are knocked out in a cell, uncontrolled growth results. It is widely
accepted that the first stages of colon cancer are the loss of both copies of the APC
gene from some cell, see e.g., Figure 4 in Luebeck and Moolgavkar (2002).

• Kras is an oncogene, i.e., one which causes trouble when a mutation increases its
expression level. Once Kras is turned on it recruits and activates proteins necessary
for the propagation of growth factors.

• TP53 which produces the protein p53 (named for its 53 kiloDalton size) is loved by
those who study “complex networks,” since it is known to be important and appears
with very high degree in protein interaction networks. p53 regulates the cell cycle and
has been called the “master watchman” referring to its role in conserving stability by
preventing genome mutation.

• The protein kinase PIK3CA is not as famous as the other three genes (e.g., it does not
yet have its own Wikipedia page) but it is known to be associated with breast cancer.
In a study of eight ovarian cancer tumors in Jones (2000), an A → G mutation was
found at base 180,434,779 on chromosome 3 in six tumors.

The next three genes on the list with the unromantic names FBXW7, EPHA3, and TCF7L2
are all either known to be implicated in cancer or are likely suspects because of the genetic
pathways they are involved in. Use google if you want to learn more about them.

The methodology that Wood et al. (2007) used for assessing passenger probabilities is
explained in detail in Parmigiani et al (2007). In principle this is straightforward: one calcu-
lates the probability that the observed number of mutations would be seen if all mutations
were neutral. The first problem is to estimate the neutral mutation rate. In the column
labeled “external” this estimate comes from experimentally observed rates, while in the col-
umn labeled “SNP” they used the mutations observed in the study, with the genes declared

2



to be under selection excluded. The estimation problem is made more complicated by the
fact that DNA mutation rates are context dependent. The two nucleotides in what geneti-
cists call a CpG (the p refers to the phosphodiester bond between the adjacent cytosine and
the guanine nucleotides) each mutate at roughly 10 times the rate of a thymine.

The third method for estimating passenger probabilities, inspired by population genetics,
is to look at the ratio of nonsynonymous to synonymous mutations after these numbers have
been scaled by dividing by the number of opportunities for the two types of mutations.
While the top dozen genes show strong signals of not being neutral, as one moves down the
list the situation becomes less clear, and the probabilities reported in the last three columns
sometimes give conflicting messages. The passenger probabilities in the last column are in
most cases higher and in some cases such as NAV3 and tthe last three genes in the table
are radically different. My personal feeling is that in this context the NS/S test does not
have enough mutations to give it power to detect selection, but perhaps it is the other two
methods that are being fooled.

NS Mutations Passenger Probability
gene Discovery Validation External SNP NS/S
APC 171 138 0.00 0.00 0.00
KRAS 79 62 0.00 0.00 0.00
TP53 79 61 0.00 0.00 0.00
PIK3CA 28 23 0.00 0.00 0.00
FBXW7 14 9 0.00 0.00 0.00
EPHA3 10 6 0.00 0.00 0.00
TCF7L2 10 7 0.00 0.00 0.01
ADAMTSL3 9 5 0.00 0.00 0.03
NAV3 8 3 0.00 0.01 0.64
GUCY1A2 7 4 0.00 0.00 0.01
MAP2K7 6 3 0.00 0.00 0.02
PRKD1 5 3 0.00 0.00 0.39
MMP2 5 2 0.00 0.02 0.61
SEC8L1 5 2 0.00 0.03 0.63
GNAS 5 2 0.00 0.04 0.67
ADAMTS18 5 2 0.00 0.07 0.82
RET 5 2 0.01 0.17 0.89
TNN 5 0 0.00 0.11 0.81

Table 1: Colorectal cancer data from Wood et al. (2007)

To investigate the number and frequency of neutral mutations observed in cancer se-
quencing studies, we will use a well-studied framework in which an exponentially growing
cancer cell population is modeled as a multi-type branching process. Cells of type i ≥ 0
give birth at rate ai and die at rate bi, where the growth rate λi = ai − bi > 0. Thinking of
cancer we will restrict our attention to the case in which i → λi is increasing. To take care
of mutations, we suppose that individuals of type i also give birth at rate ui+1 to individuals
of type i + 1 that have one more mutation. This is slightly different from the approach of
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having mutations with probability ui+1 at birth, which translates into a mutation rate of
aiui+1, and this must be kept in mind when comparing with other results.

Let τk be the time of the first type k mutation and let σk be the time of the first type
k mutation that gives rise to a family that lives forever. Following up on initial studies
by Iwasa, Haeno, and Michor (2006), and Haeno, Iwasa and Michor (2007), Durrett and
Moseley (2010) have obtained results for τk and limit theorems for the growth of Zk(t), the
number of type k’s at time t. These authors did not consider σk, but the extension is trivial:
each type k mutation gives rise to a family that lives forever with probability λk/ak, so all
we have to do is to replace uk in the limit theorem for τk by ukλk/ak.

