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Abstract

Hybrid zones occur when two species are found in close proximity and inter-
breeding occurs, but the species characteristics remain distinct. These systems
have been treated in the biology literature using partial differential equations
models. Here we investigate a stochastic spatial model and prove the existence
of a stationary distribution that represents the hybrid zone in equilibrium. We
calculate the width of the hybrid zone, which agrees with the PDE formula only
in dimensions d ≥ 3. Our results also give insight into properties of hybrid zones
in patchy environments.

1 Introduction

In a number of situations one finds “hybrid zones”: two adjacent regions in space that
contain relatively homogeneous populations, which differ from each other and are sepa-
rated by a narrow zone in which hybrids are found. There are literally hundreds of such
examples. Barton and Hewitt’s (1985) survey lists 150 that have been studied. A text
book example is the common house mouse in Denmark (see Hunt and Selander 1973)
which exists in the form Mus musculus in the North and in the form M. domesticus in
the South and along parts of the Western coast. Syzmura and Barton (1986) have stud-
ied the fire bellied toads Bombina bombina and B. variegata in southern Poland. The
motivation for this study comes from work Harrison has done (Harrison 1986, Rand and
Harrison 1989, Harrison and Rand 1989, Harrison and Bogdanowicz 1997) investigating
two eastern North American field crickets, Gryllus Pennsylvanicus and G. firmus, which
hybridize along a zone of contact that extends from New England to Virginia.

Partial differential equations. There are two commonly quoted explanations
for hybrid zones, both of which assume that the underlying genetics is controlled by a
single locus with two alleles. Haldane (1948) advocated the explanation that one type
is more fit in one region and the second is more fit in the complement. Slatkin (1973)
analyzed this situation using a partial differential equation. Letting sgn (x) = 1 for
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x > 0, sgn (x) = −1 for x < 0 and sgn (x) = 0 for x = 0 and letting s denote the
selective advantage of a type in its favored environment, we can write his PDE as

∂u

∂t
= σ2 ∂2u

∂x2
+ sgn (x)su(x)(1 − u(x)) (1.1)

where x is a one-dimensional spatial variable, u(x) is the density of the type that is
favored on the right half-line, and σ2 is the variance of the displacement of offspring
from their parents. To connect our equation with Slatkin’s we write v = 2u − 1 or
u = (v + 1)/2 to get

∂v

∂t
= 2 ·

(σ2

2

∂2v

∂x2
+

1

4
sgn (x)s(1 − v2(x))

)

so if A(x) is the equilibrium distribution

σ2∂2A

∂x2
+

1

2
sgn (x)s(1 − A2(x)) = 0

Changing variables y = x
√

s/σ, Slatkin nondimensionalizes the equation, see his (8),
as

0 =
∂2A

∂y2
+

1

2
sgn (y)(1 − A2(y))

The equilibrium distribution A(y) has A(0) = 0 by symmetry and, see his (9), for y > 0

A(y) = −2 + 3 tanh2(y/2 + c) where c = tanh−1
√

2/3

The solution looks a little strange, but is not hard to verify once one realizes f(y) =
tanh(y) has f ′ = 1 − f 2. The choice of c makes A(0) = 0. Since after the change of
variables y = x

√
s/σ, the equilibrium does not depend on σ and s, the hybrid zone has

width of order
√

s/σ.
Barton (1979) has argued (see also Barton and Gale 1993) that hybrid zones are

maintained by selection against hybrids, i.e., the three genotypes AA, Aa and aa have
relative fitnesses 1, 1 − s, and 1. In this case the PDE is

∂u

∂t
=

σ2

2

∂2u

∂x2
+ γ(x)su(x)(1 − u(x))(2u(x) − 1) (1.2)

and the equilibrium solution is (see also Bazykin 1969)

v(x) =
1

2

(
1 + tanh(x

√
s/2σ2)

)

so again the hybrid zone has width of order
√

s/σ.
Spatial model. Here our goal is not to try to differentiate between these two

hypotheses (for work in that direction see e.g., Kruuk, Baird, Gale, and Barton 1999),
but instead to see how the predictions change when the PDE is replaced by a stochastic
spatial model. Following Cox and Durrett (1995) and Durrett, Buttel, and Harrison
(2000) we introduce a general model. Let q(z) be an irreducible probability distribution
on Zd with
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• q(0) = 0, q(x) = 0 if supi |xi| ≥ R,

• symmetry with respect to reflection in each axis

• covariance σ2I

It is natural to assume that q has the same symmetries as Zd, which implies the second
and third assumptions. With a little more work, the finite range assumption could be
weakened, but it helps make the arguments simple.

