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2.2 Chung-Lu model

This model is specified by a collection of weights w = (w1, . . . , wn) that represent the ex-
pected degree sequence. The probability of an edge between i to j is wiwj/

∑
k wk. They

allow loops from i to i so that the expected degree at i is

∑

j

wiwj∑
k wk

= wi

Of course for this to make sense maxi w
2
i <

∑
k wk.

In the power law model the probability of having degree k is pk = k−β/ζ(β) where ζ(β) =∑∞
k=1 k−β. The probability of having degree ≥ K is ∼ BK−β+1 where 1/B = (β − 1)ζ(β).

Thinking of the wieghts as being decreaasing we have

wi = K when i/n = BK−β+1

Solving gives

wi = (i/nB)−1/(β−1)

Setting i0 = 1 on page 15881, changing their c to κ, and correcting a typo, Chung and Lu
have for 1 ≤ i ≤ n

wi = κi−1/(β−1) where κ =
β − 2

β − 1
dn1/(β−1)

and d = (1/n)
∑

i wi is the average degree. When β > 2, the distribution of the degrees has
finite mean, d will converge to a limit, so apart from constants our two models are the same.

Let d̄ =
∑

i w
2
i /
∑

k wk be the second order average degree. If vertices are chosen pro-
portional to their weights, i.e., i is chosen with probability vi = wi/

∑
k wk then the chosen

vertex will have mean size d̄ so that quantity is the analogue of ν for Molloy-Reed graphs.
When β > 3, using Chung and Lu’s definitions of the weights

∑

i

wi ∼ κ

n∑

i=1

i−1/(β−1) ∼ κ
β − 1

β − 2
n(β−2)/(β−1)

∑

i

w2
i ∼ κ2

n∑

i=1

i−2/(β−1) ∼ κ2 β − 1

β − 3
n(β−3)/(β−1) (2.2.1)

so we have ∑
i w

2
i∑

i wi
∼ κ

β − 2

β − 3
n−1/(β−1) = d

(β − 2)2

(β − 1)(β − 3)

When β = 3 the asymptotics for
∑

i wi are once again the same but
∑

i w
2
i ∼ κ2 log n so

∑
i w

2
i∑

i wi
∼ κ log n · 1

2
n−1/2 =

1

4
d log n (2.2.2)
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When 2 < β < 3 the asymptotics for
∑

i wi stay the same but
∑

i w
2
i ∼ κ2

∑∞
i=1 i−2/(β−1) so

we have
∑

i w
2
i∑

i wi
∼ κ

∞∑

i=1

i−2/(β−1) · β − 2

β − 1
n−(β−2)/(β−1) = ζ(2/(β − 1))

β − 2

β − 1
n(3−β)/(β−1) (2.2.3)

The formulas in last two cases look different from those in Chung and Lu (2002)since they
write the answer in terms of the maximum degree m = κ rather than in terms of n. However
the qualitative behavior is the same. d̄ grows like log n when β = 3 and like a positive power
of n when 2 < β < 3.

Chung and Lu prove results first under abstract conditions and then apply them to the
power law example. The expected degree sequence w is said to be strongly sparse if

(i) the second order average degree satisifes 0 < (log d̄) << (log n)

(ii) for some constant c > 0, all but o(n) vertices have wi ≤ c

(iii) there is an ε > 0 so that the average expected degree sequence d ≥ 1 + ε

To state the final condition we need some more notation. Given a set of vertices S ⊂ G

volk(S) =
∑

i∈S

wk
i

When k = 1 we drop the subcript and call vol(S) the volume. The final condition is

(iv) We say that G(w) is admissible if there is a subset U satisfying

vol2(U) = (1 + o(1))vol2(G) >> vol3(U)
log d̄(log log n)

d̄ log n

Theorem 2.2.1. For a strongly sparse random graph with admissible expected degree se-
quence the average distance is almost surely (1 + o(1)) log n/(log d̄)

It is easy to see that our power law graphs with β > 3 satisfy (i) and (ii). Chung and Lu
sketch a proof that it also satisfies (iv) so we have

Theorem 2.2.2. For a power law graph with exponent β > 3 and average degree d > 1 then
the average distance is almost surely (1 + o(1)) log n/(log d̄)

Note that the condition is on d rather than d̄.
For smaller values of β they have the following.

Theorem 2.2.3. Suppose a power law graph with exponent 2 < β < 3 has average degree
d > 1 and maximum degree

log m >> (log n)/ log log n

Then the average distance is at most

(2 + o(1))
log log n

log(1/(β − 2))

while the diameter is Θ(log n).
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To explain the intuition behind this we return to Molloy and Reed model. Recall pk =
k−β/ζ(β) while qk−1 = kpk/µ = k1−β/ζ(β − 1). The tail of the distribution

QK =
∞∑

k=K

qk ∼ 1

ζ(β − 1)(β − 2)
k2−β (2.2.4)

The power 0 < β − 2 < 1, and qk is concentrated on the nonnegative integers so qk is in the
domain of attraction of a one sided stable law with index α = β − 2. To explain this let
X1, X2, . . . be i.i.d. with distribution qk and let Sn = X1 + · · ·+ Xn.