1.1 Wave 0 results

To begin to understand the behavior of neutral mutations in our cancer model, we first
consider those that occur to type 0’s, which are a branching process Z0(t) in which individuals
give birth at rate a0 and die at rate b0 < a0. It is well-known, see O’Connell (1993), that if
we condition Z0(t) to not die out, and let Y0(t) be the number of individuals at time t whose
families do not die out, then Y0(t) is a Yule process in which births occur at rate γ = λ0/a0.
Our first problem is to investigate the population site frequency spectrum,

F (x) = lim
t→∞

Ft(x) (1)

where Ft(x) is the expected number of neutral “passenger” mutations present in more than
a fraction x of the individuals at time t. To begin to compute F (x), we note that

Y0(t)/Z0(t) → γ in probability, (2)

since each of the Z0(t) individuals at time t has a probability γ of starting a family that does
not die out, and the events are independent for different individuals.

It follows from (2) that it is enough to investigate the frequencies of neutral mutations
within Y0. If we take the viewpoint of the infinite alleles model, where each mutation is to a
type not seen before, then results can be obtained from Durrett and Schweinsberg’s (2005)
study of a gene duplication model. In their system there is initially a single individual of
type 1. No individual dies and each individual independently gives birth to a new individual
at rate 1. When a new individual is born it has the same type as its parent with probability
1 − r and with probability r is a new type which is different from all previously observed
types.

Let TN be the first time there are N individuals and let FS,N be the number of families
of size > S at time TN . Omitting the precise error bounds given in Theorem 1.3 of Durrett
and Schweinsberg (2005), that result says

FS,N ≈ rΓ

(
2− r

1− r

)
NS−1/(1−r) for 1 � S � N1−r (3)

The upper cutoff on S is needed for the result to hold. When S � N1−r, EFS,N decays
exponentially fast.

As mentioned above, the last conclusion gives a result for a branching process with
mutations according to the infinite alleles model, a subject first investigated by Griffiths and
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Pakes (1988). To study DNA sequence data, we are more interested in the frequencies of
individual mutations. Using ideas from Durrett and Schweinsberg (2004) it is easy to show:

Theorem 1. If passenger mutations occur at rate ν then F (x) = ν/γx.

This theorem describes the population site frequency spectrum. As in Section 1.5 of Durrett
(2008), this can be used to derive the site frequency spectrum for a sample of size n. Let
ηn,m be the number of sites in a sample of size n where m individuals in the sample have
the mutant nucleotide. If one considers the Moran model in a population of constant size N
then

Eηn,m =
2Nν

m
for 1 ≤ m < n. (4)

Using Theorem 1 now, we get a new result concerning the population genetics of exponen-
tially growing populations. Here we are considering a Moran model in an exponentially
growing population, see e.g., Section 4.2 of Durrett (2008), rather than a branching process.

Theorem 2. Suppose that the mutation rate is ν and the population size t units before the
present is N(t) = Ne−γt then as N →∞

Eηn,m


→ nν

γ
· 1

m(m− 1)
2 ≤ m < n

∼ nν

γ
· log(Nγ) m = 1.

(5)

where aN ∼ bN means aN/bN → 1.

To explain the result for m = 1, we note that, as Slatkin and Hudson (1991) observed,
genealogies in exponentially growing population tend to be star-shaped. The time required
for Y0(t) to reach size Nγ (and hence roughly the time for Z0(t) to reach size N) is ∼
(1/γ) log(Nγ), so the number of mutations on our n lineages is roughly nν times this. Note
that, (i) for a fixed sample size, Eηn,m, 2 ≤ m < n are bounded independent of the final
population size, and (ii) in contrast to (4), the sample size replaces the population size in
formula (5).

The result in Theorem 2 is considerably simpler than previous formulas. Let L(t) be
the number of lineages t units of time before the present. For 2 ≤ k ≤ n let Tk = sup{t :
L(t) ≥ k} be the first time at which the number of lineages is reduced to k − 1, and let
Sk = Tk − Tk+1 where Tn+1 = 0. Griffiths and Tavaré (1998) have shown that under some
mild assumptions (coalescent times have continuous distributions, only two lineages coalesce
at once, all coalescence events have equal probability, Poisson process of mutations) the
probability that a segregating site has b mutant bases is

qn,b =
(n− b− 1)!(b− 1)!

∑n
k=2 k(k − 1)

(
n−k
b−1

)
ESk

(n− 1)!
∑n

k=2 kESk

(6)

To apply this result to the coalescent with population size N(t) = Ne−γt, one needs formulas
for ESk. See for example (52) in Polanski, Bobrowski, and Kimmel (2003). However, these
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Figure 1: Simulated site frequency spectrum when ν = γ, sample size n = 10, and population
size N = 100, 000.

formulas are complicated and difficult to evaluate numerically, since they involve large terms
of alternating size. To connect (6) with the result in Theorem 2, we write

qn,1 = 1−
∑n−1

k=2 k(n− k)ESk

(n− 1)
∑n

k=2 kESk

(31) below will show that ESn ∼ log N while for 2 ≤ k < n, ESk = O(1) so we have
1− qn,1 = O(1/ log N) in agreement with (5).

