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Abstract

Lanchier and Neuhauser have initiated the study of host-symbiont systems but have
concentrated on the case in which the birth rates for unassociated hosts are equal.
Here we allow the birth rates to be different and identify cases in which a host with a
specialist pathogen can coexist with a second species. Our calculations suggest that it
is possible for two hosts with specialist pathogens to coexist but it is not possible for
a host with a specialist mutualist to coexist with a second species.

1 Introduction

Lanchier and Neuhauser (2006ab) introduced spatially explicit host-symbiont systems
because these interactions are important in shaping plant community structure. Being
a mixture of the contact process and the biased voter model, these processes are also
natural from the point of interacting particle systems. In the special case we will
consider here, 1 and 3 are two plant species, while state 2 represents a plant of type 1
with its symbiont. That is, species 2 are specialist symbionts which cannot associate
with species 3.

Letting fi, i = 1, 2, 3, denote the fraction of neighbors of site x ∈ Z
d in state i,

we can formulate the evolution of our Markov process ξt : Z
d −→ {1, 2, 3} at site x as

follows:

transition rate

1 → 2 αf2

2 → 1 γ2(f1 + f2)

1 → 3 γ1f3

2 → 3 γ2f3

3 → 1 γ3(f1 + f2).

In words the symbiont spreads like a contact process with rate α on top of species 1,
and the rest of the interactions are like a biased voter, in which individuals of type i are
replaced at rate γi by a birth from a randomly chosen neighbor, with the modification
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that when a 2 gives birth onto a site a 1 results, since the symbiont is not passed to
the individual’s offspring.

To get an idea of the properties we can expect, we look at the non-spatial or “mean-
field” version of the process that results when all sites are neighbors and the size of
the system tends to infinity. Letting ui denote the fraction of sites of type i, the rates
translate into the following system of ordinary differential equations.

du1

dt
= (γ2 u2 + γ3 u3) (u1 + u2) − (α u2 + γ1 u3) u1

du2

dt
= (α u1 − γ2) u2 (1)

du3

dt
= (γ1 u1 + γ2 u2) u3 − γ3 (u1 + u2) u3.

For most of the paper we will be interested in the situation γ1 < γ3 < γ2, so we
begin with that case. The reader should refer to the picture of the dynamical system
in Figure 1 as we do our computations. In the absence of 2’s, the model reduces to
a biased voter model and the 1’s out compete the 3’s. The inequality γ1 < γ2 says
that the symbiont is a pathogen that reduces the competitive ability of species 1. In
the absence of 3’s, we get a contact process with 2’s the occupied sites and 1’s vacant.
Thus when α > γ2, there is a boundary fixed point given by

u1 =
γ2

α
, u2 = 1 − γ2

α
and u3 = 0.

The side of the triangle on which there are no 1’s is unstable since 2’s will generate
1’s when they give birth. Based on results of Durrett (2002), we expect there to be a
nontrivial equilibrium if the 3’s can invade 1’s and 2’s in their equilibrium, that is,

γ1
γ2

α
+ γ2

(

1 − γ2

α

)

− γ3 > 0. (2)

To find the interior fixed point note that the second equation in (1) implies that if
u2 > 0 then we have u1 = γ2/α at the equilibrium. The third equation in (1) implies
that if u3 > 0 then

γ1 u1 + γ2 u2 = γ3 (1 − u3). (3)

Subtracting γ1(u1 + u2) = γ1(1 − u3) from (3) and (γ3 − γ1)u2 = (γ3 − γ1)u2 from the
result gives

(γ2 − γ1)u2 = (γ3 − γ1) (1 − u3) and (γ2 − γ3)u2 = (γ3 − γ1)u1

so we have

u1 =
γ2

α1
u2 =

γ3 − γ1

γ2 − γ3

γ2

α1
u3 = 1 − γ2 − γ1

γ2 − γ3

γ2

α1
. (4)

The inequalities γ1 < γ3 < γ2 guarantee u2 > 0. In order for u3 > 0 we need

γ2 − γ3 > (γ2 − γ1)
γ2

α
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but this is the invadability condition, (2).
We do not know how to prove that the fixed point is attracting, but it is in the

examples we have considered, see e.g., Figure 2. We are able to show that the system
has a repelling function, i.e., a convex function that tends to infinity and is decreasing
along solutions of the ODE (see Section 6). This implies that the three species persist,
i.e.,

lim inf
t→∞

ui(t) > 0.

The function we construct in Section 6 has the additional technical conditions needed
to apply Proposition 3 on page 6 of Durrett (2002), so there is coexistence in the model
with fast stirring. That is, there is a translation invariant stationary distribution in
which all types have positive density.

Since plants don’t move, fast stirring is not a sensible assumption, and we take a
different approach.

Theorem 1. Suppose γ1 < γ3 < γ2 < α and (2). Then if the range of interaction is

long enough there is coexistence.

