38

2.2 Chung-Lu model

This model is specified by a collection of weights $\mathbf{w} = (w_1, \ldots, w_n)$ that represent the expected degree sequence. The probability of an edge between *i* to *j* is $w_i w_j / \sum_k w_k$. They allow loops from *i* to *i* so that the expected degree at *i* is

$$\sum_{j} \frac{w_i w_j}{\sum_k w_k} = w_i$$

Of course for this to make sense $\max_i w_i^2 < \sum_k w_k$.

In the power law model the probability of having degree k is $p_k = k^{-\beta}/\zeta(\beta)$ where $\zeta(\beta) = \sum_{k=1}^{\infty} k^{-\beta}$. The probability of having degree $\geq K$ is $\sim BK^{-\beta+1}$ where $1/B = (\beta - 1)\zeta(\beta)$. Thinking of the weights as being decreasing we have

$$w_i = K$$
 when $i/n = BK^{-\beta+1}$

Solving gives

$$w_i = (i/nB)^{-1/(\beta-1)}$$

Setting $i_0 = 1$ on page 15881, changing their c to κ , and correcting a typo, Chung and Lu have for $1 \leq i \leq n$

$$w_i = \kappa i^{-1/(\beta-1)}$$
 where $\kappa = \frac{\beta-2}{\beta-1} dn^{1/(\beta-1)}$

and $d = (1/n) \sum_{i} w_i$ is the average degree. When $\beta > 2$, the distribution of the degrees has finite mean, d will converge to a limit, so apart from constants our two models are the same.

Let $\bar{d} = \sum_i w_i^2 / \sum_k w_k$ be the second order average degree. If vertices are chosen proportional to their weights, i.e., *i* is chosen with probability $v_i = w_i / \sum_k w_k$ then the chosen vertex will have mean size \bar{d} so that quantity is the analogue of ν for Molloy-Reed graphs. When $\beta > 3$, using Chung and Lu's definitions of the weights

$$\sum_{i} w_{i} \sim \kappa \sum_{i=1}^{n} i^{-1/(\beta-1)} \sim \kappa \frac{\beta-1}{\beta-2} n^{(\beta-2)/(\beta-1)}$$
$$\sum_{i} w_{i}^{2} \sim \kappa^{2} \sum_{i=1}^{n} i^{-2/(\beta-1)} \sim \kappa^{2} \frac{\beta-1}{\beta-3} n^{(\beta-3)/(\beta-1)}$$
(2.2.1)

so we have

$$\frac{\sum_{i} w_{i}^{2}}{\sum_{i} w_{i}} \sim \kappa \frac{\beta - 2}{\beta - 3} n^{-1/(\beta - 1)} = d \frac{(\beta - 2)^{2}}{(\beta - 1)(\beta - 3)}$$

When $\beta = 3$ the asymptotics for $\sum_i w_i$ are once again the same but $\sum_i w_i^2 \sim \kappa^2 \log n$ so

$$\frac{\sum_{i} w_{i}^{2}}{\sum_{i} w_{i}} \sim \kappa \log n \cdot \frac{1}{2} n^{-1/2} = \frac{1}{4} d \log n$$
(2.2.2)

When $2 < \beta < 3$ the asymptotics for $\sum_i w_i$ stay the same but $\sum_i w_i^2 \sim \kappa^2 \sum_{i=1}^{\infty} i^{-2/(\beta-1)}$ so we have

$$\frac{\sum_{i} w_{i}^{2}}{\sum_{i} w_{i}} \sim \kappa \sum_{i=1}^{\infty} i^{-2/(\beta-1)} \cdot \frac{\beta-2}{\beta-1} n^{-(\beta-2)/(\beta-1)} = \zeta (2/(\beta-1)) \frac{\beta-2}{\beta-1} n^{(3-\beta)/(\beta-1)}$$
(2.2.3)

The formulas in last two cases look different from those in Chung and Lu (2002)since they write the answer in terms of the maximum degree $m = \kappa$ rather than in terms of n. However the qualitative behavior is the same. \bar{d} grows like $\log n$ when $\beta = 3$ and like a positive power of n when $2 < \beta < 3$.