To check (5) Yifei Chen, a participant in a summer REU associated with Duke’s math
biology Research Training Grant, performed simulations. Figure 1 gives results for the
average of 100 simulations with the indicated parameters. The agreement is almost perfect
for m ≥ 2 but the formula considerably over estimates the number of singletons with (5),
predicting 69.07 versus an observed value of about 40. Given the approximations used in the
proof of Theorem 2 in Section 2 for the case m = 1, this is not surprising. The next result
derives a much better result for Eηn,1 which gives a value of 36.66. See (27) for details of
the numerical calculation.

Theorem 3.

Eηn,1 ≈
ν

γ

Nγ∑
k=1

n

n + k
· k

n + k − 1

Here ≈ means simply that this is an approximation which is better for finite N . As N →∞
the right-hand side ∼ (nν/γ) log(Nγ) the answer in Theorem 2.

The results for Eηn,m are useful for population genetics, but are not really relevant to
cancer modeling. To investigate genetic diversity in the exponentially growing population
of humans, you would sequence the DNA of a sample of individuals from the population.
However, in the study of cancer each patient has their own exponentially growing cell pop-
ulation, so it is more interesting to have the information provided by Theorem 1 about the
fraction of cells in the population with a given mutation.
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Numerical example. To illustrate the use of Theorem 1 suppose γ = λ0/a0 = 0.01 and
ν = 10−5. In support of the numbers we note that Bozic et al. (2010) estimate that the
selective advantage provided by a typical cancer driver mutation is 0.004 ± 0.0004. As for
the second, if the per nucleotide mutation rate is 10−8 and there are 1000 nucleotides in a
gene then a mutation rate of 10−5 per gene results. In this case Theorem 1 predicts if we
focus only on one gene then the expected number of mutations with frequency > 0.1 is

F (0.1) = 10−5+2+1 = 0.01 (7)

so, to a good first approximation, no particular neutral mutation occurs with an appreciable
frequency. Of course, if we are sequencing 20,000 genes then there will be a few hundred
passenger mutations seen in a given individual. On the other hand there will be very few
specific neutral mutations that will appear multiple times in the sample.

1.2 Wave 1 results

We refer to the collection of type k individuals as wave k. In order to analyze the cancer
data, we also need results for neutral mutations in waves k > 0 of the multitype branching
process. We begin by recalling results from Durrett and Moseley (2010) for type 1 individuals
in the process with Z0(0) = 1 when we condition the event Ω0

∞ that the type 0’s do not die
out. Let σ1 be the time of the first “successful” type 1 mutation that gives rise to family
that does not die out. Then σ1 has median

s1
1/2 =

1

λ0

log

(
λ2

0a1

a0u1λ1

)
(8)

and as u1 → 0
P (σ1 > s1

1/2 + x/λ0) → (1 + ex)−1 (9)

For (8) see (7) in Durrett and Moseley (2010) and drop the 1 inside the logarithm. The
second result follows from the reasoning for (6) there.

In investigating the growth of type 1’s, it is convenient mathematically to assume that
Z∗0(t) = V0e

λ0t for t ∈ (−∞,∞) and to let Z∗k(t) be the number of type k’s at time t in
this system. Here the star is to remind us that we have extended Z0 to negative times. The
probability of a mutation to type 1 at times t ≤ 0 is ≤ V0u1/λ0. In the concrete example
u1/λ0 = 10−3, so this is likely to have no effect. The last calculation omits two details that
almost cancel out. When we condition on survival of the type 0’s, EV0 = a0/λ0, but the
probability a type 1 mutation survives for all time is λ1/a1. Since a0 ≈ a1 we are too low by
a factor of λ1/λ0 = 2.

Durrett and Moseley (2010) have shown:

Theorem 4. If we regard V0 as a fixed constant then as t →∞, e−λ1tZ∗1(t) → V1 where V1

is the sum of the points in a Poisson process with mean measure µ(x,∞) = cµ,1u1V0x
−α with

α = λ0/λ1 and

cµ,1 =
1

a1

(
a1

λ1

)α

Γ(α) (10)
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The Laplace transform E(e−θV1|V0) = exp(−ch,1u1V0θ
α) where ch,1 = cµ,1Γ(1 − α). If V0 is

exponential(λ0/a0) then

E exp(−θV1) = (1 + ch,1u1(a0/λ0)θ
α)−1 (11)

Here, and in what follows, constants like cµ,1, ch,1, and cθ,1 will depend on the branching
process parameters ai and bi, but not on the mutation rates ui. The constant here is equal
to, but written differently from, the one in Durrett and Moseley

ch,1 =
1

λ0

(
a1

λ1

)α−1

Γ(1 + α)Γ(1− α) =
1

a1

λ1

λ0

(
a1

λ1

)α

αΓ(α)Γ(1− α)

To prepare for later results note that the formula for the Laplace transform shows that
conditional on V0, V1 has a one sided stable distribution with index α.