At the locus under selection, the genetics may be haploid or diploid, so the state at
time t is either ηt : Zd → {A, a} or ηt : Zd × {1, 2} → {A, a}. Using the population
dynamics of the Moran model, each site attempts to change its state at rate 1. If x
is the next site to change state then in the haploid case a parent is chosen according
to q(y − x), while in the diploid case we twice choose (with replacement) a parent
according to q(y − x) and one of their chromosomes at random. To determine whether
the individual at x will be replaced, we compute the relative fitness φ ≤ 1 of the proposed
new individual in the environment at x and do the replacement if a uniformly distributed
random variable U < φ.

Cox and Durrett (1995) considered the neutral case s = 0, starting from η0(x) =
(a, a) for x1 ≥ 0 and η0(x) = (A, A) for x1 < 0. Let νρ be the limiting state starting
from product measure with a density ρ of A’s, let Φ be the standard normal distribution
function, and let θx be the operator that shifts the configuration to the right by x,
i.e., (θxη)(y) = η(y − x). They showed that if one considers a sequence xt ∈ Zd and
xt/

√
t → x then

θxηt ⇒ νΦ(−x1/σ)

where x1 is the first coordinate of x. In words, the density of A’s evolves as predicted by
the central limit theorem. In d ≥ 3 the νρ are extremal stationary distributions, while
in d ≤ 2, νρ = ρδAA + (1 − ρ)δaa. In d = 2 the density of heterozygotes

P (ηt(xt, 1) 6= ηt(xt, 2)) ∼ CΦ(−x1/σ)(1 − Φ(−x1/σ))/ log t

In the d = 1 haploid case they showed that if `t = inf{t : ηt(x) = a} and rt = sup{t :
ηt(x) = A}, then rt − `t converges in distribution to a limit.

Durrett, Buttel, and Harrison (2000) studied the diploid model on Z2 and added a
second linked neutral locus with recombination probability r between the two loci. Using
simulation they investigated the allele frequency in equilibrium and the decay with time
of linkage disequilibrium (i.e., the correlation between the selected and neutral loci).
The second quantity is difficult to study even with nonrigorous methods. Barton (1986)
proposed an approximation for weak selection based on a diffusion approximation, but
as Figure 8 of Durrett, Buttel, and Harrison (2000) shows, it is not very accurate.

Here, we will focus on the allele frequency at the selected locus. For simplicity,
we will restrict our attention to the haploid case. To return to the usual notation of
interacting particle systems we will write 1 for A, 0 for a, and replace s by β (since t
and s are commonly used for time). Let ηt be the nonhomogeneous biased voter model
on Zd where 1’s are favored on (0,∞)× Zd−1 and 0’s are favored on (−∞, 0]× Zd−1. If
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the system is in state η then at x with x1 ≤ 0

0 −→ 1 at rate
∑

y∈Zd

q(y − x)η(y)

1 −→ 0 at rate (1 + β)
∑

y∈Zd

q(y − x)(1 − η(y))

and at x with x1 > 0

0 −→ 1 at rate (1 + β)
∑

y∈Zd

q(y − x)η(y)

1 −→ 0 at rate
∑

y∈Zd

q(y − x)(1 − η(y))

We start with η0(x) = 0 if x1 ≤ 0 and η0(x) = 1 if x1 > 0. Let

wβ =





1/
√

β d ≥ 3√
1
β

log(1/β) d = 2

1/β d = 1

(1.3)