If we introduce a state 4 that indicates the presence of a pathogen that specializes on
species 3 then we can derive conditions for the existence of an interior fixed point by
examining when the 4’s can invade the equilibrium (4), etc. We will spare the reader
the ugly algebra, since in the absence of a repelling function for the ODE (1), we cannot
apply the machinery of Durrett (2002). None the less, we

Conjecture 1. For suitable parameter choices two species and two specialist pathogens

can coexist.

Returning to the three species system, one might naively expect that coexistence is
possible if we assume γ1 > γ3 > γ2, i.e., the symbiont is a mutualist that helps species
1. Again u2 > 0 in (4), but this time γ2 − γ3 < 0 so the condition for u3 > 0 is the
opposite of the invadability condition, so there never is a stable interior fixed point.
This is easy to understand intuitively. If the 3’s can invade the boundary equilibrium
then as they take up more of the space the 2’s can’t spread as well, so their percentage
decreases, and 1’s become less able to compete with 3’s.

Conjecture 2. It is not possible for a species with a specialist mutualist to coexist with

another species.

2 Outline of Proof of Theorem 1

The proof of Theorem 1 relies on a block construction (see Bramson and Durrett, 1988,
and Durrett, 1995). The idea is to prove that, for given δ > 0, the particle system,
when viewed on suitable length and time scales, dominates the set of wet sites of an
oriented percolation process on the graph

G = {(z, n) ∈ Z
2 : z + n is even and n ≥ 0}
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in which sites are open with probability p = 1 − δ. For simplicity, we will write the
proof in dimension d = 1 only. However, it easily extends to higher dimensions.

Let Ni(x, t) denote the number of sites in state i in the interval [x, x + 1] at time t.
We do not have to worry about the density of 1’s since they are created when 2’s give
birth onto a site.

Survival of species 2. Let B0 = γ2 + α be the maximum rate at which sites flip.
Pick ρ0 < 1 so that αρ0 − γ2 > 0, let η0 = (1 − ρ0)/3 and introduce the following set
of parameters:

p1 = e−4B0 (1 − e−γ1)/8 (5)

a1 = −12 log(p1) (6)

c1 = 5a1/(γ3 − γ1) (7)

c2 = (2B0c1 + 4a1/3)/(αρ0 − γ2) (8)

a2 = 2B0(c1 + c2) + 2a1 (9)

T1 = c1T , T2 = c2T , IT = [−
√

T ,
√

T ], I ′T = [−
√

T ,
√

T−1] and JT = [−
√

T/2,
√

T/2−
1].

If there were no 2’s then 1’s and 3’s would be a biased voter model, so even if no
births of 1’s are allowed outside of IT we will have

N1(x, t) ≥ ρ0 + η0 for all x ∈ JT and t ∈ [T1, T1 + T2]

provided N1(0, 0) ≥ L exp(−2a1T ). Here and throughout this section the indicated
claims will hold with high probability if T is large and L ≥ LT . It is not hard to
show that this conclusion holds with ρ0 + η0 replaced by ρ0 if N2(x, t) ≤ 2LT−1 for all
x ∈ I ′T and t ∈ [0, T1 +T2]. Since αρ0−γ2 > 0, when L is large, the 2’s are supercritical
between time T1 and time T1 + T2. If N2(0, 0) ≥ L exp(−a1T ) then an easy argument
shows that

N2(0, T1) ≥ (L/2) exp(−(a1 + B0c1)T )

and the choice of c2 guarantees that

N2(0, T1 + T2) ≥ L exp(−a1T/3).

These calculations have been done under the assumption that N2(x, t) ≤ 2LT−1 for all
x ∈ I ′T and t ∈ [0, T1 + T2]. On the other hand if N2(x, t) ≥ 2LT−1 for some x ∈ I ′T we
can show that there is a time s ≤ 2

√
T so that N2(0, t + s) ≥ L exp(−a1T/3). Thus in

either case if N2(0, 0) = L exp(−a1T ) then with high probability we will have a time
t ≤ T1 +T2 with N2(0, t) ≥ L exp(−a1T/3). This allows us to keep the 2’s around for a
long time. It follows from the proof that we have N2(0, s) ≥ L exp(−a2T ) at all times.

Survival of species 3. Let ǫ0 > 0 so that

b = γ1

(γ2

α
+ ǫ0

)

+ γ2

(

1 − γ2

α
− ǫ0

)

> γ3 (10)
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In words if the density of 2’s is larger than 1 − γ2/α − ǫ0 then the 3’s can invade the
1’s and 2’s. Let

c3 = 2a2/(α − γ2) (11)

c4 = (2B0c3 + 1)/(b − γ3) (12)

T3 = c3T and T4 = c4T .
The first step is to show that if there are no 3’s and N2(0, 0) ≥ L exp(−a2T ) then

|N2(x, t) − Lū2| ≤ ǫ0/2 for all x ∈ JT and t ∈ [T3, T3 + T4],

where ū2 = 1 − γ2/α is the mean-field equilibrium frequency of 2’s in the absence
of 3’s. It is not hard to show that this conclusion holds with ǫ0/2 replaced by ǫ0 if
N3(x, t) ≤ 2LT−1 for all x ∈ I ′T and t ∈ [0, T3 + T4]. Since b − γ3 > 0, if L is large the
3’s are supercritical between time T3 and time T3 + T4. If N3(0, 0) ≥ L exp(−T ) then
an easy argument shows that

N3(0, T3) ≥ (L/2) exp(−(1 + B0c3)T ),

and the choice of c4 guarantees that

N3(0, T1 + T2) ≥ L exp(−T/2).