Chung and Lu prove results first under abstract conditions and then apply them to the power law example. The expected degree sequence \mathbf{w} is said to be *strongly sparse* if

- (i) the second order average degree satisifies $0 < (\log d) \ll (\log n)$
- (ii) for some constant c > 0, all but o(n) vertices have $w_i \leq c$
- (iii) there is an $\epsilon > 0$ so that the average expected degree sequence $d \ge 1 + \epsilon$

To state the final condition we need some more notation. Given a set of vertices $S \subset G$

$$\operatorname{vol}_k(S) = \sum_{i \in S} w_i^k$$

When k = 1 we drop the subcript and call vol(S) the volume. The final condition is (iv) We say that G(w) is *admissible* if there is a subset U satisfying

$$\operatorname{vol}_2(U) = (1 + o(1))\operatorname{vol}_2(G) \gg \operatorname{vol}_3(U) \frac{\log \bar{d}(\log \log n)}{\bar{d} \log n}$$

Theorem 2.2.1. For a strongly sparse random graph with admissible expected degree sequence the average distance is almost surely $(1 + o(1)) \log n / (\log \bar{d})$

It is easy to see that our power law graphs with $\beta > 3$ satisfy (i) and (ii). Chung and Lu sketch a proof that it also satisfies (iv) so we have

Theorem 2.2.2. For a power law graph with exponent $\beta > 3$ and average degree d > 1 then the average distance is almost surely $(1 + o(1)) \log n / (\log \bar{d})$

Note that the condition is on d rather than \overline{d} .

For smaller values of β they have the following.

Theorem 2.2.3. Suppose a power law graph with exponent $2 < \beta < 3$ has average degree d > 1 and maximum degree

 $\log m \gg (\log n) / \log \log n$

Then the average distance is at most

$$(2+o(1))\frac{\log\log n}{\log(1/(\beta-2))}$$

while the diameter is $\Theta(\log n)$.

To explain the intuition behind this we return to Molloy and Reed model. Recall $p_k = k^{-\beta}/\zeta(\beta)$ while $q_{k-1} = kp_k/\mu = k^{1-\beta}/\zeta(\beta-1)$. The tail of the distribution

$$Q_K = \sum_{k=K}^{\infty} q_k \sim \frac{1}{\zeta(\beta - 1)(\beta - 2)} k^{2-\beta}$$
(2.2.4)

The power $0 < \beta - 2 < 1$, and q_k is concentrated on the nonnegative integers so q_k is in the domain of attraction of a one sided stable law with index $\alpha = \beta - 2$. To explain this let X_1, X_2, \ldots be i.i.d. with distribution q_k and let $S_n = X_1 + \cdots + X_n$.

To understand how S_n behaves, for $0 < a < b < \infty$, let

$$N_n(a,b) = |\{m \le n : X_m/n^{1/\alpha} \in (a,b)\}|$$

Let $B_{\alpha} = 1/{\{\zeta(\beta-1)(2-\beta)\}}$. For each *m* the probability $X_m \in (an^{1/\alpha}, bn^{1/\alpha})$ is

$$\sim \frac{1}{n} B_{\alpha} (a^{-\alpha} - b^{-\alpha})$$

Since the X_m are independent, $N_n(a,b) \Rightarrow N(a,b)$ has a Poisson distribution with mean

$$B_{\alpha}(a^{-\alpha} - b^{-\alpha}) = \int_{a}^{b} \frac{\alpha B_{\alpha}}{x^{\alpha+1}} dx \qquad (2.2.5)$$

If we interpret N(a, b) as the number of points in (a, b) the limit is a Poisson process on $(0, \infty)$ with intensity $\alpha B_{\alpha} x^{-(\alpha+1)}$. There are finitely many points in (a, ∞) for a > 0 but infinitely many in $(0, \infty)$.

