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Summary 

There has recently been increased interest in the use of Markov Chain Monte Carlo (MCMC) based 

Bayesian methods for estimating genetic maps.  The advantage of these methods is that they accurately 

can deal with missing data and genotyping errors.  Here we present an extension of the previous 

methods that makes the Bayesian method applicable to large data sets.  We present an extensive 

simulation study examining the statistical properties of the method and comparing it to the likelihood 

method implemented in MAPMAKER.  We show that the Maximum A Posteriori (MAP) estimator of 

the genetic distances, corresponding to the maximum likelihood estimator, performs better than 

estimators based on the posterior expectation.  We also show that while the performance is similar 

between MAPMAKER and the MCMC based method in the absence of genotyping errors, the MCMC 

based method has a distinct advantage in the presence of genotyping errors.  A similar advantage of the 

Bayesian method was not observed for missing data.  We also reanalyze a recently published set of data 

from the eggplant and show that the use of the MCMC based method leads to smaller estimates of 

genetic distances. 

 

1. Introduction 

Estimating the marker order and the distances between markers from controlled crosses is a classical 

problem in statistical genomics.  There are many solutions to this problem.  Most methods will proceed 

by first identifying linkage groups and then subsequently estimate marker order and distances between 

markers within each linkage group.  Linkage groups are typically identified by examining the likelihood 

function for the recombination rate between pairs of markers.  For example, the popular program 

MAPMAKER (Lander et al. 1987) assigns a pair of markers to the same linkage group if the LOD score 

in favor of linkage exceeds a certain threshold (the default value is 3.0).  After markers have been 

assigned to linkage groups, marker order is usually estimated by finding the marker order which 

minimizes or maximizes some statistic, typically using a heuristic optimization.  The two most common 



statistics are the Sum of Adjacent Recombination fractions (SAR) and the LOD score.  Keller (1999), 

George (1999), and Rosa (2002) considered Bayesian approaches for determining marker order and 

estimating adjacent recombination fractions.  In these studies it has been argued that the Bayesian 

method has an advantage over previous methods in that it can directly incorporate uncertainty due to 

genotyping errors into the estimates of marker order and marker distances. 

Here we will discuss an extension of the previous Bayesian methods that makes the method 

applicable to even very large data sets.  We also demonstrate how the Bayesian approach may be used 

for inferences regarding linkage groups and to quantify uncertainty regarding marker order.  Using 

simulations we compare our new method to the method implemented in the popular program 

MAPMAKER (Lander et al. 1987) and analyze the statistical properties of these methods in the presence 

of genotyping errors and missing data.  The new approach is applied to a large data sets from the 

eggplant and we compare our results to the likelihood approach implemented in MAPMAKER (Lander 

et al. 1987).  A computer program implementing the method is made publicly available. 

 

2. Theory and Methods 

The statistical method we will use is a Bayesian approach which combines the likelihood 

function with a prior distribution to form a posterior distribution.  Inferences are then based on the 

posterior distribution.  The priors we will use are uniform priors that assign equal probability mass to all 

possible observations.  This implies that the obtained posterior distributions also can be interpreted 

directly as likelihood functions (or integrated likelihood functions).  The method described here is 

essentially that of Rosa et al. (2002), but it is extended and improved in a few ways: 1) we extend the 

method to F2 data in addition to backcross data; 2) and we present some algorithmic improvements.  As 

a result, our method can handle realistic data sets with hundreds of markers on multiple chromosomes.  

In the following, we will first briefly describe the likelihood function in the case of no errors and no 



missing data and our choice of priors.  In the subsequent sections we will then describe how the model 

incorporates errors and missing data and we will then provide details of the simulation algorithm. 

 

(i) Model description 

Our approach differs from previous approaches by directly modeling the presence of 

chromosomes.  For dense sets of markers, this will alleviate the need for prior identification of linkage 

groups.  Consider m  markers in some arrangement λ  on C  chromosomes, of which neC  are non-

empty, i.e. have markers on them.  There are then neCm −  adjacent pairs of markers and corresponding 

recombination fractions jθ .  For now, we assume that the set of genotypes, G , is known perfectly at 

each marker for each of n  individuals, and that for each marker pair we can find the number of 

recombinations between them, which, summed over individuals we call R . The likelihood is then: 
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where nR κ=max  is the maximum possible number of recombinations, and κ is 1 for backcross data and 

2 for F2 data.  This expression assumes that there is no interference among marker intervals.  For the 

purpose of defining the likelihood function, this assumption is typically made (e.g. Lander et al. 1987; 

Rosa et al 2002).  However, estimates of recombination fractions can still be converted to genetic 

distances using mapping functions that do not assume independence. 