These calculations have been done under the assumption that N3(x, t) ≤ 2LT−1 for all
x ∈ I ′T and t ∈ [0, T3 + T4]. On the other hand if N3(x, t) ≥ 2LT−1 for some x ∈ I ′T ,
we can show that there is a time s ≤ 2

√
T so that N3(0, t + s) ≥ L exp(−T/2). Thus

in either case if N3(0, 0) ≥ L exp(−T ) and N2(0, 0) ≥ L exp(−a2T ) then with high
probability we will have a time t ≤ T3 + T4 with N3(0, t) ≥ L exp(−T/2).

Moving the particles. The arguments for the cases in which Ni(x, t) ≥ 2LT−1,
see Lemmas 4.4 and 5.5, imply that if N2(0, t) ≥ L exp(−a1T/3) then there is a time
s ≤ 2

√
T so that

N2(
√

T , t + s) ≥ L exp(−a1T )

and that if N3(0, t) ≥ L exp(−T/2) then there is a time s ≤ 2
√

T so that

N2(
√

T , t + s) ≥ L exp(−T )

Block construction. Let T ∗ = 2
√

T + max{T1 + T2, T3 + T4}. We say that (0, 0) is
occupied if

N2(0, t) ≥ L exp(−a1T ) at some time t ∈ [0, T ⋆ − 2
√

T ]

N3(0, t) ≥ L exp(−T ) at some time t ∈ [T ⋆, 2T ⋆ − 2
√

T ]

Our constructions imply

N2(0, t) ≥ L exp(−a1T/3) at some time t ∈ [T ⋆, 2T ⋆ − 2
√

T ]

N2(0, t) ≥ L exp(−a2T ) at all times t ∈ [T ⋆, 3T ⋆]

N3(0, t) ≥ L exp(−T/2) at some time t ∈ [2T ⋆, 3T ⋆ − 2
√

T ]
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Moving the particles we have

N2(
√

T , t) ≥ L exp(−a1T ) at some time t ∈ [T ⋆, 2T ⋆]

N3(
√

T , t) ≥ L exp(−T ) at some time t ∈ [2T ⋆, 3T ⋆]

Using our constructions

N2(
√

T , t) ≥ L exp(−a1T ) at some time t ∈ [2T ⋆, 3T ⋆ − 2
√

T ]

N2(
√

T , t) ≥ L exp(−a2T ) at all times t ∈ [2T ⋆, 4T ⋆]

N3(
√

T , t) ≥ L exp(−T ) at some time t ∈ [3T ⋆, 4T ⋆ − 2
√

T ]

which is the original event shifted in space by
√

T and in time by 2T ⋆. All of our
constructions are defined so that there is a finite range of dependence. The result then
follows by a standard application of the block construction, see e.g., Durrett (1995).

The rest of the paper is devoted to filling in the details of the argument sketched
above. In Section 3, we will prove some preliminary results that are useful for the two
survival arguments. Following the historical order in which the proof was constructed
we will tackle the survival of the 3’s in Section 4, and then the survival of the 2’s in
Section 5.

3 Preliminaries

To investigate our process, it is convenient to construct it from a graphical repre-
sentation, i.e., a collection of independent Poisson processes (see Harris, 1972). Let
γ1 < γ3 < γ2 be the voter rates and α be the pathogen infection parameter, and set

λ0 = α, λ1 = γ1, λ2 = γ3 − γ1 and λ3 = γ2 − γ3.

For each pair of sites x, y ∈ Z/L and i ∈ {0, 1, 2, 3}, let T i,x,y
n , n ≥ 1, be independent

Poisson processes with rate q(y − x)λi, where q(x) = 1/2L when 0 < |x| ≤ 1, and
q(x) = 0 otherwise. We draw an arrow of type i from site y to site x at time T i,x,y

n .
Type 1 arrows correspond to a voter interaction for any species so the dual process
jumps from site x to site y. At the other arrival times the dual process branches to
include site y.

In this section we will prove several preparatory lemmas. The first shows that the
number of particles can’t decay too fast.

Lemma 3.1. Let B0 = γ2 + α and i ∈ {1, 2, 3}. Then

P (Ni(0, s) ≤ e−sB0Ni(0, 0)/2 ≤ exp(−ηsNi(0, 0))

where ηs = e−sB0/8.