The point process in Theorem 4 describes the contributions of the successful type 1
mutations to Z1(t). The first such mutation occurs at time σ1, which has median s1

1/2. The
derivation of Theorem 4 is based on the observation that a mutation at time s will grow to
size ≈ eλ1(t−s)W1 by time t, where W1 has distribution

W1 =d
b1

a1

δ0 +
λ1

a1

exponential(λ1/a1)

and hence make a contribution of e−λ1(s−s1
1/2

) to the limit V̄1. Thus we expect that most of
the mutations that make a significant contribution will come within a time O(1/λ1) of s1

1/2.
The complicated constants in Theorem 4 can be simplified if we instead look at the limit

e−λ1(t−s1
1/2

)Z∗1(t) → V̄1 =d V1 exp(λ1s
1
1/2)

Using the definition of s1
1/2 in (8) and recalling α = λ0/λ1 we see that

exp(λ1s
1
1/2) =

(
λ0a1

a0u1

· α
)1/α

and hence using (11)

E exp(−θV̄1) =

(
1 + αΓ(α)Γ(1− α)

(
a1θ

λ1

)α)−1

(12)

The combination of Gamma functions is easy to evaluate, since Euler’s reflection function
implies that

αΓ(α)Γ(1− α) =
πα

sin(πα)
> 1 (13)

A second look at (12) shows that a1V̄1/λ1 has a distribution that only depends on α. For
comparison, note that if V0 is exponential(λ0/a0) then a0V0/λ0 is exponential(1).

Using results for one-sided stable laws, Durrett, Foo, Leder, Mayberry, and Michor (2011)
were able to prove results about the genetic diversity of wave 1. Define Simpson’s index to
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be the limiting probability two randomly chosen individuals in wave 1 are descended from
the same type 1 mutation. In symbols, it is the p = 2 case of the following definition

Rp =
∞∑
i=1

Xp
i

V p
1

where X1 > X2 > . . . are points in the Poisson process and V1 is the sum. The result for the
mean, which comes from a result of Fuchs, Joffe, and Teugels (2001), is much simpler than
one could reasonably expect.

Theorem 5. ER2 = 1− α.

After this paper was written Jason Schweinsberg explained to me that the points Yi =
Xi/V1 have the Poisson-Dirichlet distribution PD(α, 0), so Theorem 5 follows from (3.6) in
Pitman (2006). For our purposes it is easier to refer to (6) in Pitman and Yor (1997) where
it is shown that

E

∞∑
i=1

f(Yi) =
1

Γ(α)Γ(1− α)

∫ 1

0

f(u)u−α−1(1− u)α−1

Taking f(x) = xp we find that Rp =
∑

i X
p
i /V p

k has

ERp = E
∑

i

Y p
i =

Γ(p− α)

Γ(1− α)Γ(p)

Using formulas in Logan, Mallow, Rice, and Shepp (1973) one can derive results for the

distribution of R
−1/2
2 . Work of Darling (1952) leads to information about the distribution of

the fraction in the largest clone X1/V1. In particular,

Theorem 6. V1/X1 has mean 1/(1− α)

Since 1/x is convex, E(X1/V1) > 1/E(V1/X1) = 1− α.
Theorems 5 and 6 suggest that if we are interested in understanding neutral mutations in

say 90% of the population when wave 1 is dominant, then we can restrict our attention to the
families generated by a small number of the most prolific type 1 mutants. (The number we
need to consider will be large if α is close to 1.) The result in (7) suggests that we can ignore
neutral mutations within the descendants of these type 1 mutations. Mutations that occur
on the genealogies of the ith largest mutations will appear in all of their descendants and
hence have frequency Xi/V1. As remarked above (and explained in more detail in Section 3),
the genealogies of the most prolific type 1 mutants will be approximately star-like so they
will mostly have different mutations. Note that here, in contrast to the reasoning that led to
(21) there are several individuals founding different subpopulations whose genealogies have
collected neutral mutations.
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1.3 Wave k results

Once Theorem 4 was established it was straightforward to extend the result by induction.
Let αk = λk−1/λk,

cµ,k =
1

ak

(
ak

λk

)αk

Γ(αk) and ch,k = cµ,kΓ(1− αk). (14)

Let cθ,0 = a0/λ0, µ0 = 1 and inductively define for k ≥ 1

cθ,k = cθ,k−1c
λ0/λk−1

h,k (15)

µk = µk−1u
λ0/λk−1

k =
k∏

j=1

u
λ0/λj−1

j . (16)

Durrett and Moseley (2010) have shown:

Theorem 7. Suppose Z∗0(t) = V0e
λ0t for t ∈ (−∞,∞) where V0 is exponential(λ0/a0).

e−λktZ∗k(t) → Vk a.s.

Let Fk−1
∞ be the σ-field generated by Z∗j (t), j ≤ k − 1, t ≥ 0. (Vk|Fk−1

∞ ) is the sum of the
points in a Poisson process with mean measure µ(x,∞) = cµ,kukVk−1x

−αk .