The last paragraph describes the limiting behavior of the random set

$$\mathcal{X}_n = \{X_m/n^{1/\alpha} : 1 \le m \le n\}$$

To describe the limit of $S_n/n^{1/\alpha}$, we will "sum up the points." Let $\epsilon > 0$ and

$$I_n(\epsilon) = \{ m \le n : X_m > \epsilon n^{1/\alpha} \}$$
$$\hat{S}_n(\epsilon) = \sum_{m \in I_n(\epsilon)} X_m \qquad \bar{S}_n(\epsilon) = S_n - \hat{S}_n(\epsilon)$$

 $I_n(\epsilon)$ = the indices of the "big terms," i.e., those > $\epsilon n^{1/\alpha}$ in magnitude. $\hat{S}_n(\epsilon)$ is the sum of the big terms, and $\bar{S}_n(\epsilon)$ is the rest of the sum.

The first thing we will do is show that the contribution of $\bar{S}_n(\epsilon)$ is small if ϵ is. To do this we note that

$$E\left(\frac{X_m}{n^{1/\alpha}}; X_m \le \epsilon n^{1/\alpha}\right) = \sum_{k=1}^{\epsilon n^{1/\alpha}} \frac{k^{2-\beta}}{n^{1\alpha}} \sim \frac{\epsilon^{3-\beta} (n^{1/\alpha})^{2-\beta}}{3-\beta}$$

Since $\beta - 2 = \alpha$ multiplying on each side by *n* gives

$$E(\bar{S}_n(\epsilon)/n^{1/\alpha}) \to \epsilon^{3-\beta}/(3-\beta)$$
(2.2.6)

2.2. CHUNG-LU MODEL

If $Z = Poisson(\lambda)$ then

$$E(\exp(itaZ)) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{e^{itak}\lambda^k}{k!} = \exp(\lambda(e^{ita} - 1))$$

Dividing (ϵ, ∞) into small strips, using independence of the number of points in different strips, and passing to the limit gives

$$E \exp(it\hat{S}_n(\epsilon)/n^{1/\alpha}) \to \exp\left(\int_{\epsilon}^{\infty} (e^{itx} - 1)\frac{\alpha B_\alpha}{x^{\alpha+1}} \, dx\right) \tag{2.2.7}$$

Now $e^{itx} - 1 \sim itx$ as $t \to 0$ and $\alpha < 1$ so combining (2.2.6) and (2.2.7) and letting $\epsilon \to 0$ slowly (see (7.6) in Chapter 2 of Durrett (2004) for more details) we have

$$E(\exp(it\hat{S}_n/n^{1/\alpha}) \to \exp\left(\int_{\epsilon}^{\infty} (e^{itx} - 1)\frac{\alpha B_{\alpha}}{x^{\alpha+1}} dx\right)$$

This shows $S_n/n^{1/\alpha}$ has a limit. The limit is the one-sided stable law with index α , which we will denote by Γ_{α}

Branching process. This proof comes from

Davies, P.L. (1978) The simple branching process: a note on convergence when the mean is infinite. J. Appl. Prob. 15, 466–480

Theorem 2.2.4. Consider a branching process with offspring distribution ξ with $P(\xi > k) \sim B_{\alpha}k^{-\alpha}$ where $\alpha = \beta - 2 \in (0, 1)$. As $n \to \infty$, $\alpha^n(\log Z_n + 1) \to W$ with P(W = 0) = 0 the extinction probability for the branching process.