Proof. Let x ∈ [0, 1] ∩ Z/L. The graphical representation introduced above implies
that the state of site x flips at rate at most B0 = γ2 + α. It follows that if ξ0(x) = i
then

P (ξt(x) = i at all times t ≤ s) ≥ e−sB0 .
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Since the no flipping events are independent for different x, the number of x ∈ [0, 1]
with ξ0(x) = i that don’t flip by time s is X = Binomial(n, p) with n = Ni(0, 0) and
p = e−sB0 . A standard large deviations estimate for the Binomial implies

P (X ≤ n(p − z)) ≤ exp(−nz2/2p) (13)

Taking z = p/2 the desired result follows.

The dual process of the contact process is the contact process. The dual of the
biased voter model is branching coalescing random walk. When the range is large,
both of these dual processes are almost branching random walks in which a particle at
y dies at rate δ and gives birth at rate β to an offspring that is sent to y + U where
U is the uniform law on [−1, 1]. Let Zx

t denote the branching random walk starting at
Zx

0 = {x}. Suppose β > δ and let

ρ = P (|Zx
t | > 0 for all t)

Let Z̄x
t be the process Zx

t in which particles that land outside IT = [−
√

T ,
√

T ] are
killed.

Lemma 3.2. Let Z̄x
t (y) = |Z̄x

t ∩ (y + [0, 1])|. Suppose T → ∞, t/T → u, x/
√

T → v,
y/

√
T → w with v,w ∈ [−1/2, 1/2].

√
Te−(β−δ)tZ̄x

t (y) → p̄u(v,w)W

in L2 and in probability, where W = lims→∞ e−(β−δ)sZx
s and p̄u(v,w) is the transition

probability of a Brownian motion run at rate β/3 killed when it exits [−1, 1].

Proof. If there was no killing this would follow from Asmussen and Kaplan (1976).
Their proof extends in a straightforward way to give the desired result. The mean
measure for the truncated random walk

E(|Z̄x
t ∩ A|) = e(β−δ)tP (S̄x

t ∈ A)

where S̄x
t is a random walk that jumps at rate β, takes steps uniformly distributed

on [−1, 1] and is killed when it steps outside of IT . If t/T → u, x/
√

T → v, and
y/

√
T → w then √

TP (S̄x
t ∈ y + [0, 1]) → p̄u(v,w)

Let s = (3/(β − δ)) log T and let Fs be the σ-field generated by events up to time
s. There will be O(T 3) particles in Zx

s . Since a particle can only move by at most 1
during a jump, simple large deviations estimates for the Poisson imply that there is a
constant C so that with high probability no particle in Zx

s has moved more that Cs
from x. Using this with the formula for the mean we see that

E(Z̄x
t (y)|Fs) ≈ Zx

s e(β−δ)(t−s)p̄u(v,w)/
√

T

Using a trivial bound with a well known result about the second moment of a super-
critical branching process

var (Z̄x
t (y)|Fs) ≤ Zx

s E((Zx
t−s)

2) ≤ CZx
s e2(β−δ)(t−s)
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Using Chebyshev’s inequality

P
(

∣

∣Z̄x
t (y) − E(Z̄x

t (y)|Fs)
∣

∣ > ǫe(β−δ)t/
√

T
)

≤ CZx
s e2(β−δ)(t−s)

ǫ2e2(β−δ)t/T

≤ Te−(β−δ)s · e−(β−δ)sZx
s ≤ T−1

with probability ≥ 1 − T−1 since E(e−(β−δ)sZx
s ) = 1. Noting

√
Te−(β−δ)tE(Z̄x

t (y)|Fs) ≈ e−(β−δ)sZx
s p̄u(v,w) ≈ Wp̄u(v,w)

the result now follows.

From the formula for the expected value in the previous proof we immediately get

Lemma 3.3. If T is large, then for all x, y ∈ [−
√

T/2,
√

T/2], and t ∈ [rT, sT ]

EZ̄x
t (y) ≥ 4e(β−δ)t/2

A second consequence that we will need is

Lemma 3.4. Let a > 0, η > 0, 2a/(β − δ) ≤ r < s, and ǫ > 0 be given. If T is

sufficiently large then

|P (Z̄x
t ∩ B 6= ∅) − ρ| ≤ ǫ

for all x ∈ JT = [−
√

T/2,
√

T/2], t ∈ [rT, sT ] and B ⊂ [0, 1] with Lebesgue measure

|B| ≥ exp (−aT ).

Proof. Lemma 3.2 and the restriction on r imply that if T is large and the branching
process does not die out then with high probability there are at least exp(3aT/2)
particles in [0, 1] at time t− 1. Each of these particles has probability ≥ c|B| of giving
birth before time 1 to a particle that lands in B and that does not die before time 1.
Since these events are independent the desired result follows.