The prior distribution for each recombination fraction iθ  is taken to be ),0( 2
1Uniform .  We let 

the prior probability of a marker and chromosome order be )!2/(1)( 0
01 Cp CC +∝λ  where 0C  and 1C  are 

the numbers of chromosomes with exactly 0 and 1 markers on them, respectively.  This prior arises from 

a process of translocations and inversions at stationarity (Durrett, Nielsen and York 2004).  Note that 



two marker orders differing only by a reordering of markers within a chromosome have the same prior 

probability.  For the special case of 1=C  the prior distribution is discrete uniform.  The joint posterior 

for marker order and recombination fractions, is then given by 
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We are interested in estimating )|,( Gθλp , and for this purpose we devise a based Markov 

Chain Monte Carlo (MCMC) algorithm.  In brief, we define a Markov chain with state space on the set 

of possible values of λ and θ.  We then simulate paths of this Markov chain using the Metropolis-

Hastings algorithm and sample values of λ and θ from the chain at stationarity.  For more information 

regarding MCMC methods applied to marker orders, see for example Durrett, Nielsen and York (2004) 

and for a general introduction to MCMC, see for example Larget (2004).  The Markov chain is 

simulated by repeatedly updating the values of θ and λ.  The jth component of θ, jθ , is readily updated 

by drawing from )( max)1(),|( jj RR
j

R
jjp −−∝ θθλθ G , a beta distribution.  Marker order is updated using a 

Metropolis-Hastings step with a proposal distribution (described below) which preferentially picks 

inversions and translocations which replace some recombination fractions with smaller ones.  

 

(ii) Errors and Missing data 

Let the observed genotypes (including errors and missing data) be M , and let G , the true genotypes, 

now be a parameter of the model, which also now includes parameter µ , the missing data rate, and π , 

the error rate.  Following Rosa et al. (2002), updates to G  are made by sampling from its full 

conditional distribution (i.e. using a Gibbs update):  
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In the backcross case there are 3 observed genotypes, [homozygous (aa), heterozygous (aA), and 

missing data (ax)], and 2 possible true genotypes, aa and aA. The probability of missing data is µ , and 

the probability that a genotype not coded as missing is in error is π ; i.e.: 

 

µ====== )|()|( aAgaxmpaagaxmp ijijijij , 

πµ)1()|()|( −====== aAgaampaagaAmp ijijijij , 

)1)(1()|()|( πµ −−====== aAgaAmpaagaamp ijijijij , 

 

where mij and gij are the observed and true genotypes, respectively, of individual i at locus j.  It is 

convenient to update the ijg  one at a time using  
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The second probability on the right depends only on the neighboring genotypes and recombination 

fractions; i.e., (dropping the ij subscript, and subscripting with L  and R  for left and right neighboring 

quantities): 
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 where Lr  is 0 (1) if g and Lg  are the same (different), and similarly for Rr . This is for a marker with 

neighboring markers on both sides, for the leftmost marker on a chromosome, for example, the factors 

involving Lθ  and Lr  become 1. 

In the F2 case, an added complication arises when considering two heterozygous markers. 

Notating parental genotypes as AB/AB and ab/ab and the F1 genotype as AB/ab, the pair of 

heterozygous markers is either AB/ab (no recombinants) or Ab/aB (2 recombinants). This can be 

handled within the same framework by including linkage phase information in G , i.e. ∈ijg {a/a, a/A, 

A/a, A/A}; lumping together of A/a and a/A as heterozygous is a form of missing data.  

There are then 6 observed genotypes, (aa, AA, aA, ax, Ax, and xx) and 4 possible true genotypes (a/a, 

a/A, A/a, A/A). In the absence of missing data we assume the probability of a genotype being miscoded 

is π , i.e. given a true genotype, one of the three possible observed genotypes is correct and occurs with 

probability π−1 ; we assume each of the two incorrect observed genotypes occurs with probability 

2/π . We assume the probabilities of missing data are 1µ  (data missing for one allele), and 2µ  (data 

missing for both alleles). When both errors and missing data are present we model their effects as 

follows (using the notation ),,,|( 21, µµπgmpp gm ≡ ): 
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if one is homozygous the other heterozygous, and 2 if they are different but both homozygous (a/a and 

A/A) or both heterozygous (a/A and A/a). 