Theorem 1 There is a nontrivial stationary distribution, ξ∞. The width of the hybrid
zone in ξ∞ is O(wβ). That is,

lim
k→∞

lim inf
β→0

inf
x1≥kwβ

P (ξ∞(x) = 1) = 1

lim
k→∞

lim sup
β→0

sup
x1≤−kwβ

P (ξ∞(x) = 1) = 0

In d ≥ 2 or in the one dimensional nearest neighbor case (i.e., q(1) = q(−1) = 1/2) we
also have

lim sup
β→0

sup
0≤x1≤wβ

P (ξ∞(x) = 1) < 1

To prove Theorems 1, let η̃t be the system that has permanent 0’s at all x with
x1 ≤ 0, which is also started from η̃0(x) = 0 if x1 ≤ 0 and η̃0(x) = 1 if x1 > 0.
Obviously P (ηt(x) = 1) ≥ P (η̃t(x) = 1) for x1 > 0. η̃t is a biased voter model so,
see Griffeath (1978) or Liggett (1985), it has a dual process ξ̃t, which is a system of
coalescing branching random walks with migration rate 1 and branching rate β where
particles are killed on (−∞, 0]×Zd−1. At a migration event the particle jumps according
to q. At a branching event a new particle is born at a site randomly chosen according
to q. When two particles come to the same site they coalesce.

The duality gives us P (η̃t(x) = 1) = P (ξ̃x
t (Zd) > 0) for x1 > 0. Here ξ̃x

t is the system
started with one particle at x. To prove our results we will use a block construction
in which the blocks have size O(wβ). Once this is done the existence of a nontrivial
stationary distribution and the lower bound follow easily. The approach we use to the
block construction depends on the dimension. In d ≥ 2 let

τ(β) =





1√
β

d ≥ 3

1

β
√

log( 1
β
)

d = 2
(1.4)
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Let ξ̂t be a pruned modification of ξ̃t in which new born particles have mass 0 until time
τ(β) and then are given mass 1 if they have not coalesced with another particle. Let ξ̂β

t

be the rescaled modification of ξ̂t, i.e., ξ̂β
t (·) = ξ̂h(β)t(

√
h(β) ·), where

h(β) =





1
β

d ≥ 3

1
β

log( 1
β
) d = 2

h(β) is the height of blocks in the block construction.
The key step in the proof is to show that ξ̂β

t converges weakly to ζt be the branching
Brownian motion with branching rate 2πσ2 for d = 2 and branching rate γ for d ≥ 3,
where γ is the escape probability of the random walk. This is easy to see in d ≥ 3: a
newly born particle coalesces with its parent with probability 1 − γ and if it does so
the coalescence takes O(1). In d = 2 the coalescence time distribution has a tail that is
∼ C/(log t), so the fraction that take time > 1/β is O(1/ log( 1

β
)), and we have to run

the process for time of order h(β) to a branching that does not coalesce by time 1/β.
The result in d = 1 is easy to see if we consider the nearest neighbor case. In this

situation if `t = inf{x : ξt(x) = 1} then all sites ≥ `t are 1 and those < `t are 0. `t is a
nearest neighbor random walk with drift −β when it is > 0 and β if it is < 0. Speeding
time up we have `t/β2/β ⇒ Lt the solution of the stochastic differential equation

dLt = dBt − sgn (Lt) dt

To prove the result in d = 1 for a general symmetric finite range distribution, we use
duality. Too many particles are lost to coalescence so we take a different approach. The
key idea is that if we follow branching arrows when they go to the right we get a random
walk with positive drift. By following branching when it takes us closer to a target, we
get a process that moves linearly toward a target and then stays close to it.

Mosaic hybrid zones. In the cricket hybrid zone, the frequencies of the two
species show a patchy pattern and are strongly correlated with soil type (Harrison 1986,
Rand and Harrison 1989, Harrison and Rand 1989). Durrett, Buttel, and Harrison
(2003) have investigated by simulation a model in which the environment is random and
patchy. Their results show that for a patch to be visible in the stationary distribution
it must exceed a critical size. This observation is not new. Slatkin (1973), see page
742 investigated the situation where A’s are favored on an interval (−L, L) and a’s are
favored on the rest of the space. A’s can only persist in equilibrium if L > 0.5` where
` =

√
s/σ is the hybrid zone width. As a consequence of our proof of Theorem 1 by the

block construction, we can conclude that if patches contain a d-dimensional cube with
side that is a large multiple of wβ, then A’s will persist for a long time even if all of the
environment outside favors a’s.