The final general result that we will need is that when the range is large a particle
system is almost deterministic. We will apply this twice: (i) when there are no 3’s then
the 1’s and 2’s are a contact process in which the 2’s are the occupied sites, and (ii)
when there are no 2’s the 1’s and 3’s are a biased voter model favoring the 1’s. In each
case T is fixed and no births are allowed outside [−

√
T ,

√
T ]. If we consider the 1’s to

be the occupied sites then in each case our particle system ξt has a dual process ξ̂t. In
the next result we will only use this and the fact that B0 gives an upper bound on the
jump rate.

Lemma 3.5. Let N(x, t) = |ξt ∩ [x, x + 1]|, S < ∞, and ǫ > 0. As L → ∞ uniformly

in the possible nonrandom initial conditions

lim
L→∞

P (|N(x, t) − EN(x, t)| > 5ǫL

for some x ∈ JT and some t ∈ [0, S]) = 0
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Proof. The first step is to prove that it suffices to control the difference at a finite
number of times in a finite number of intervals, where the numbers are independent of
L. Let τ be such that 1 − exp(−τB0) ≤ ǫ where B0 = γ2 + α, and set m = min{n ≥
1 : nτ ≥ S}. Repeating the proof of Lemma 3.1 and using a large deviations bound for
the upper tail of the Binomial it follows that with probability at least 1−C exp(−ηL),
the number of sites in [x, x+1] that flip between times nτ and (n+1)τ is smaller than
2ǫL.

To make the number of intervals in which the difference has to be estimated inde-
pendent of L, we let Nǫ(x, t) = |ξt ∩ [x, x + ǫ]| and observe that if

|Nǫ(x, t) − ENǫ(x, t)| ≤ Lǫ2 for all x ∈ JT,ǫ ≡ ǫ Z ∩ [−
√

T/2,
√

T/2)

then |N(x, t)−EN(x, t)| ≤ ǫ−1Lǫ2 + 2ǫL = 3ǫL for all x ∈ JT , since there are at most
ǫ−1 intervals of length ǫ with endpoints in JT,ǫ included in [x, x + 1], and the second
term takes care of the beginning and end segments of [x, x + 1] that are not covered.

To estimate |Nǫ(x, t)−ENǫ(x, t)| let ζy = 1 if ξ̂y
t ∩ξ0 6= ∅. A standard construction,

see e.g., page 21 in Griffeath (1978), shows that the covariance of ζy and ζz can be
bounded by the probability that the duals do not hit and hence

cov (ζy, ζz) ≤ C/L

From this and the trivial bound var (ζy) ≤ 1 it follows that

var Nǫ(x, t) ≤ Lǫ + L2ǫ2C/L ≤ C ′Lǫ

This together with Chebyschev’s inequality implies that

P (|Nǫ(x, t) − ENǫ(x, t)| > Lǫ2) ≤ Cǫ−3L−1

The number of space and time points at which need this result does not depend on L
and the proof is complete.

4 Survival of species 3

Let ū2 = 1 − γ2/α be the equilibrium density of 2’s in the mean field version of the
process with no 3’s. The first step is to show

Lemma 4.1. Suppose there are no 3’s. If T is large and L ≥ LT then for any initial

configuration with N2(0, 0) ≥ L exp(−a2T ), we will have with high probability

|N2(x, t) − Lū2| < ǫ0/2

for all x ∈ JT and t ∈ [T3, T3 + T4], even if no births of 2’s are allowed outside IT .

Proof. In the absence of 3’s, the set of 2’s is a contact process with births at rate α
and deaths at rate γ2. T3 = c3T with c3 = 2a2/(α − γ2), so Lemma 3.4 implies that if
T is large and L ≥ LT then

|EN2(x, t) − Lū2| < ǫ0/4

for all x ∈ JT and t ∈ [T3, T3+T4]. The desired result now follows from Lemma 3.5.
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Lemma 4.2. If T is sufficiently large, Lemma 4.1 holds with ǫ0/2 replaced by ǫ0 when

N3(x, t) ≤ 2LT−1 for all x ∈ I ′T and all t ∈ [0, T3 + T4]

Proof. Assume first that N3(x, t) = 2LT−1 for all (x, t) belonging to the appropriate
space-time region. In this case, the 2’s are a contact process with birth rate α(1−2T−1)
instead of α. The result follows by taking T such that

|1 − γ2/α − (1 − γ2/α(1 − 2T−1))| < ǫ0/2.

Monotonicity of the contact process with respect to its birth rate allows us to conclude
that the result holds as well in the general case when N3(x, t) ≤ 2LT−1.

Lemma 4.3. Assume that N2(0, 0) ≥ L exp(−a2T ), N3(0, 0) ≥ L exp(−T ) and

N3(x, t) ≤ 2LT−1 for all x ∈ I ′T and all t ∈ [0, T3 + T4].

Then for large T and L ≥ LT , with probability close to 1

N3(0, T3 + T4) ≥ L exp (−T/2).

even if no births of 3’s are allowed outside IT .