E(e−θVk |Fk−1
∞ ) = exp(−ch,kukVk−1θ

λk−1/λk)

and hence
Ee−θVk =

(
1 + cθ,kµkθ

λ0/λk
)−1

(17)

Using Theorem 7 it is easy to analyze τk+1, the waiting time for the first type k + 1.
Details of the derivations of (18) and (19) are given in Section 4. The median of τk+1 is

tk+1
1/2 =

1

λ0

log

(
λ

λ0/λk

k

cθ,kµk+1

)
=

1

λk

log(λk)−
1

λ0

log (cθ,kµk+1) (18)

and as in the case of τ1

P (τk+1 > tk+1
1/2 + x/λ0) ≈ (1 + ex)−1

Again the result for the median sk+1
1/2 of the time σk+1 of the first mutation to type k+1 with

a family that does not die out can be found by replacing uk+1 by uk+1λk+1/ak+1.
Formula (18), due to Durrett and Moseley (2010), is not very transparent due to the

complicated constants. We will obtain a more intuitive result by looking at the difference
sk+1
1/2 − sk

1/2. After some algebra, hidden away in Section 4, we have

sk+1
1/2 − sk

1/2 =
1

λk

log

(
λ2

kak+1

akuk+1λk+1

)
− 1

λk−1

log(αkΓ(αk)Γ(1− αk)) (19)

Neutral mutations. Returning to our main topic, it follows from the first conclusion
in Theorem 7 that the results of Theorems 5 and 6 hold for wave k when α is replaced by
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αk = λk−1/λk. Suppose for simplicity that k = 2. In the concrete example α2 = 2/3, so
ER2 = 1/3 and again there will be a small number of type 2 mutations that occur at times
close to s2

1/2 that are responsible for 90% of the population. If we let x1 > x2 > . . . be the
fractions of the type 1 population that result from the most prolific type 1 mutants, then the
jth most prolific type 2 mutation will trace its lineage back to the ith most prolific type 1
mutation with probability xi. All of the type 2 mutants who trace their ancestry back to the
same type 1 mutant will have lineages that coalesce at times near s1

1/2. Working backwards
from that time the genealogy of the most prolific type 1 mutations will be star like. At this
point a picture is worth a hundred words, see Figure 2.
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Figure 2: Genealogy of wave 2 individuals. Here 0.6, 0.25, and 0.1 are the fractions of the
type 1 population derived from the three most prolific type 1 mutations. If these numbers
look odd recall that in the example ER = 1/2 for wave 1, while (.6)2 +(.25)2 +(.1)2 = .4325.

1.4 Relationship to Bozic et al. (2010)

The inspiration for this investigation came from a paper by Bozic et al. (2010). Their model
takes place in discrete time to facilitate simulation and their types are numbered starting
from 1 rather than from 0. At each time step, a cell of type j ≥ 1 either divides into two
cells, which occurs with probability bj, or dies with probability dj where dj = (1− s)j/2 and
bj = 1−dj. It is unfortunate that their birth probability bj is our death rate for type j cells.
We will not resolve this conflict because but we want to preserve their notation make it easy
to compare with the results in the paper.

In addition, at every division, the new daughter cell can acquire an additional driver
mutation with probability u, or a passenger mutation with probability ν. They find the
following result for the expectation of Mk, the number of passenger mutations in a tumor
that has accumulated k driver mutations:

EMk =
ν

2s
log

4ks2

u2
log k (20)

The derivation of this formula suffers from two errors due to a fundamental misconception,
and loses accuracy because of some dubious arithmetic. The first error is to claim that (see
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section 5 of their supplementary materials)

EMk =
ν

T
Eσk (21)

where T is the average time between cell divisions. In essence (21) asserts that the passenger
mutations in the population are exactly those that have appeared along the genealogy of the
cell with the first type k mutation that gives rise to a family that lives forever. However as
Theorems 4 and 7 show, this is wrong because after the initial wave more than one mutation
makes a significant contribution to the size of the type k population.

The second erroneous ingredient is (S5) in their supplementary materials. In quoting
that result below we have dropped the 1+ inside the log in their formula, since it disappears
in their later calculations and this makes their result easier to relate to ours.

E(σj+1 − σj) =
T log

[
1−qj

ubj(1−qj+1)

(
1− 1

bj(2−u)

)]
log[bj(2− u)]

(22)

where qj is probability that a type j mutation dies out. By considering what happens on
the first step:

qj ≈ dj + bjq
2
j and hence qj ≈

dj

bj

≈ 1− js

1 + js
≈ 1− 2js, (23)

where the last approximation assumes that s is small.
Before we start to compare results, recall that Bozic et al. (2010) number their waves

starting with 1 while our numbers start at 0. When the differences in notation are taken
into account (8) agrees with the j = 1 case of (22). The death and birth probabilities
in the model of Bozic et al. (2010) are d1 = (1 − s)/2 and b1 = 1 − d1 = (1 + s)/2, so
log(2b1) ≈ log(1+s) ≈ s. qj ≈ (1− js)/(1+ js) ≈ 1−2js. Taking into account the fact that
mutations occur only in the new daughter cell at birth, we have u1 = b1u, so when j = 1
(22) becomes

E(σ2 − σ1) ≈
1

s
log

(
s2

u1 · 2s

)
Setting λj = (j + 1)s, and ai = bi+1 in our continuous time branching process, we have
a1/a0 ≈ 1 and this agrees with (8).