The parameter π  is updated using ),,(),,,|(),,,|,,( 212121 µµπµµπθλµµπ pGMpMGp ∝ , where 
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nnnnnn πππµµµµ −−−− , where the exponents in  depend on G and M  and are easily 

found by counting how often each factor appears in the product. We use ),()(),,( 2121 µµπµµπ ppp =  

with a uniform prior for π . The error rate is updated by sampling from 

( 654 )1()1(),|( 4
3 nnnMGp ππππ −−∝  using a Metropolis-Hastings step with proposal distribution 

64
3

54 )1()( nnnq +−∝ πππ . The fully conditional distribution for G (equation (3)), is independent of 1µ  and 

2µ  when normalized, so it is not necessary to update 1µ  and 2µ  to estimate G , λ , and θ  properly.  

 

(iii) Dynamic updates of G 

For efficiency, rather than updating each ijg  one at a time, we update, for each individual, the genotypes 

of all the markers on a chromosome at once, using a dynamic programming approach akin to the Viterbi 

algorithm.  Our algorithm differs in this respect from that of Rosa et al. (2002).  Given marker order λ , 

let ),...,,( 21 kggg=g represent the true genotypes and ),...,,( 21 kmmm=m  the observed genotypes, with 

jg the genotype at the thj  marker from the left, and jθ the recombination fraction between markers j  

and 1+j .  To draw g from ),,,|( µπθmgp  we first obtain the probability distribution of jg conditional 

on observed genotypes and recombination fractions from the left end of the string of markers up to 

marker j , ),,,|()( µπjjjjL gpgp <≤≡ θm .  For the first marker at the leftmost end of markers, 



11 ,111 ),,|()( gmL pmgpgp == µπ .  Because 1m  effects )( 2gpL  only through )( 1gpL , 

),,,),(|()( 12122 µπθmgpgpgp LL = , and in general 

),,,),(|(),,,|( 11 µπµπ −−<≤ = jjjLjjjj θmgpgpgp θm .  Upon reaching the rightmost end, 

),,,),(|(),,,|()( 11 µπµπ −−<≤ == kkkLkkkkkL θmgpgpgpgp θm  is conditional on all im and iθ .  We then 

draw kg  from )( kL gp  and work back toward the left, next drawing 1−kg  from ),|( 11 −− kkkL ggp θ , etc.  

The advantage of this method is that the correlation in the unknown missing data (or errors) among 

markers for the same individual can be taking into account when proposing updates. 

 

(iv) Proposal distribution for λ  

In order to analyze data sets with many markers it is important to propose new marker orders in an 

efficient way. It is helpful to break the problem of finding a good way of proposing new marker orders 

into two parts: choosing a basic rearrangement operation, (for example swapping the positions of two 

markers), and choosing a proposal distribution specifying the probability of each such rearrangement 

(which two markers to swap). The basic rearrangement operations we use are inversions and, in the 

multiple chromosome case, translocations. Rosa et al. (2002) use inversions (which they call “rotation of 

random length segments”) and swapping the positions of two markers. By inversion is meant reversing 

the order of some sequence of markers on a chromosome, e.g. abfedcgabcdefg → . Translocation 

means cutting two chromosomes and then joining the pieces together at the cut ends so as to get two 

new chromosomes, each containing material from both the original ones. Both of these operations leave 

the total number of chromosomes unchanged. The number of chromosomes, C , that the program will 

work with is supplied by the user. If this number is larger than the actual number of chromosomes in the 

genome, this is not a problem as translocations can redistribute the markers so that some chromosomes 

have no markers. For m markers on a chromosome there are 2/)1( −mm distinct inversions and Rosa et 

al. (2002) propose each with equal probability (and similarly for marker swapping). In order to be more 



efficient for genomes with many markers, we use a non-uniform proposal distribution. The proposal 

distribution makes use of a table of estimated recombination fractions for each pair of markers, θ̂ , 

which is calculated just once, before starting the Markov chain. We use for ijθ̂  the maximum likelihood 

estimate considering only the data for markers i and j and assuming no coding errors. We expect that for 

the correct marker order it will usually be true of adjacent markers a  and b  that b  is among the closest 

few markers to a  (as measured by θ̂ ) and vice versa. We use this idea to choose the first end of a 