2 Proof of Theorem 1 in d ≥ 2

Since the pruned dual process ξ̂t is started with finitely many particles and since we are
interested only in a finite time horizon T we can think of the process as follows

X̂t = (X̂1
t , . . . , X̂k

t , X̂k+1
t , . . . , X̂N

t ,∞, . . . ) (2.1)
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Here the first k entries represent the initial particles. For them X̂m
t ∈ D([0, T ], Rd)

is the path followed by the m-th particle until time t and then continued to time T
as a constant. Let τn be the time the n-th particle that survives for time τ(β) is
born. Let τ̂n = τn + τ(β). Then the k + n-th entry is ∞ until time τ̂n and after-
wards it is the path followed by this particle and its ancestors. Whenever two parti-
cles coalesce the path of the particle with the higher number is replaced by ∞. Let
X̂β

t = (X̂1,β
t , . . . , X̂k,β

t , X̂k+1,β
t , . . . , X̂N,β

t ,∞, . . . ) be the rescaled modification, ξ̂β
t (·) =

ξ̂h(β)t(
√

h(β) ·).
Analogously we can interpret the branching Brownian motion ζt as

Yt = (Y 1
t , . . . , Y k

t , Y k+1
t , . . . , Y N

t ,∞, . . . )

X̂, X̂β and Y are processes taking values in

D = {(y1, y2, . . . ) : ∃k0∀k ≤ k0, yk ∈ D
(
[0, T ], Rd

)
∪ {∞}; ∀k > k0, yk = ∞} (2.2)

with the Skorokhod topology modified in the obvious way to account for the fact that
the sample paths have an initial segment = ∞.

Lemma 2.1 Let d ≥ 2 and x1, . . . , xk ∈ Rd and define

xβ
i = h(β)−1/2

[
h(β)1/2xi

]

where [x] is the nearest point to x in Zd. Let X̂β
0 = (xβ

1 , . . . , x
β
k ,∞, . . . ) and Y0 =

(x1, . . . , xk,∞, . . . ). Then as β → 0

X̂β
T

d−→YT

Proof (a) Consider the case d ≥ 3. Let ξt be a pruned branching random walk with
migration rate 1 and branching rate β. Pruned means that a new born particle has mass
0 until time τ(β) = 1/

√
β and its gets mass 1 if it has not coalesced with its parent.

At a migration event the particle jumps according to q. At a branching event a new
particle is born at a site randomly chosen according to q. The difference between ξ and
ξ̂ is that in ξ particles do not coalesce if they meet. Again we interpret the process ξt

as Xt = (X1
t , . . . , Xk

t , Xk+1
t , . . . , XN

t ,∞, . . . ) analogously to (2.1).
Let ξβ

t be the rescaled modification of ξt, i.e., ξβ
t (·) = ξt/β(·/

√
β). Each single random

walk converges to Brownian motion. Let Z1 and Z2 be two independent random walks
with jump rate 1 and jump kernel q both starting at 0. Let Pq indicate that one random
walk is started in the origin and the starting position of the other one is chosen according
to q. Let T0 = inf{t : Z1

t = Z2
t } and γ = Pq(T0 = ∞). Since γ > 0 in d ≥ 3, Chebyshev’s

inequality implies

Pq

(
|Z1

1/
√

β − Z2
1/

√
β| ≥ β−1/3

∣∣∣T0 > 1/
√

β
)

≤ 1

γ
Pq

(
|Z1

1/
√

β − Z2
1/

√
β| ≥ β−1/3

)
≤ Cβ2/3β−1/2 → 0 (2.3)

This means if the new born particle survives until time 1/
√

β then it is likely to be
≤ β−1/3 = o(β−1/2) from the parent particle.
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In the unscaled system the branching rate is β, but not every branching event is
successful, namely only those where the new born particle does not coalesce with its
parent particle by time 1/

√
β. Let T0 = inf{t : Z1

t = Z2
t }. We observe that

Pq

(
T0 ≥ 1/

√
β
)
−→ γ

Hence the rate of successful branching events in the scaled system converges to γ. From
this we can conclude that the pruned branching random walk converges to the branching
Brownian motion

Xβ
T

d−→YT

It remains to show that the error we make by replacing the pruned dual process ξ̂β

with the pruned branching random walk ξβ is small. There are two possible errors: a
new born particle could coalesce with another particle (not with the parent particle) by
time 1/

√
β, or there could be coalescing events after time 1/

√
β.