Numerical Example. To match a choice of parameters studied in Bozic et al. (2010), we
will take u = 10−5 and s = 0.01, so ui = biu ≈ 5× 10−6, and

s1
1/2 ≈

1

0.01
log

(
10−4

5× 10−6 · 0.02

)
= 100 log(1000) = 690.77

Note that by (9) the fluctuations in σ1 are of order 1/λ0 = 100.
To connect with reality, we note that for colon cancer the average time between cell

divisions is T = 4 days, so 690.77 translates into 7.57 years. In contrast, Bozic et al. (2010)
compute a waiting time of 8.3 years on page 18546. This difference is due to the fact that
the formula they use ((1) on the cited page) employs the approximation 1/2 ≈ 1.

12



Turning to the later waves, we note that:

(i) the first “main” term in (19) corresponds to the answer in (22).

(ii) by (13), αkΓ(αk)Γ(1 − αk) = παk/ sin(παk) > 1, so the “correction” term not present
in (22) is < 0, which is consistent with the fact that the heuristic leading to (22) considers
only the first successful mutation.

To obtain some insight into the relative sizes of the “main” and the “correction” terms
in (19), we will consider our concrete example in which λi = (i + 1)s and ai = bi+1 ≈ 1/2,
so for i ≥ 1

si+1
1/2 − si

1/2 =
1

(i + 1)s
log

(
(i + 1)2s

ui+1(i + 2)

)
− 1

is
log

(
παi

sin(παi)

)
Taking s = 0.01, u = 10−5 and ui = 5× 10−6 leads to the results given in Table 2.

main corr. from (19) from (22)
s1
1/2 690.77 0 s1

1/2 690.77 (7.57) 550.87 (6.04)

s2
1/2 − s1

1/2 394.41 45.15 s2
1/2 1040.03 (11.39) 895.39 (9.81)

s3
1/2 − s2

1/2 280.36 44.15 s3
1/2 1276.24 (13.98) 1149.79 (12.60)

Table 2: Comparison of expected waiting times from (19) and (22). The numbers in paren-
theses are the answers converted into years using T = 4 as the average number of days
between cell divisions.

The values in the last column differ from the sum of the values in the first column because
Bozic et al. (2010) indulge in some dubious arithmetic to go from their formula

E(σj+1 − σj) =
1

js
log

(
2j2s

(j + 1)u

)
to their final result

Eσk ≈
1

2s
log

(
4ks2

u2

)
log k

First they use the approximation j/(j + 1) ≈ 1 and then
∑k−1

j=1 ≈
∫ k

0
. In the first row of

the table this means that their formula underestimates the right answer by 20%. Bozic et
al. (2010) tout the excellent agreement between their formula and simulations given in their
Figure S2. However, a closer look at the graph reveals that while their formula underesti-
mates simulation results, our answers agree with them almost exactly.

2 Proofs for Wave 0

Proof of Theorem 1. Dropping the subscript 0 for convenience, recall that Y (t) is defined to
be the number of individuals in the branching process Z(t) with an infinite line of descent
and that Y (t) is a Yule process with birth rate γ = λ0/a0. For j ≥ 1 let Tj = min{t : Yt = j}

13



and notice that T1 = 0. Since the j individuals at time Tj start independent copies Y 1, . . . Y j

of Y , well known results for the Yule process imply

lim
s→∞

e−γsY i(s) = ξi

where the ξi are independent exponential mean 1 (here time s in Y i corresponds to time
Tj + s in the original process). From the limit theorem for the Y i we see that for j ≥ 2 the
limiting fraction of the population descended from individual i at time Tj is

ri = ξi/(ξ1 + · · ·+ ξj), 1 ≤ i ≤ j

which as some of you know has a beta(1, j − 1) distribution with density (j − 1)(1− x)j−2.
To prepare for the simulation algorithm it is useful to give an explicit proof of this fact.

Note that
((ξ1, . . . ξj)|ξ1 + · · ·+ ξj = t)

is uniform over all nonnegative vectors that sum to t, so (r1, . . . rj) is uniformly distributed
over the nonnegative vectors that sum to 1. Now the joint distribution of the ri can be
generated by letting U1, . . . Uj−1 be uniform on [0, 1], U (1) < U (2) < . . . U (j−1) be the order
statistics, and ri = U (i) − U (i−1) where U (0) = 0 and U (j) = 1. From this and symmetry, we
see that

P (ri > x) = P (rj > x) = P (Ui < x for 1 ≤ i ≤ j − 1) = (1− x)j−1

and differentiating gives the density.
If the neutral mutation rate is ν then on [Tj, Tj+1) mutations occur to individuals in Y

at rate νj, while births occur at rate γj, so the number of mutations Nj in this time interval
has a shifted geometric distribution with success probability γ/(γ + ν), i.e.,

P (Nj = k) =

(
ν

ν + γ

)k
γ

ν + γ
for k = 0, 1, 2 . . . (24)

The Nj are i.i.d. with mean
ν + γ

γ
− 1 =

ν

γ

Thus the expected number of neutral mutations that are present at frequency larger than x
is

ν

γ

∞∑
j=1

(1− x)j−1 =
ν

γx

The j = 1 term corresponds to mutations in [T1, T2) which will be present in the entire
population.