section to propose inverting. Specifically we define αβρ  to be the closeness rank of marker β  relative to 

marker α , such that 0=ααρ , and if marker β  is the closest distinct marker to α  then 1=αβρ , etc.  We 

define 2/)( baababR ρρ +=  and define avgR  to be the average of abR  over all adjacent marker pairs. The 

break at the first end of the proposed inversion is chosen to lie between adjacent markers a  and b  with 

relative probability )( abRf . The end of an inversion can also lie between a chromosome end and an 

adjacent marker; this is proposed with a relative probability of )( avgRf  for each such pair. The function 

f  should be increasing in order to preferentially propose breaking apart markers which are not likely to 

belong together. [Specifically, we use )1,6.1min()( / Cmxxf −= , where C is the number of chromosomes. 

The idea is that approximately m/C markers will be on the same chromosome as marker a and their 

rankings will be informative, but the rest of the markers are on different chromosomes and are all 

equally poor candidates to be adjacent.] Having chosen the first end between a  and b , the other end is 

preferentially chosen between c  and d so as to have smaller recombination fractions at the newly 

created adjacencies compared to the adjacencies which are lost in the inversion, i.e. inversions for which 

cdabbdac θθθθ ˆˆˆˆ −−+=∆  is small are proposed with higher probability. [In particular, the probability is 

∆−20e .] We define avgθ̂  to be the average of αβθ̂  over all adjacent marker pairs and use avgθθ ˆˆ =  for 

adjacencies between chromosome ends and markers when calculating ∆ . When a new marker order is 



proposed, new recombination fractions are needed for the newly adjacent marker pairs; these are drawn 

from  
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With this proposal distribution for the recombination fractions, the acceptance probability of an 

inversion ................ bdaccdab →  is 
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where )( λλ ′→q  is the probability of proposing order λ′  from order λ .  All factors depending on 

recombination fractions cancel out. 

 

(v) Estimation 

Marker orders and distances sampled from the Markov chain can be used for inferences.  For example, 

the maximum a posteriori probability (MAP) estimate of marker order is given by the marker order that 

appears most often in the chain (for chains that have been running long enough).  Because of the use of a 

uniform prior, this estimate is also the integrated maximum likelihood (ML) estimate.  The use of the 

word ‘integrated’ means here that there may have been nuisance parameters, such as error rates, which 

have been integrated out using the MCMC procedure.  Likewise, the map distance or recombination 

fraction between a particular pair of markers, given a particular marker order, can be estimated either by 

using the posterior expectation (estimated as the average value of the recombination fraction along the 

chain) or as the MAP value, which in our case again equals the integrated ML estimate.  One of the 



issues we will explore here is whether the posterior expectation or the MAP estimate is a better 

estimator of the recombination fraction and map distances. 

We monitor convergence by running 1>N  chains and looking for agreement among them. In 

particular we use the Gelman and Rubin (1992) statistic applied to the map distance and error rate. For 

each state in a chain a total map distance L is calculated by summing the map distances between each 

pair of adjacent markers. For each chain the mean and variance of L are kept track of, and a between-

chain variance, B  (the variance of the N  means), and a within-chain variance W  (the mean of the 

N variances) are defined. Convergence is indicated when B  becomes small compared to W . We 

typically define the burn-in to end when WB / becomes less than 0.1. 

A program for performing this analysis is available from 

http://www.binf.ku.dk/users/rasmus/webpage/ras.html. 

 

3. Results 

(i) Simulated data 

In this section we describe results based on simulated data that will help illuminate the statistical 

properties of the Bayesian methods.  We have analyzed sets of simulated data using both our Bayesian 

method and the widely used mapping program MAPMAKER (Lander et al. 1987).  All the results in this 

section are for data simulated from genomes with 8 markers on 1 chromosome, with the markers evenly 

spaced with separation d  and assuming no interference.  We describe results for BC and F2 crosses, and 

for various marker spacings ( d ), error rates π , and numbers of individuals n . Each data point shown in 

this section is based on 200 data sets or more. For these data sets our criterion for end of burn-in, 

1.0/ <WB , was reached at typically 250 updates, requiring 1 CPU second on a 2.8 GHz processor. The 

small number of markers was chosen so that Mapmaker’s “compare” function, which searches 

exhaustively for the best marker order, would run in a reasonably short time. Mapmaker has other ways 



to find the marker order suitable for larger numbers of markers but these tend to require interaction with 

an intelligent user, and are therefore less appropriate for the automated analysis of many data sets. 