Proof. By Lemma 3.1 and Lemma 4.2, we can assume that

N3(0, T3) ≥ (L/2) exp(−(c3B0 + 1)T )

|N2(x, t) − L ū2| ≤ ǫ0L for all x ∈ JT and t ∈ [T3, T3 + T4]

The idea is to observe that the density of 2’s between time T3 and time T3 + T4 is
sufficiently large so that if L is large the 3’s dominate a supercritical branching random
walk in which a particle at site y dies at rate γ3 and gives birth at rate

b = γ1

(γ2

α
+ ǫ0

)

+ γ2

(

1 − γ2

α
− ǫ0

)

> γ3

to an offspring that is sent to y + U . c4 = (2c3B0 + 1)/(b− γ3) so if T is large, Lemma
3.3 implies that for x ∈ [0, 1]

E|Z̄x
c4T ∩ [0, 1]| ≥ 4 exp((c3B0 + 1/2)T )

Arguing as in the proof of Lemma 3.5 we can estimate the variance and use Chebyshev’s
inequality to prove the desired result.

To conclude the proof of step 1, we now deal with the case when the number of 3’s
exceeds 2LT−1 in some interval of length 1 included in IT by time T3 + T4.

Lemma 4.4. Assume that

N3(x, 0) ≥ 2LT−1 for some x ∈ I ′T .

Then for T sufficiently large, there is a time t ≤ 2
√

T such that

lim
L→∞

P (N3(0, t) ≤ L exp(−T/2)) = 0.
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Proof. For any integer n ∈ Z and any time t ≥ 0, let

Bx,n = [x + n/2, x + (n + 1)/2] and Hn,t = L−1 |{z ∈ Bx,n : ξt(z) = 3}|.

Without loss of generality, we can assume that x ∈ [−
√

T , 0] and H0,0 ≥ T−1. Let
A = 2eB0 . If Hn+1,t ≥ AT−1 at some t ∈ [n, n + 1] then Lemma 3.1 shows that with
a probability that tends to 1 as L → ∞, Hn+1,n+1 ≥ T−1. On the other hand if
Hn+1,t ≤ AT−1 for all t ∈ [n, n + 1], the probability that a particle of type 3 in Bx,n

at time n gives birth by time n + 1 to a particle of type 3 that is sent to Bx,n+1 and
that both particles (the parent and the offspring) die after time n + 1 is bounded from
below by

1

4
e−2γ3(1 − e−γ1)(1 − AT−1).

The factor 1/4 is the probability that the offspring is sent to Bx,n+1 and the factor
1 − AT−1 the probability that it is not sent to a site already occupied by a 3.

Let p0 = e−2γ3(1 − e−γ1)/8. As L → ∞, we have with probability → 1

Hn,n ≥ min{p0 Hn−1,n−1, T
−1}

Since it takes at most 2
√

T steps to bring particles to the interval [0, 1], there is a time
t ≤ 2

√
T so that

N(0, t) ≥ p2
√

T
0 T−1 ≥ L exp(−T/2)

if T is large enough.

5 Survival of species 2

To begin, we give a lower bound on the number of 1’s produced from 2’s in one unit
of time.

Lemma 5.1. Assume that N2(0, 0) ≥ L exp(−a1T ). Then for large T

P (N1(0, 1) ≤ L exp(−2a1T )) ≤ C exp(−ηL)

Proof. By Lemma 3.1

P (N2(0, t) ≤ (L/2) exp(−a1T − B0) for some t ∈ [0, 1]) ≤ C exp(−ηL).

In particular, since each host dies at rate at least γ1, using the Binomial large deviations
result, (13),

P (|{x ∈ [0, 1] : ξt(x) jumps to 1 by time 1}|
≤ (L/4)(1 − e−γ1) exp(−a1T − B0)) ≤ C exp(−ηL)

By applying (13) again, we obtain

P (N1(0, 1) ≤ (L/8)(1 − e−γ1) exp(−a1T − 2B0)) ≤ C exp(−ηL)

If T is large exp(−a1T ) < (1 − e−γ1) exp(−2B0)/8 and the proof is complete.
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Lemma 5.2. Suppose there are no 2’s, no births of 1’s are allowed outside IT and

N1(0, 0) ≥ L exp(−2a1T ). Then, if T is large and L ≥ LT then

P (N1(x, t) ≤ L(ρ0 + η0) for some x ∈ JT and t ∈ [T1, T1 + T2]) = 0.

Proof. In the absence of 2’s, 1’s are a biased voter model. In the dual coalescing
random walk particles jump at rate γ1 and give birth at rate γ3 − γ1. T1 = c1T
where c1 = 5a1(γ3 − γ1)

−1 so Lemma 3.4 implies that if T is large and L ≥ LT then
EN1(x, t) ≥ L(ρ0 + 2η0) for all x ∈ JT and t ∈ [T1, T1 + T2]. The desired result now
follows from Lemma 3.5.

Lemma 5.3. If T is large, Lemma 5.2 holds with ρ0 + η0 replaced by ρ0 when

N2(x, t) ≤ 2LT−1 for all x ∈ I ′T and all t ∈ [0, T1 + T2].