Simulation algorithm. The proof of the last result leads to a useful simulation algorithm.
Suppose we have worked our way up to time Tj with j ≥ 1 and the limiting fractions of the
descendants of the j individuals at this time correspond to the sizes of the intervals

0 = Uj,0 < Uj,1 < . . . Uj,j−1 < Uj,j = 1

14



where the Uj,i, 1 ≤ i < j, are the order statistics of a sample of j − 1 independent uniforms.
To take care of mutations in [Tj, Tj+1), we generate a number of mutations Nj with a

shifted geometric distribution given in (24) and associate each mutations with an interval
(Uj,i−1, Uj,i) with i chosen at random from 1, . . . j.

To produce the subdivision at time Tj+1, let V be an independent uniform, define 1 ≤
nj ≤ j so that Uj,nj−1 < V < Uj,nj

, and then let

Uj+1,i =


Uj,i 0 ≤ i < nj

V i = nj

Uj,i−1 nj < i ≤ j + 1

Note that the interval to be split is not chosen at random but according to its length. The
simplest explanation of why this is true is that it is needed to have the new point added be
uniform on (0, 1). For a detailed explanation, see Theorem 1.8 of Durrett (2008).

When we have worked our way down to Tj with j = Nγ we stop. To find the properites of
a sample of size n, we choose points X1, . . . Xn independently and uniform on (0, 1). For each
k a mutation associated with (Uk,i−1, Uk,i) appears in all of the individual Xm ∈ (Uk,i−1, Uk,i).

Proof of Theorem 2. We begin with a calculus fact that is easy for readers who can remember
the definition of the beta distribution. The rest of us can simply integrate by parts.

Lemma 2.1. If a and b are nonnegative integers∫ 1

0

xa(1− x)b dx =
a!b!

(a + b + 1)!
(25)

Differentiating the distribution function from Theorem 1 gives the density ν/γx2. We
have removed the atom at 1 since those mutations will be present in every individual and we
are supposing the sample size n > m the number of times the mutation occurs in the sample.
Conditioning on the frequency in the entire population, it follows that for m ≤ 2 < n that

Eηn,m =

∫ 1

0

ν

γx2

(
n

m

)
xm(1− x)n−m dx =

nν

γm(m− 1)

where we have used n � N and the second step requires m ≥ 2.
When m = 1 the formula above gives Eηn,1 = ∞. To get a finite answer we note that

Zt = n roughly when Yt = nγ so the expected number that are present at frequency larger
than x is

ν

γ

Nγ∑
j=1

(1− x)j−1 =
ν

γx

(
1− (1− x)Nγ

)
Differentiating (and multiplying by −1) changes the density from ν/γx2 to

ν

γ

(
1

x2

(
1− (1− x)Nγ

)
− 1

x
Nγ(1− x)Nγ−1

)
(26)
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Ignoring the constant ν/γ for the moment and noticing
(

n
m

)
xm(1 − x)n−m = nx(1 − x)n−1

when m = 1 the contribution from the second term is

n

∫ 1

0

Nγ(1− x)Nγ+n−2 dx = n · Nγ

Nγ + n− 1
< n

and this term can be ignored. Changing variables x = y/Nγ the first integral is∫ 1

0

1

x

(
1− (1− x)Nγ

)
(1− x)n−1 dx

=

∫ Nγ

0

1

y

(
1− (1− y/Nγ)Nγ

)
(1− y/Nγ)n−1 dy

To show that the above is ∼ log(Nγ) we let KN → ∞ slowly and divide the integral
into three regions [0, KN ], [KN , Nγ/ log N ], and [Nγ/ log N, Nγ]. Oustide the first interval,
(1− y/Nγ)Nγ → 0 and outside the third, (1− y/Nγ)n−1 → 1 so we conclude that the above
is

O(KN) +

∫ Nγ/ log N

KN

1

y
dy + O(log log N)

As the simulation results cited in the introduction suggest, this approximation is somewhat
rough.

Proof of Theorem 3. When a mutation that occurs on level j = k + 1 is associated with
(Uj,i−1, Uj,i) it affects all members of the sample that land in that interval. By symmetry of
the joint distribution of the interval lengths, we can suppose without loss of generality that
i = 1. Think of the k break points Uj,i with 1 < i < j − 1 as red points and the n uniforms
X1, . . . Xn as blue. The mutation will affect exactly one individual in the sample if as we
look from left to right, the first point is blue and the second is red. By symmetry this has
probability

n

n + k
· k

n− 1 + k

Taking into account that the mean number of mutations per level is ν/γ and summing gives
desired formula.

Evaluating the constant. Writing M for Nγ,

M∑
k=1

n

n + k
· k

n− 1 + k
= n

M∑
k=1

1

n + k
·
(

1− n− 1

n− 1 + k

)

= n
n+M∑

j=n+1

1

j
− n(n− 1)

M∑
k=1

(
1

n + k − 1
− 1

n + k

)
The second sum telescopes and has value

−n(n− 1)

(
1

n
− 1

n + M

)
≈ −(n− 1)
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If ρ is Euler’s constant then the first sum is

≈ log(n + M) + ρ−
n∑

j=1

1

j

If n = 10 and M = 1000 then we end up with

10 · [6.9177 + 0.5772− 2.929]− 9 = 36.66 (27)

3 Genealogies

A simple description and a useful mental picture of genealogies in an exponentially growing
population is provided by the following result of Kingman (1982).