 

(ii) Estimation of genetic distances 

The first question we will address is how well the Bayesian method estimates genetic distances 

and whether use of the posterior expectation or the MAP [corresponding to the ML estimate] provides 

the best point estimator of genetic distance.  Data was simulated assuming no interference for 8 markers, 

for Backcrosses (BC) with 50=n , BC  with 100=n , and F2 crosses (F2) with 50=n .  Let dL 7=  be 

the distance from leftmost to rightmost marker.  We estimate L considering only states with marker 

order λ̂  (the MAP estimate of marker order).  Using either the posterior expectation or the MAP method 

to estimate θj, the corresponding Haldane’s distances are summed:  ∑=
j

jHdL )ˆ(ˆ θ , where 

2/)21ln()( θθ −−=Hd .  As seen in Fig. 1, using the MAP estimator of θ gives a considerably better 

estimate than using the posterior expectation.  The estimate based on the posterior expectation is very 

biased because of the long tail of the likelihood function.  In addition to the bias, we also evaluate the 

root mean square error (RMSE).  The RMSE is equal to the square root of the variance plus the bias 

squared, and is, therefore, a measure of the performance of the method that considers both variance and 

bias.  The MAP method also has a much lower RMSE than the posterior expectation, showing that the 

bias in the posterior expectation is not compensated by a similarly reduced variance. 

When considering the superior MAP estimator, we also notice that the F2 method has higher bias 

than the BC for samples sizes of 50=n .  The reason is presumably that the marker state in F2 data is 

not known for double heterozygotes.  However, when considering the RMSE, the F2 with a sample size 

of n = 50 performs intermediate between the BC with 50=n  and 100=n .  The well-known good 

performance by the F2 cross is a consequence of the fact that F2 data has twice as many informative 

meioses as BC data. 



 

(iii) Estimation of marker order 

We use two different measures to determine how well a method performs in terms of estimation 

of marker order.  First, we use the proportion of times the method estimates the correct marker order.  

Second, we use the average distance between the true and the inferred marker order.  Distances are 

defined in terms of number breakpoints, i.e. the number of times in the inferred marker order, marker j 

from the true marker order is not followed by marker j + 1 from the true marker order, j = 1, 2, …, 7.  

The estimate of the marker order chosen is the marker order that appears most often in the simulation of 

the Markov chain, i.e. the MAP estimate which is also identical to the (integrated) ML estimate. 

As seen in Fig. 2, the estimate from Mapmaker and our MAP estimate have essentially identical 

properties in terms of identification of correct marker order, in the absence of errors and missing data.  

Despite the differences in implementation, this is not surprising since both methods are maximum 

likelihood methods under the same model.  It also confirms that the MCMC method accurately is able to 

reproduce results obtained using exhaustive searches in Mapmaker.   

We also notice that the estimate for 50 F2 crosses is almost as good as the estimate from 100 

Backcrosses for genetic distance up to about 5-10 cM.  For small genetic distances, the chance of a 

double heterozygote resulting from two recombination events is small and an F2 cross provides 

essentially twice as much information as a Backcross.  As the probability that a double heterozygote 

results from two recombination events increases, the advantage of the F2 method diminishes. 

 

(iv) Correcting for genotyping errors 

To illustrate the effect of genotyping errors we simulated data with varying error rates.  The MCMC 

mehod can take errors into account without a priori knowing the error rate (see Theory and Methods).  

We can then compare the performance of the method with and without correction for errors (Figure 3). 



Without error correction the estimate of L is biased towards larger values because genotyping 

errors appear are interpreted as recombinations; this is equally true of our Bayesian method and 

Mapmaker.  For the Bayesian method with error correction the bias in L  is small for all error rates, 

although there is some negative bias for the smallest error rates.  Error correction improves the RMSE in 

L  for larger error rates while giving equally good estimates at small error rates.  The difference in 

RMSE is large for error rates of 0.005 or larger. Mapmaker has a form of error correction which 

assumes a prior error rate, *π , supplied by the user. Compared with the Bayesian method with error 

correction, Mapmaker with 01.0* =π  gives estimates of L which are equally good at small error rates 

but somewhat worse at higher rates due to greater bias.  