Proof. Assume first that N2(x, t) = 2LT−1 for all (x, t) ∈ JT × [0, T1 + T2]. In this
case, the dual process for the 1’s is a branching coalescing walk with birth rate (γ3 −
γ1)(1 − 2T−1) instead of γ3 − γ1. The result follows by taking T such that

c1(γ3 − γ1)(1 − 2T−1) > 4a1

Monotonicity of the contact process with respect to its birth rate allows us to conclude
that the result holds as well in the general case when N2(x, t) ≤ 2LT−1.

Lemma 5.4. Assume that N2(0, 0) ≥ L exp(−a1T ) and that

N2(x, t) ≤ 2LT−1 for all x ∈ I ′T and all t ∈ [0, T1 + T2].

Then, N2(0, T1 + T2) ≥ L exp(−a1T/3) with probability close to 1, even if no births of

2’s are allowed outside IT .

Proof. First of all, in view of Lemma 3.1 and Lemma 5.3, we can assume that

N2(0, T1) ≥ (L/2) exp(−(a1 + B0c1)T )

N1(x, t) ≥ Lρ0 for all x ∈ JT and t ∈ [T1, T1 + T2] .

The idea is to observe that the density of 1’s between time T1 and time T1 + T2 is
sufficiently large so that if L is large, 2’s dominate a supercritical branching random
walk in which particles die at rate γ2 and gives birth at rate αρ0. c2 = (2B0c1 +
4a1/3)/(αρ0 − γ2) so if T is large Lemma 3.3 implies that for all x ∈ [0, 1]

E|Z̄x
c2T ∩ [0, 1]| ≥ 4 exp((c1B0 + 2a1/3)T )

Arguing as in the proof of Lemma 3.5, we can estimate the variance and use Cheby-
shev’s inequality to prove the desired result.

The analogue of Lemma 5.4 when the density of 2’s exceeds 2LT−1 in some interval
of length 1 included in IT by time T1 + T2 is given by
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Lemma 5.5. Assume that

N2(x, 0) ≥ 2LT−1 for some x ∈ I ′T .

Then, for T sufficiently large, there is a time t ≤ 2
√

T such that,

lim
L→∞

P (N2(0, t) ≤ L exp(−a1T/3)) = 0.

Proof. The proof uses on the same ingredients as the proof of Lemma 4.4 but is harder
because 3’s can send their offspring to any site, whereas 2’s can only give birth onto
sites occupied by a 1. To fix this problem, the strategy is to use 2’s as a source to
produce 1’s and then use sites occupied by 1’s as a target to produce 2’s. To make the
argument precise, we introduce, for any integer n ∈ Z and any time t ≥ 0,

Bx,n = [x + n/2, x + (n + 1)/2]

Hn,t = L−1|{z ∈ Bx,n : ξt(z) = 1}|
Kn,t = L−1|{z ∈ Bx,n : ξt(z) = 2}|

Without loss of generality, we can assume that x ∈ [−
√

T , 0] and K0,0 ≥ T−1. Let
A = 2eB0 . If Hn+1,t ≥ AT−1 at some t ∈ [n, n + 1] then Lemma 3.1 shows that with
a probability that tends to 1 as L → ∞, Hn+1,n+1 ≥ T−1. On the other hand if
Hn+1,t ≤ AT−1 for all t ∈ [n, n + 1], the probability that a particle of type 1 in Bx,n

at time n gives birth by time n + 1 to a particle of type 1 that is sent to Bx,n+1 and
that both particles (the parent and the offspring) die after time n + 2 is bounded from
below by

1

4
e−4B0(1 − e−γ1)(1 − AT−1).

The factor 1/4 is the probability that the offspring is sent to Bx,n+1 and the factor
1 − AT−1 the probability that it is not sent to a site already occupied by a 1. Let
p1 = e−4B0(1 − e−γ1)/8. Iterating we have

inf
t∈[n,n+1]

Hn,t ≥ pn
1 T−1

with probability → 1 as L → ∞.
The probability that a 2 in Bx,n at time n + 1 gives birth by time n + 2 to a 2 that

is sent to Bx,n+1 and that both particles (the parent and the offspring) die after time
n + 3 is bounded from below by

1

4
e−4B0(1 − e−α)(1 − T−1) inf

t∈[n+1,n+2]
Hn+1,t.

The factor inft∈[n+1,n+2] Hn+1,t comes from the fact that 2’s can only give birth on

sites occupied by 1’s. Let p2 = e−4B0(1 − e−α)/8. Since K0,0 ≥ T−1, we get K0,1 ≥
e−γ2T−1/2 and

Kn,n+1 ≥ p2Kn−1,n inf
t∈[n,n+1]

Hn,t ≥ pn
1p2T

−1Kn−1,n

13



Iterating we have
Kn,n+1 ≥ p1+2+···+n

1 pn
2T−(2n+1)e−γ2/2

Since it takes at most n = 2
√

T steps to bring the particles to the interval [0, 1], there
is a time t ≤ 2

√
T so that, for T large enough,

N2(0, t) ≥ Lp4T
1 = L exp(−a1T/3)

where the second equality follows from the definition of a1.