Let ε > 0. The number NT of all particles in the system ξ̂β till time T (all initial and
all new-born) is dominated by a branching process with branching rate 1 and death rate
0. Hence ENT ≤ keT , so if M is large enough then P (NT > M) ≤ ε. We just have to
be concerned with the case where NT ≤ M . Let Z̄t = Z1

t − Z2
t which is then a random

walk with jump rate 2 and kernel q. Let δ > 0 such that (3
2
M3 +3M2)δ < ε. The reason

for this choice will become clear as the proof goes on. Choose J large enough such that

(i) P x
(
Z̄t = 0 for some t

)
< δ for |x| > J

(ii) P x
(
|Z̄t| ≤ J for some t ≥ J8

)
< δ for all x

The first statement follows easily from transience of the random walk. To prove the
second statement, we decompose according to Ty the first visit to y after time J8:

∫ ∞

J8

ds P x(Z̄s = y) =

∫ ∞

J8

ds

∫ s

J8

P x(Ty ∈ dt)P 0(Z̄s−t = 0)

= P x
(
Z̄t = y for some t ≥ J8

) ∫ ∞

0

ds P 0(Z̄s = 0)

Summing over |y| ≤ J

P x
(
|Z̄t| ≤ J for some t ≥ J8

)
≤ C

∑

|y|≤J

∫ ∞

J8

ds P x(Z̄s = y)

By the local central limit theorem we get

P x
(
|Z̄t| ≤ J for some t ≥ J8

)
≤ C

∑

|y|≤J

∫ ∞

J8

s−d/2 ds = CJdJ−4(d−2) = CJ−3d+8

which → 0 since d ≥ 3.
In the following argument we sum up an estimate for the error probability, e, which

we update in each step. If there are k initial particles separated by J then by (i) the
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coalescing probability for each pair is smaller then δ. Since there are at most 1
2
M2 pairs,

now e = 1
2
M2δ.

Let τ be the time of the first branching in the unscaled system. With high probability
this time is larger than J8, since for small β

P (τ < J8) ≤ M(1 − e−βJ8

) < Mδ

Now e = 1
2
M2δ + Mδ.

Using (ii) at time τ the initial particles are separated by J and the new born particle
(which has mass 0 at that time) is separated from all other particles except for the
parent particle by J with high probability (e = 1

2
M2δ + Mδ + 1

2
M2δ). That means for

all particles except for the parent particle the probability that this particle coalesces with
the new particle is smaller than δ (e = M2δ+Mδ+Mδ). Again by (ii) after time τ +J8

all particles are separated by J with high probability (e = M2δ + 2Mδ + 1
2
M2δ). If the

new particle does not coalesce with the parent particle by time 1/
√

β it gets mass 1 at
this time, but at this time it is separated from all other particles by J , since 1/

√
β > J8

for small β. Thus the coalescing probability for each pair of particles containing the new
one is smaller than δ by (i) (e = 3

2
M2δ + 2Mδ + Mδ). Furthermore, we are in the same

setting as in the beginning now with k + 1 particles. Now we repeat the argument at
most M times. Hence e = M(3

2
M2 + 3M)δ and thus e < ε. Thus the error probability

caused by replacing X̂β with Xβ is small. This completes the proof of lemma 2.1 for
d ≥ 3.

(b) Consider the case d = 2. Let ξt be a pruned branching random walk with
migration rate 1 and branching rate 2πσ2. Pruned means that a new born particle has
mass 0 until time τ(β) = 1/(β

√
log(1/β)) and its gets mass 1 if it has not coalesced

with its parent. At a migration event the particle jumps according to q. At a branching
event a new particle is born at a site randomly chosen according to q. The difference
between ξ and ξ̂ is that in ξ particles do not coalesce if they meet. Again we interpret
the process ξt as Xt = (X1

t , . . . , Xk
t , Xk+1

t , . . . , XN
t ,∞, . . . ) analogously to (2.1).

Let ξβ
t be the rescaled modification of ξt, i.e., ξβ

t (·) = ξh(β)t(
√

h(β)·). Let Z1 and Z2

be two independent random walks with jump rate 1 and jump kernel q both starting
at 0. Let Pq indicate that one random walk is started in the origin and the starting
position of the other one is chosen according to q. Let T0 = inf{t : Z1

t = Z2
t }. By Zähle,

Cox and Durrett (2003) Lemma 3.1 we know Pq(T0 > t) ∼ 2πσ2(log t)−1. Hence

Pq

(
T0 > τ(β)

)
∼ 2πσ2

log 1
β
− 1

2
log log 1

β

(2.4)