Errors in the data (miscoding of genotypes) degrade inferences regarding marker order (Figure 

4), with Mapmaker and our Bayesian method performing similarly when error correction is not used. In 

the Bayesian method, error correction improves these inferences when errors are present, an effect 

which is quite small for BC data but larger for F2 data. Furthermore, there is no penalty for using error 

correction when analyzing error-free data. Mapmaker’s inferences regarding marker order show little 

benefit from using error correction, and there is a penalty for using error correction when analyzing 

error-free data.  

The estimate of the genotyping error rate, based on the posterior expectation, is shown in Figure 

5.  Notice that the estimate of the error rate is approximately unbiased. 

 

(v) Missing data 

We generated simulated data with 03.01 =µ  and 07.02 =µ ; these values are close to the rates of 

missing data seen in the eggplant data discussed below. We analyzed these data sets with both 

Mapmaker and our Bayesian method. The results are very similar both for estimation of L and 

estimation of marker order, as may be seen in Figure 6 and 7.  The RMSE is similar for the two methods 



showing that the Bayesian method does not have the same advantage when correcting for missing data 

as it has in the correction of genotyping errors. 

 
(vi) MarkerOrder Results For Eggplant Data 

The method described here is computationally capable of handling large data sets of hundreds of 

markers and individuals.  To illustrate this, we re-analyzed the data by Doganlar et al. (2002).  They 

published a genetic map of eggplant based on a data set consisting of genotypes at 233 markers for 58 

F2 individuals obtained using MAPMAKER (Lander et al. 1987). 

Although the present method can explicitly model the presence of chromosomes, it is 

computationally simpler first to identify linkage and then to analyze each of these linkage groups 

separately.  Therefore, we first generated MCMC output for the full data set and analyzed it for linkage 

groups, and then did a separate run for each linkage group to determine the marker order within each 

linkage group.  We define linkage groups such that markers which belong to the same linkage group 

should almost always be found on a single chromosome, rather than being spread over 2 or more.  For a 

set S of markers define its linkage fraction, f(S), as the fraction of the MCMC output states for which all 

markers in S lie on the same chromosome. For threshold linkage fraction lf  we define the set of linkage 

groups by dividing the markers into sets iS  (with every marker belonging to exactly one of the iS ), in 

such a way that li fSf >)(  for all i, and taking the union of any two distinct sets iS  and jS  gives a set 

with linkage fraction less than lf . Setting lf  = 0.9 we found a set of 13 linkage groups.  These 

correspond exactly to the chromosomes found by Doganlar et al. (2002) with the exception of their 

chromosome 9, which appears in our analysis as two linkage groups that we refer to as 9a and 9b.  

Table 1 shows the linkage fractions of our 13 linkage groups and their pair-wise unions.  Linkage 

fractions less than 0.1 are not shown. Our 13 groups all have linkage fraction ≥  0.96.  The union of 

groups 9a and 9b has a linkage fraction of only 0.37, and there is another pairing – groups 9b and 10 – 



which is actually more strongly linked.  Mapmaker defines linkage groups by looking at each pair of 

markers, finding the maximum likelihood recombination fraction, θ̂ , and the likelihood ratio 

)/)/L(θL( 21ˆ .  Two markers are considered linked if lLOD))/)/L(θ(L( >21ˆlog10 ; furthermore, linkage is 

transitive, i.e. if A and B are linked and B and C are linked then A and C are linked.  By increasing 

lLOD  the number of linkage groups can be increased, but it was not possible to get our set of 13 linkage 

groups with the Mapmaker analysis by adjusting this threshold.  With lLOD  in the range 2.8 to 3.5 we 

find the 12 groups reported by Doganlar et al. (2002) and with lLOD  = 3.6 we find 13 groups, but with 

chromosome 3 split into two instead of chromosome 9.  For defining linkage groups the Bayesian 

method has the advantage of taking marker order into account, unlike Mapmaker.  However, in this case 

it seems very likely that the identification of the chromosomes, in particular chromosome 9, in Doganlar 

et al. (2002) is correct since the markers on chromosome 9 are all found on the same chromosome in 

tomato. 

(vii) Comparison of maps for each linkage group. 