6 Repelling function

In this section we will construction a repelling function for the ODE. Recall γ1 < γ3 <
γ2 < α. First we rewrite the equations

du1

dt
= (γ2 − α)u1u2 + γ2u

2
2 + (γ3 − γ1)u1u3 + γ3u2u3

du2

dt
= u2(−γ2 + αu1)

du3

dt
= u3((γ1 − γ3)u1 + (γ2 − γ3)u2)

The desired function is f =
∑

i ηi(fi ∨ Mi) where fi = ∞ on ui = 0.

Let ρ = 1 − γ2/α. f3(u) = u2 − ρ log u2 − ǫ1 log u3, η3 = 1.

d

dt
(u2 − ρ log u2) =

(

1 − ρ

u2

)

u2(αu1 − γ2)

= (u2 − ρ)(ρ − u2 − u3)α
d

dt
(−ǫ1 log u3) = −ǫ1((γ1 − γ3)u1 + (γ2 − γ3)u2)

Let ∆ = {(u1, u2, u3) : ui ≥ 0,
∑

i ui = 1}. Pick a < ρ/(1 − ρ) < b so that on
A = ∆ ∩ {u2/u1 ∈ [a, b]} we have (γ1 − γ3)u1 + (γ2 − γ3)u2 > 0. This is possible
because of the invadability condition. If δ1 is small we have (u2 − ρ)(ρ − u2 − u3) < 0
on B(δ1) = ∆ ∩ Ac ∩ {u3 < δ1}. If ǫ1 is small df3/dt < 0 on B(δ1). By picking δ2 ≤ δ1

we will have df3/dt < 0 on A(δ2) = A ∩ {u3 < δ2}. This implies

df3/dt < 0 on ∆ ∩ {u3 < δ2}

Since f3 = ∞ on u3 = 0 and is continuous we can pick M3 so that {f3 > M3} ⊂
∆ ∩ {u3 < δ2} and δ′2 so that {f3 > M3} ⊃ R1 = ∆ ∩ {u3 < δ′2}.
f2 = − log u1 − ǫ2 log u2.

d

dt
(− log u1) = −(γ3 − γ1)u3 + (α − γ2)u2 −

1

u1

[

γ2u
2
2 + +γ3u2u3

]

d

dt
(−ǫ2 log u2) = −ǫ2(−γ2 + αu1)
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so we have
df2

dt
≤ −(γ3 − γ1)u3 + (α − γ2)u2 − ǫ2(−γ2 + αu1)

From this it is clear that if δ3 and ǫ2 are small enough. df2/dt < 0 on R2 = ∆ ∩ {u3 ≥
δ′2, u2 < δ3}, and hence if η2 is small d[(f3 ∨ M3) + η2f2]/dt < 0 on R1 ∪ R2. Since
f2 = ∞ on u2 = 0 and is continuous we can pick M2 so that {f2 > M2} ⊂ ∆∩{u2 < δ3}
and δ′3 so that {f2 > M2} ⊃ ∆ ∩ {u2 < δ′3}.
f1 = − log(1 − u2) − ǫ3 log u1.

d

dt
(− log(1 − u2)) =

u2

1 − u2
(−γ2 + αu1)

d

dt
(− log(u1)) ≤ −(γ3 − γ1)u3 + (α − γ2)u2

where the second result comes from the computation for f2. It is easy to see that if δ4

and ǫ3 are small enough then df1/dt < 0 on R3 = ∆∩{u2 ≥ δ′3, u1 ≤ δ4}. Since f1 = ∞
on u1 = 0 and is continuous we can pick M1 so that {f2 > M1} ⊂ ∆∩ {u1 < δ4}. If η1

is small enough we have the desired repelling function.
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u3 = 1

u1 = 1

u1 = ρ

u1 = ū1 + η

u1 = ū1 − η
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se

3

case 1u2 = 1

case
2

T3

T1

Figure 1: Picture to explain the proof.
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u3 = 1

u1 = 1

u2 = 1

Figure 2: Example of the host-pathogen ODE.
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Figure 3: Picture of the range 2 process on the 200×200 square with periodic boundary conditions
at time 50 and starting from a Bernoulli product measure. Black sites refer to hosts of type 1 asso-
ciated with a symbiont, grey sites to unassociated hosts of type 1, and white sites to unassociated
hosts of type 2. The parameters are equal to γ1 = 1, γ2 = 0.6 and γ3 = 0.76.
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Figure 4: Picture of the range 2 process on the 200×200 square with periodic boundary conditions
at time 50 and starting from a Bernoulli product measure. Black sites refer to hosts of type 1 asso-
ciated with a symbiont, grey sites to unassociated hosts of type 1, and white sites to unassociated
hosts of type 2. The parameters are equal to γ1 = 1, γ2 = 1.5 and γ3 = 1.15.

19