By Chebyshev’s inequality we have

Pq

(
|Z1

τ(β) − Z2
τ(β)| ≥ β−1/2(log(1/β))1/3

∣∣∣T0 > τ(β)
)

≤ 1

Pq

(
T0 > τ(β)

)Pq

(
|Z1

τ(β) − Z2
τ(β)| ≥ β−1/2(log(1/β))1/3 (2.5)

≤ C(log(1/β))
β

(log(1/β))2/3
· 1

β(log(1/β))1/2
= C(log(1/β))−1/6 (2.6)
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This means if the new born particle survives until time τ(β) then it is likely to be
≤ β−1/2(log(1/β))1/3 = o(τ(β)1/2) from the parent particle.

On the other hand they are not too close by the following argument using the local
central limit theorem

Pq

(
|Z1

τ(β) − Z2
τ(β)| ≤

1√
β(log(1/β))

∣∣∣T0 > τ(β)
)

≤ 1

Pq

(
T0 > τ(β)

)Pq

(
|Z1

τ(β) − Z2
τ(β)| ≤

1√
β(log(1/β))

)

≤ C(log(1/β))

(
1√

β(log(1/β))

)2
1

τ(β)

= C(log(1/β))
1

β(log(1/β))2
β(log(1/β))1/2 ≤ C(log(1/β))−1/2 (2.7)

In the unscaled system the branching rate is β, but not every branching event is
successful, namely only those where the new born particle does not coalesce with its
parent particle by time τ(β). By (2.4) we see that the rate of successful branching
events in the scaled system converges to 2πσ2. From this we can conclude that the
pruned branching random walk converges to the branching Brownian motion

Xβ
T

d−→YT

It remains to show that the error we make by replacing pruned dual process ξ̂β with
the pruned branching random walk ξβ is small. Again there are two possible errors: a
new born particle could coalesce with another particle (not with the parent particle) by
time τ(β), or there could be coalescing events after time τ(β). First of all we observe
that the number NT of all particles in the system ξ̂β till time T is dominated by a
branching process with branching rate c = 3πσ2 and death rate 0 if β is small enough.
Hence ENT ≤ kecT , so if M is large enough then P (NT > M) ≤ ε. We just have to be
concerned with the case where NT ≤ M .

Let Z̄t = Z1
t − Z2

t which is then a random walk with jump rate 2 and kernel q. If
x = x(β) with |x(β)| > 1/(

√
β log 1

β
) then as β → 0

P x
(
Z̄t = 0 for some t ≤ h(β)T

)
−→ 0 (2.8)

This can be seen by the following argument. Consider the potential kernel A(x) =∑∞
k=0[q

k(0)− qk(x)]. In Fukai and Uchiyama (1996) one can find the following estimate

A(x) = c log |x| + O(1) (2.9)

On the other side
∑

y q(y − x)A(y) − A(x) = δ(0, x), thus if Sn is a random walk with
jump distribution q, E[A(Sn+1)|Fn] =

∑
x A(Sn+x)q(x) =

∑
y A(y)q(y−Sn) = A(Sn)+

δ(0, Sn). That means A(Sn) stopped at the first time when Sn = 0 is a martingale. Let
α be the probability that the random walk started in x(β) hits the ball of radius 2K
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before it exits the ball of radius 1√
β

log 1
β
. By the optional sampling theorem together

with the last estimate for A(x) we get

1

2
log

1

β
− log log

1

β
+ O(1) = α

[
log(2K) + O(1)

]
+ (1 − α)

[1

2
log

1

β
+ log log

1

β
+ O(1)

]

Then

α
1

2
log

1

β
≤ log log

1

β
+ O(1)

which means that α converges to 0 as β → 0. This proves (2.8).
If the initial particles are separated by 1/(

√
β log 1

β
) then they do not coalesce by

time h(β)T with high probability. This follows from (2.8). At the time a new born
particle gets non-zero mass (that means it has already survived until time τ(β)) it is
separated from the parent particle by 1/(

√
β log 1

β
). This follows from (2.7). Again by

an induction argument similar to the case d ≥ 3 we see that the error probability is
small. This completes the proof. 2