Proof. Now if $Z_n > 0$ then

$$Z_{n+1} = \sum_{i=1}^{Z_n} \xi_{n,i}$$

where the $\xi_{n,i}$ are independent and have the same distribution as ξ . We can write

$$\log(Z_{n+1}+1) = \frac{1}{\alpha} \log(Z_n+1) + \log Y_n$$

where $Y_n = \left(1 + \sum_{i=1}^{Z_n} \xi_{n,i}\right) / (Z_n+1)^{1/\alpha}$

Multiplying each side by α^n and iterating we have

 $\alpha^{n} \log(Z_{n+1} + 1) = \log(Z_1 + 1) + \alpha^{n} \log Y_{n-1} + \dots + \alpha \log(Y_1)$

As $n \to \infty$, Y_n converges to Γ_{α} . Straightforward but somewhat tedious estimates on the tail of the distribution of Y_n show that, see pages 474–477 of Davies (1978),

$$E\left(\sum_{m=1}^{\infty} \alpha^n \log^+ Y_n < \infty\right)$$
 and $E\left(\sum_{m=1}^{\infty} \alpha^n \log^- Y_n < \infty\right)$

This shows that $\lim_{n\to\infty} \alpha^n \log(Z_{n+1}+1) = W$ exists.

It remains to show that the limit W is nontrivial. Davies has a complicated proof that involves getting upper and lower bounds on $1 - G_n(x)$ where G_n is the distribution of Z_n which allows him to conclude that if $J(x) = P(W \le x)$ then

$$\lim_{x \to \infty} \frac{-\log(1 - J(x))}{x} = 1$$

Problem. Find a simple proof that P(W > 0) > 0.

Once this is done it is reasonably straightforward to up grade the conclusion to J(0) = q, where q is the extinction probability. To do this we begin with the observation that

Lemma 2.2.5. Consider a supercritical branching process with offspring distribution p_k and generating function ϕ . If we condition on nonextinction and look only at the individuals that have an infinite line of descent then the number of individuals in generation n, \tilde{Z}_n is a branching process with offspring generating function

$$\tilde{\phi}(z) = \frac{\phi((1-q)z+q)}{1-q}$$

where q is the extinction probability, i.e., the smallest solution of $\phi(q) = q$ in [0, 1].

Proof. There is nothing to prove if q = 0 so suppose 0 < q < 1. If $Z_0 = 1$ and we condition on survival of the branching process then the number of individuals in the first generation who have an infinite line of descent has distribution

$$\tilde{p}_j = \frac{1}{1-q} \sum_{k=j}^{\infty} p_k \binom{k}{j} (1-q)^j q^{k-j}$$

Thus multiplying by z^{j} , summing, and interchanging the order of summation

$$\sum_{j=1}^{\infty} \tilde{p}_j = \frac{1}{1-q} \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} p_k \binom{k}{j} (1-q)^j q^{k-j} z^j$$
$$= \frac{1}{1-q} \sum_{k=1}^{\infty} p_k \sum_{j=1}^k \binom{k}{j} (1-q)^j z^j q^{k-j}$$

Using the binomial theorem and noticing that the j = 0 term is missing the above

$$= \frac{1}{1-q} \sum_{k=1}^{\infty} p_k \{ ((1-q)z+q)^k - q^k \}$$

We can add the k = 0 term to the sum since its value is 0. Having done this the result is

$$\frac{\phi((1-q)z+\phi(q))}{1-q}$$

Since $\phi(q) = q$ the result follows.

It is easy to check that the new law is also in the domain of attraction of the stable α . On $S = \{\omega : Z_n(\omega) > 0 \text{ for all } n\}$. $Z_n^{(1)}$. By the definition of the process $n \to Z_n^{(1)}$ is nondecreasing. Wait until the time $N = \min\{n : Z_n^{(1)} > M\}$. In order for $\alpha^n \log(Z_n^{(1)}+1) \to 0$ this must occur for each of the M families at time N. However we have already shown that the probability of a positive limit is $\delta > 0$, so the probability all M fail is $(1 - \delta)^M \to 0$ as $M \to \infty$.