Theorem 8. If we run time at rate 1/N(s) then on the new time scale genealogies follow
the standard coalescent in which there is coalescence at rate

(
k
2

)
when there are k lineages.

When N(t) = Ne−γt the time interval [0, (1/γ) log N) over which the model makes sense
gets mapped by the time change to an interval of length

1

N

∫ (1/γ) log N

0

eγt dt =
1

γ
· N − 1

N
<

1

γ
.

While Theorem 8 is useful conceptually, it is difficult to use for computations because
after the time change mutations occur at a time-dependent rate. Back on the original time
scale, Griffiths and Tavaré (1998) have shown that the joint density of the coalescent times
(Tk, . . . , Tn) for any k ≥ 2 is given by

pk,n(tk, . . . tn) =
n∏

j=k

(
j
2

)
N(tj)

exp

(
−
∫ tj

tj+1

(
j
2

)
N(s)

ds

)
(28)

where 0 = tn+1 < tn . . . < tk. In particular when k = n and N(t) = Ne−γt

pn(tn) =
n(n− 1)

2N
eγtn exp

(
−n(n− 1)

2Nγ
(eγtn − 1)

)
(29)

One can, in principle at least, find the marginal distribution pk of tk by integrating out
the variables tk+1, . . . , tn in (28). According to (5)–(8) in Polanski, Bobrowski, and Kimmel
(2003)

pk(tk) =
n∑

j=k

Ak
j qj(tk) where (30)

qj(tk) =

(
j
2

)
N(tk)

exp

(
−
∫ tk

0

(
j
2

)
N(s)

ds

)
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and the coefficients Ak
j are given by An

n = 1

Ak
j =

∏n
`=k,` 6=j

(
`
2

)∏n
`=k,` 6=j

[(
`
2

)
−
(

j
2

)] for k < n and k ≤ j ≤ n.

We have said in principle earlier because the coefficients grow rapidly and have alternating
signs, which to quote the authors: “makes the use of this result for samples of size n > 50
difficult.”

Fortunately, for our purposes (29) is enough. From its derivation and the inequality
e−x ≥ 1− x we have

P (Tn > t) = exp

(
−n(n− 1)

2Nγ
(eγt − 1)

)
≥ 1− n(n− 1)

2Nγ
eγt

The right-hand side is 0 at time un = (1/γ) log(2Nγ/n(n− 1)) so

ETn ≥
1

γ
log

(
2Nγ

n(n− 1)

)
− n(n− 1)

2Nγ

∫ un

0

eγs ds

≥ 1

γ

[
log

(
2Nγ

n(n− 1)

)
− 1

]
(31)

This is within O(1) of the time (1/γ) log N at which the model stops making sense, so it
follows that the expected values of Sk = Tk − Tk+1 are O(1) for 2 ≤ k < n.

4 Proofs of the wave k formulas (18) and (19)

Our next topic is the waiting time for the first type k + 1:

P (τk+1 > t|Fk
t ) = exp

(
−
∫ t

0

Z∗k(s) ds

)
≈ exp(−uk+1Vke

λkt/λk)

Taking expected value and using Theorem 7

P (τk+1 > t|Ω0
∞) =

(
1 + cθ,kµk(uk+1e

λkt/λk)
λ0/λk

)−1

Using the definition of µk+1 the median tk+1
1/2 is defined by

cθ,kµk+1 exp(λ0t
k+1
1/2 )λ

−λ0/λk

k = 1

and solving gives

tk+1
1/2 =

1

λ0

log

(
λ

λ0/λk

k

cθ,kµk+1

)
=

1

λk

log(λk)−
1

λ0

log (cθ,kµk+1)
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which is (18). As in the case of τ1

P (τk+1 > tk+1
1/2 + x/λ0) ≈ (1 + ex)−1

Again the result for the median sk+1
1/2 of the time σk+1 of the first mutation to type k + 1

with a family that does not die out can be found by replacing uk+1 by uk+1λk+1/ak+1. Using

µk+1 = µku
λ0/λk

k+1 from (16) when we do this gives

sk+1
1/2 =

1

λk

log

(
λkak+1

uk+1λk+1

)
− 1

λ0

log(cθ,kµk) (32)

To simplify and to relate our result to (22), we will look at the difference

sk+1
1/2 − sk

1/2 =
1

λk

log

(
λkak+1

uk+1λk+1

)
− 1

λk−1

log

(
λk−1ak

ukλk

)
− 1

λ0

log
(
c
λ0/λk−1

h,k u
λ0/λk−1

k

)
where in the second term we have used (15) and (16) to evaluate cθ,k/cθ,k−1 and µk/µk−1.
Recalling the formula

ch,k =
1

ak

(
ak

λk

)αk

Γ(αk)Γ(1− αk) with αk = λk−1/λk

given in (14) we have

sk+1
1/2 − sk

1/2 =
1

λk

log

(
λ2

kak+1

akuk+1λk+1

)
− 1

λk−1

log(αkΓ(αk)Γ(1− αk))

which is (19). To see this note that the uk from the last term and the 1/ak from the ch,k

cancel with parts of the second term, and the (ak/λk)
αk from the third ends up in the first.
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