Result for Branching Brownian Motion. Let e1 = (1, 0, . . . , 0), I = [L, 2L]d

and Im = mLe1 + I. Let ζt be the branching Brownian motion with branching rate

µ =

{
γ d ≥ 3

2πσ2 d = 2

where γ = Pq(T0 = ∞) is the escape probability of the random walk. Let ζ̄t be a
modification of ζt in which particles are killed when they land outside [0, 4L]d. It is
easy to see (e.g., by checking that two sides of the equation satisfy the same differential
equation and initial condition) that

E[ζ̄x
t (A)] = eµtP (B̄x

t ∈ A)

where B̄x
t is a Brownian motion that starts at x and is killed when it lands outside

[0, 4L]d.
By the scaling invariance of Brownian motion we get

P
(
B̄x

L2 ∈ I0

)
= P x/L

(
Bs ∈ [0, 4]d for s ≤ 1, B1 ∈ [1, 2]d

)

where Bt is Brownian motion. Hence

lim inf
L→∞

inf
x∈[L,2L]d

P
(
B̄x

L2 ∈ I0

)
≥ inf

ϑ∈[1,2]d
P ϑ

(
Bs ∈ [0, 4]d for s ≤ 1, B1 ∈ [1, 2]d

)
> 0

We can pick L large enough so that

inf
x∈[L,2L]d

E[ζ̄x
L2(I0)] ≥ 2

Then obviously for A ⊂ [L, 2L]d

E[ζ̄A
L2(I0)] ≥ 2|A|

10



where ζ̄A
t denotes the modified branching Brownian motion started with one particle at

each point of A. Since E[ζ̄x
L2(I0)

2] ≤ E[ζx
L2(Rd)2] = cL < ∞ and since different particles

act independently
var [ζ̄A

L2(I0)] ≤ |A|cL

it follows by Chebyshev’s inequality that if A ⊂ [L, 2L]d has |A| ≥ K then

P
(
ζ̄A
L2(I0) < K

)
≤ cL

K

The same arguments work also for I1 instead of I0.
For the given L and a given ε we can choose K large enough such that

P
(
ζ̄A
L2(Ii) < K

)
≤ ε (i = 0, 1) (2.10)

for any A ⊂ [L, 2L]d with |A| ≥ K.

Continuity Argument. Recall X̂β
t , Yt and D. By Theorem 2.1 we know X̂β

T

d→YT .
Let

Fk : D −→ N, (y1, y2, . . . ) −→
∑

i

1Gi∩{yi(L2)∈Ik}

where Gi = {yi(t) ∈ [0, 4L]d∪{∞} for 0 ≤ t ≤ L2}. In words, Fk counts the paths which
stay in [0, 4L]d and end up in Ik. Since Fk is continuous almost surely with respect to
the limit distribution, the continuous mapping theorem yields

Fk(X̂
β)

d−→Fk(Y ) (2.11)

Let ξ̄β
t resp. ζ̄t be a modification of ξ̂β

t resp. ζt in which particles are killed when they
land outside [0, 4L]d. Let ξ̄β,A resp. ζ̄A

t be this system started with one particle at each
point of A. If β is small enough then by (2.11) and (2.10) we get

P
(
ξ̄β,A
L2 (Ik) < K

)
≤ P

(
ζ̄A
L2(Ik) < K

)
+ ε ≤ 2ε (k = 0, 1) (2.12)

Block Construction. At this point we have shown that if the rescaled pruned dual
process has ≥ K particles in I0 then in the system with particles killed outside [0, 4L]d

then with probability ≥ 1 − 4ε there will be ≥ K particles in I0 and I1 at time h(β).
The existence of a stationary distribution now follows from a comparison with oriented
percolation, as explained for example in Section 4 of Durrett (1995).

Lower bound. As proved in 2.10, for the given L and a given ε we can choose K
large enough such that

P
(
ζ̄A
L2(Ii) < K

)
≤ ε (i = 0, 1)

for any A ⊂ [L, 2L]d with |A| ≥ K. Results of Asmussen and Kaplan (1976) imply that
for a branching Brownian motion started at the center of I0 the number of particles in
I0 at time t is almost surely

∼ cdL
d

td/2
eµtW

11



where W is a random variable that gives the overall growth rate of the branching process.
From this it follows that if t is large enough the probability of ≤ K particles in I0 in the
branching Brownian motion is ≤ ε. By the continuity results we see that if β is small
this probability is ≤ 2ε for a rescaled branching random walk with no killing in the left
half-space. It follows that if x1 is large then the probability of < K particles in x + I0

is ≤ 3ε for the branching process started at x and killing in the left half space. Having
shown that the block event probability is ≥ 1−6ε in our 1-dependent block construction
it follows from Theorem 4.2 in Durrett (1995) that the probability of percolation in the
block construction is ≥ 1 − 55(6ε)1/9, which gives the lower bound.