To understand how Sn behaves, for 0 < a < b < ∞, let

Nn(a, b) = |{m ≤ n : Xm/n1/α ∈ (a, b)}|

Let Bα = 1/{ζ(β − 1)(2 − β)}. For each m the probability Xm ∈ (an1/α, bn1/α) is

∼ 1

n
Bα(a−α − b−α)

Since the Xm are independent, Nn(a, b) ⇒ N(a, b) has a Poisson distribution with mean

Bα(a−α − b−α) =

∫ b

a

αBα

xα+1
dx (2.2.5)

If we interpret N(a, b) as the number of points in (a, b) the limit is a Poisson process on
(0,∞) with intensity αBαx−(α+1). There are finitely many points in (a,∞) for a > 0 but
infinitely many in (0,∞).

The last paragraph describes the limiting behavior of the random set

Xn = {Xm/n1/α : 1 ≤ m ≤ n}

To describe the limit of Sn/n1/α, we will “sum up the points.” Let ε > 0 and

In(ε) = {m ≤ n : Xm > εn1/α}
Ŝn(ε) =

∑

m∈In(ε)

Xm S̄n(ε) = Sn − Ŝn(ε)

In(ε) = the indices of the “big terms,” i.e., those > εn1/α in magnitude. Ŝn(ε) is the sum of
the big terms, and S̄n(ε) is the rest of the sum.

The first thing we will do is show that the contribution of S̄n(ε) is small if ε is. To do
this we note that

E

(
Xm

n1/α
; Xm ≤ εn1/α

)
=

εn1/α∑

k=1

k2−β

n1α
∼ ε3−β(n1/α)2−β

3 − β

Since β − 2 = α multiplying on each side by n gives

E(S̄n(ε)/n1/α) → ε3−β/(3 − β) (2.2.6)
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If Z = Poisson(λ) then

E(exp(itaZ)) =
∞∑

k=0

e−λ eitakλk

k!
= exp(λ(eita − 1))

Dividing (ε,∞) into small strips, using independence of the number of points in different
strips, and passing to the limit gives

E exp(itŜn(ε)/n1/α) → exp

(∫ ∞

ε

(eitx − 1)
αBα

xα+1
dx

)
(2.2.7)

Now eitx − 1 ∼ itx as t → 0 and α < 1 so combining (2.2.6) and (2.2.7) and letting ε → 0
slowly (see (7.6) in Chapter 2 of Durrett (2004) for more details) we have

E(exp(itŜn/n1/α) → exp

(∫ ∞

ε

(eitx − 1)
αBα

xα+1
dx

)

This shows Sn/n1/α has a limit. The limit is the one-sided stable law with index α, which
we will denote by Γα

Branching process. This proof comes from

Davies, P.L. (1978) The simple branching process: a note on convergence when the mean is
infinite. J. Appl. Prob. 15, 466–480

Theorem 2.2.4. Consider a branching process with offspring distribution ξ with P (ξ > k) ∼
Bαk−α where α = β − 2 ∈ (0, 1). As n → ∞, αn(log Zn + 1) → W with P (W = 0) = 0 the
extinction probability for the branching process.

Proof. Now if Zn > 0 then

Zn+1 =
Zn∑

i=1

ξn,i

where the ξn,i are indepndent and have thse same distribution as ξ. We can write

log(Zn+1 + 1) =
1

α
log(Zn + 1) + log Yn

where Yn =

(
1 +

Zn∑

i=1

ξn,i

)/
(Zn + 1)1/α

Multiplying each side by αn and iterating we have

αn log(Zn+1 + 1) = log(Z1 + 1) + αn log Yn−1 + · · · + α log(Y1)
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As n → ∞, Yn converges to Γα. Straightforward but somewhat tedious estimates on the
tail of the distribution of Yn show that, see pages 474–477 of Davies (1978),

E

( ∞∑

m=1

αn log+ Yn < ∞
)

and E

( ∞∑

m=1

αn log− Yn < ∞
)

This shows that limn→∞ αn log(Zn+1 + 1) = W exists.

It remains to show that the limit W is nontrivial. Davies has a complicated proof that
involves getting upper and lower bounds on 1 − Gn(x) where Gn is the distribution of Zn

which allows him to conclude that if J(x) = P (W ≤ x) then

lim
x→∞

− log(1 − J(x))

x
= 1

Problem. Find a simple proof that P (W > 0) > 0.

Once this is done it is reasonably straightforward to up grade the conclusion to J(0) = q,
where q is the extinction probability. To do this we begin with the observation that

Lemma 2.2.5. Consider a supercritical branching process with offspring distribution pk and
generating function φ. If we condition on nonextinction and look only at the individuals
that have an infinite line of descent then the number of individuals in generation n, Z̃n is a
branching process with offspring generating function

φ̃(z) =
φ((1 − q)z + q)

1 − q

where q is the extinction probability, i.e., the smallest solution of φ(q) = q in [0, 1].