In our analysis we first lumped together any pair of markers with identical sets of genotypes; if jiij mm ′=  

for all i , then markers j  and j′  are lumped together.  This left 229 markers with distinct genotypes. For 

each of the 13 linkage groups found as described above we did a MCMC run with 4 replicate chains.  By 

considering the Gelman-Rubin statistic applied to L and π , requiring 1.0/ <WB  for both, we chose 

1000 updates as a conservative burn-in length, for all linkage groups except number 12 for which a 

burn-in of 3000 updates was needed.  Run lengths of 50 times burn-in were used. Linkage group 8, for 

example, with 16 markers, was run for 50,000 updates for each chain, taking 600 CPU seconds on a 2.8 

GHz processor.  In several cases adjacent markers are separated by an estimated map distance of zero; in 

each of these cases reversing the order of the markers gives an order with almost the same posterior 

probability, so we have lumped such pairs of markers (and in 1 case three markers) together.  Having 



done this the marker order from our Bayesian analysis agrees perfectly with the results of a Mapmaker 

analysis we performed, as well as with the map of Doganlar et al. (2002). Map distances also agree well, 

with the Bayesian error corrected estimates being consistently slightly smaller. Summing all the 

estimated kosambi distances between neighboring markers gives 1441 cM (Bayesian) and 1508 cM 

(Mapmaker).   

(viii) Estimation of error rate. 

The posterior density for the error rate for the eggplant data set is shown in Figure 8.  The error rate 

seems to be relatively low, most likely less than 0.01.  Therefore, it is not surprising that the map 

distances agree well between the map of Doganlar et al. (2002) and the results of the MCMC analysis. 

 

4. Discussion 

The results presented here show that the new MCMC approach has a distinct advantage over 

previous methods, in estimation of genetic distances and marker order in the presence of genotyping 

errors.  However, genetic distances are best estimated using the MAP or maximum likelihood estimator 

and can be biased if estimated using the posterior expectation based on a uniform prior.  Part of the 

problem appears to be that in small data sets, there is so little information regarding the genetic distance 

for each set of markers that the information introduced by the prior tends to dominate the information in 

provided by the likelihood function.  It is possible that for very large data sets the posterior expectation 

performs considerably better as a point estimator. 

The commonly used program, MAPMAKER (Lander et al. 1987) performs as well as the 

MCMC based method when the genotyping error rate is low.  However, when the genotyping error rate 

is reasonably large, the new MCMC method performs considerably better.  The new Bayesian method is 

applicable to real data sets, as illustrated by the application to the eggplant data, and should be used 

instead of more traditional methods when the genotyping error rate may be larger than 0.005.  
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Figure Legends 

 

Fig. 1. The Bias (a) and root mean square (rms) error (b) for 3 types of data, BC 50=n , BC 100=n , 

and F2 50=n , for the maximum a posteriori probability (MAP) estimate and the estimate based on the 

posterior expectation.  It is assumed that there are no errors and no missing data. 

 

Fig. 2. The probability of estimating the correct marker order (a) and the expected number of 

breakpoints between the true and the estimated marker order(b) for 3 types of data, BC 50=n , BC 

100=n , and F2 50=n , using estimates based on the present MCMC approach and using Mapmaker.  It 

is assumed that there are no errors and no missing data. 

 

Fig. 3. The Bias (a) and root mean square (rms) error (b) for 2 types of data BC 100=n , and F2 50=n , 

for the maximum a posteriori probability (MAP) estimate.  The data is simulated under varying error 

rates (π). 

 

Fig. 4. The probability of estimating the correct marker order (a) and the expected number of 

breakpoints between the true and the estimated marker order(b) for 2 types of data, BC 100=n , and F2 

50=n , using estimates based on the present MCMC approach and using Mapmaker.  The data is 

simulated under varying error rates (π). 

 

Fig 5. The mean estimate of the error rate for the simulated BC and F2 data simulated under varying 

error rates (π). 

 



Fig 6.  Estimation of map distances for the simulated BC and F2 data with missing data for various 

marker spacings. 

 

Fig. 7.  Estimation of marker order for the simulated BC and F2 data with missing data for various 

marker spacings. 

 

Fig 8.  The posterior density of the error rate for chromosome 10 of the eggplant data. 

 



 

Table of 

linkage 

fractions. 

             

 1 2 3 4 5 6 7 8 9a 9b 10 11 12 

1 1.00             

2  1            

3  0.10 0.97           

4    1          

5     1.00         

6      0.99        

7     0.21  1.00       

8        1.00      

9a         1     

9b         0.37 1    

10         0.17 0.38 1   

11            0.96  

12             1.00 

 

Table 1.  Linkage fractions for the 13 identified linkage groups of the eggplant data. 
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