Upper bound. For starting points of the rescaled pruned dual process that have
0 ≤ x1 ≤ 1, there is positive probability that there is no branching before time 1 and
that hits the left half line by that time. Symmetry implies that for points in the left
half plane the probability in the stationary distribution is ≤ 1/2 and the desired result
follows.

3 Proof Of Theorem 1 in d = 1

Let ξ̃β
t = ξ̃t/β2(·/β) be the rescaled dual process. Let I = [L, 2L] and Im = mL + I.

We again consider the rescaled dual with particles killed outside [0, 4L]. However, this
time we assume that there is at least one particle in I0 and will show that with high
probability at time L2 there will be at least one in I0 and at least one in I1.

Consider first the modification of the dual process in which we always follow a particle
born to the right. In the rescaled process jumps occur at rate β(1/β2) and have expected
size βν where ν =

∑
x>0 xq(x). Since β → 0 the infinitesimal variance is asymptotically

σ2 =
∑

x x2q(x). Since the modified dual process has independent increments it is easy
to see that it converges to σBt + νt.

In time L2 the modified dual process will move an average distance of νL2. To
get the particles to stay where we want them we declare xm = (m + 3/2)L to be the
target in Im and at branching points of the dual we follow the particle that is closer
to the target if the current location in the rescaled dual is < xm − 1 or > xm + 1. At
xm + y with y ∈ [−1, y + 1] we follow a birth to the left with probability (y + 1)/2 and
a birth to the right with probability (1 − y)/2. The infinitesimal mean and variance of
the approximating chains converge so using results in Section 8.7 of Durrett (1996) the
controlled dual process converges to the solution of

dZt = b(Xt) dt + σBt

where b(x) = −ν for x ≤ −1, b(x) = ν for x ≥ 1 and is b(x) is linear on [−1, 1].
If we let Ẑt be the diffusion restricted to [1,∞) with a reflecting barrier at 1, and

α = 2ν/σ2 then eαx is a harmonic function on (1,∞). Suppose now that our diffusion
starts from a point y ∈ [x0 + 1, 2L]. The probability it hits x0 + 1 before 5L/2 is

≥ eα5L/2 − eα2L

eα5L/2 − eα(x0+1)
≥ 1 − e−αL/2

12



Since the drift is −1 before we hit x0 + 1, this can take time longer than L only if
σBL > L/2, an event with probability ≤ exp(−cL). Once Zt ≤ x0 +1, its movements to
the right can be bounded by comparison with Ẑt. Starting from x0 + 2 the probability
of hitting 2L before x0 + 1 is

=
e2α − eα

eα(L/2) − eα

Each return trip from x0 + 2 to x0 + 1 takes time ≥ 1 with positive probability, so if Zt

starts ≤ x0 + 1 the probability of hitting 2L before time L2 tends to 0.
In the same way we can estimate the probability that a particle starting from I0

hits L/2 before [x0 − 1,∞), the probability this takes longer than L units of time, and
the probability of hitting L within L2 units of time after reaching [x0 − 1,∞). Similar
arguments can be used to estimate the movement from I0 the [x1 − 1, x1 + 1] and to
show that after the interval is hit, the particle stays in I1 for L2 units of time with
high probability. All of these calculations have been done for the limiting system but
applying the continuity argument gives the desired block event for the controlled dual
process.

Lower bound. The estimates on the success of the block construction → 1 as
L → ∞. This implies that the survival probability of the rescaled dual started from
locations in [L, 2L]d tends to 1 as L → ∞ which gives the lower bound on the density.

Upper bound in the nearest neighbor case. As remarked in the introduction,
in this situation if `t = inf{x : ξt(x) = 1} then all sites ≥ `t are 1 and those < `t are
0. `t is a nearest neighbor random walk with drift −β when it is > 0 and β if it is
< 0. Speeding time up we have `t/β2/β ⇒ Lt the solution of the stochastic differential
equation

dLt = dBt − sgn (Lt) dt

The upper bound follows immediately from this.
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