Proof. There is nothing to prove if q = 0 so suppose 0 < q < 1. If Z0 = 1 and we condition
on survival of the branching process then the number of individuals in the first generation
who have an infinite line of descent has distribution

p̃j =
1

1 − q

∞∑

k=j

pk

(
k

j

)
(1 − q)jqk−j

Thus multiplying by zj, summing, and interchanging the order of summation

∞∑

j=1

p̃j =
1

1 − q

∞∑

j=1

∞∑

k=j

pk

(
k

j

)
(1 − q)jqk−jzj

=
1

1 − q

∞∑

k=1

pk

k∑

j=1

(
k

j

)
(1 − q)jzjqk−j
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Using the binomial theorem and noticing that the j = 0 term is missing the above

=
1

1 − q

∞∑

k=1

pk{((1 − q)z + q)k − qk}

We can add the k = 0 term to the sum since its value is 0. Having done this the result is

φ((1 − q)z + φ(q))

1 − q

Since φ(q) = q the result follows.

It is easy to check that the new law is also in the domain of atttraction of the stable
α. On S = {ω : Zn(ω) > 0for alln}. Z

(1)
n . By the definition of the process n → Z

(1)
n is

nondecreasing. Wait until the time N = min{n : Z
(1)
n > M}. In order for αn log(Z

(1)
n +1) → 0

this must occur for each of the M families at time N . However we have already shown that
the probability of a positive limit is δ > 0, so the probability all M fail is (1 − δ)M → 0 as
M → ∞.

The double exponenetial growth of the branching process associated with the degree
distribution pk = k−β/ζ(β) where 2 < β < 3 suggests that the average distance between two
members of the giant component will be O(log log n). To get a constant we note that our
limit theorem says

log(Zt + 1) ≈ α−tW

so Zt + 1 ≈ exp(α−tW ). Replacing Zt + 1 by n and solving gives log n = α−tW . Discarding
the W and writing α−t = exp(−t log α) we get

∼ log log n

log(1/α)
(2.2.8)

This agrees with the Chung and Lu bound in Theorem 2.2.3 except for a factor of 2, but
that factor may be necessary. Recall that in our analysis of the Erdös-Renyi case in order
to connect two points x and y we grew their clusters until size n2/3 and each of the growth
processes will take the time given in (2.2.8).

Quest. Find a real proof of the folk theorem about the log log n behavior for 2 < β < 3.

A curious aspect of the problem that Gena pointed out is that in the independent power law
model the largest degree is O(k1/(β−1)) which is n1−ε when β = 1 + 1/(1 − ε).

In addition to the Chung and Lu PNAS paper are Cohen, R., and Havlin, S. (2003) Scale-free

networks are ultra-small. Phys. Rev. Letters. 90, paper 058701.

Reitu, H., and Norros, I. (2004) On the power-law random graph model of masssive data
networks. Performance Evaluation. 55, 3–23
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Two new references that have recently came to my attention are:

Chung, Fan and Lu, Linyuan (2004) The average distance in a random graph with given
expected degrees. Internet Mathematics. 1, 91–114

Lu, L. (2002) Probabilistic graphs in Massive Graphs and Internet Computing.” Ph.D.
dissertation http://math.ucsd.edu/ ˜ llu/thesis.pdf

* * * * * * * * * *

Chung, F. and Lu, L. (2002) Connected components in random graphs with a given
degree expected sequence . Annals of Combinatorics 6, 125-145

has a nice result about the subcritical phase. Recall volS =
∑

i∈S wi.

Theorem 2.2.6. If d̄ < 1 then all components have volume at most C
√

n with probability
at least

1 − dd̄2

C2(1 − d̄)

Proof. Let x be the probability that there is a component with volme > C
√

n. Pick two
vertices at random with probabilities proportional to their weights. If γ = 1/

∑
i wi then for

each vertex, the probability it is in the component is ≥ C
√

nγ. Therefore the probability a
randomly chosen pair of vertices is in the same component is at least

x(C
√

nγ)2 = C2xnγ2 (2.2.9)

On the other hand for a fixed pair of vertices u and v the probability pk(u, v) of u and v
being connected by a path of length k + 1 is a most

pk(u, v) ≤
∑

i1,i2,...ik

(wuwi1γ)(wi1wi2γ) · · · (wikwvγ) ≤ wuwvγ(d̄)k

Summing over k ≥ 0 the probability u and v belong to the same component is at most

wuwvγ

1 − d̄

The probabilities of u and v being selected are wuγ and wvγ. Summing over u and v the
probability a randomly chosen pair of verties belong to the same component is at most

(d̄)2γ

1 − d̄

Using this with (2.2.9)

C2xnγ2 ≤ (d̄)2γ

1 − d̄
which implies

x ≤ (d̄)2

C2n(1 − d̄)γ
=

d(d̄)2

C2(1 − d̄)

since γ = 1/
∑

i wi and d = (1/n)
∑

i wi implies nγ = 1/d.