The double exponential growth of the branching process associated with the degree distribution $p_k = k^{-\beta}/\zeta(\beta)$ where $2 < \beta < 3$ suggests that the average distance between two members of the giant component will be $O(\log \log n)$. To get a constant we note that our limit theorem says

$$\log(Z_t + 1) \approx \alpha^{-t} W$$

so $Z_t + 1 \approx \exp(\alpha^{-t}W)$. Replacing $Z_t + 1$ by *n* and solving gives $\log n = \alpha^{-t}W$. Discarding the *W* and writing $\alpha^{-t} = \exp(-t\log \alpha)$ we get

$$\sim \frac{\log \log n}{\log(1/\alpha)} \tag{2.2.8}$$

This agrees with the Chung and Lu bound in Theorem 2.2.3 except for a factor of 2, but that factor may be necessary. Recall that in our analysis of the Erdös-Renyi case in order to connect two points x and y we grew their clusters until size $n^{2/3}$ and each of the growth processes will take the time given in (2.2.8).

Quest. Find a real proof of the folk theorem about the log log n behavior for $2 < \beta < 3$.

A curious aspect of the problem that Gena pointed out is that in the independent power law model the largest degree is $O(k^{1/(\beta-1)})$ which is $n^{1-\epsilon}$ when $\beta = 1 + 1/(1-\epsilon)$.

In addition to the Chung and Lu PNAS paper are Cohen, R., and Havlin, S. (2003) Scale-free

networks are ultra-small. Phys. Rev. Letters. 90, paper 058701.

Reitu, H., and Norros, I. (2004) On the power-law random graph model of massive data networks. *Performance Evaluation.* 55, 3–23

Two new references that have recently came to my attention are:

Chung, Fan and Lu, Linyuan (2004) The average distance in a random graph with given expected degrees. Internet Mathematics. 1, 91–114

Lu, L. (2002) Probabilistic graphs in Massive Graphs and Internet Computing." Ph.D. dissertation http://math.ucsd.edu/ \sim llu/thesis.pdf

* * * * * * * * * *

Chung, F. and Lu, L. (2002) Connected components in random graphs with a given degree expected sequence . Annals of Combinatorics 6, 125-145

has a nice result about the subcritical phase. Recall $\operatorname{vol} S = \sum_{i \in S} w_i$.

Theorem 2.2.6. If $\overline{d} < 1$ then all components have volume at most $C\sqrt{n}$ with probability at least

$$1 - \frac{dd^2}{C^2(1-\bar{d})}$$

Proof. Let x be the probability that there is a component with volme $> C\sqrt{n}$. Pick two vertices at random with probabilities proportional to their weights. If $\gamma = 1/\sum_i w_i$ then for each vertex, the probability it is in the component is $\geq C\sqrt{n\gamma}$. Therefore the probability a randomly chosen pair of vertices is in the same component is at least

$$x(C\sqrt{n\gamma})^2 = C^2 x n\gamma^2 \tag{2.2.9}$$

On the other hand for a fixed pair of vertices u and v the probability $p_k(u, v)$ of u and v being connected by a path of length k + 1 is a most

$$p_k(u,v) \le \sum_{i_1,i_2,\dots,i_k} (w_u w_{i_1} \gamma) (w_{i_1} w_{i_2} \gamma) \cdots (w_{i_k} w_v \gamma) \le w_u w_v \gamma(\bar{d})^k$$

Summing over $k \ge 0$ the probability u and v belong to the same component is at most

$$\frac{w_u w_v \gamma}{1 - \bar{d}}$$

The probabilities of u and v being selected are $w_u \gamma$ and $w_v \gamma$. Summing over u and v the probability a randomly chosen pair of verties belong to the same component is at most

$$\frac{(\bar{d})^2\gamma}{1-\bar{d}}$$

Using this with (2.2.9)

$$C^2 x n \gamma^2 \le \frac{(\bar{d})^2 \gamma}{1 - \bar{d}}$$

which implies

$$x \le \frac{(\bar{d})^2}{C^2 n (1 - \bar{d}) \gamma} = \frac{d(\bar{d})^2}{C^2 (1 - \bar{d})}$$

since $\gamma = 1 / \sum_{i} w_i$ and $d = (1/n) \sum_{i} w_i$ implies $n\gamma = 1/d$.