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Abstract

Neuhauser (1992) considered the two-type contact process and showed that on Z2

coexistence is not possible if the death rates are equal and the particles use the same
dispersal neighborhood. Here, we show that it is possible for a species with a long,
but finite, range dispersal kernel to coexist with a superior competitor with nearest
neighbor dispersal in a model that includes deaths of blocks due to “forest fires.”

1 Introduction

In this paper we consider a two-type contact process in which the state of each site
x ∈ Z2 is 0 = vacant, or 1 and 2 that indicate occupancy by two different species of
trees. We formulate the evolution as follows:

(i) Particles of type i die at rate δi, give birth at rate βi.

(ii) A 1 born at x is sent to a y chosen according to a truncated power-law distribution
p1(x, y) = c11{‖y−x‖∞=1}+c21{1<‖y−x‖∞≤M}‖y−x‖−ρ

∞ , where c1, c2 > 0 and ρ < 3.

(iii) A 2 born at x is sent to a y chosen at random from N1 = {y : ‖x − y‖∞ = 1},
i.e., for these y, p2(x, y) = 1/8.

(iv) If y is already occupied then the birth is suppressed.

(v) For each x, death to {y : ‖x − y‖∞ ≤ F/2} occurs at rate δ0.

The rules above imply that each type of particle behaves individually like a contact
process, but in addition there are deaths to blocks of size F × F due to forest fires.

Neuhauser (1992) studied the model with δ0 = 0 and in which both species have
the same dispersal distribution. She proved that coexistence is impossible on Z2 if
both species have the same death rate and conjectured that in general that the supe-
rior competitior (the species with the higher reproductive ratio βi/δi) would win the
competition. In this paper, we show that it is possible for two species to coexist in a
model with forest fires if the weaker competitor has larger dispersal range.

This result is, in a sense, an application of ecology to mathematics since it is based
on a phenomenon that is well-known to occur in forests, see Pacala et al. (1996). The
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strongest competitors, which ultimately take over an undisturbed patch of forest, are
those that need the least amount of light to grow. However, other species that are
better at colonizing gaps in the forest created by disturbances can coexist with them.

Our new result is not a counterexample to Neuhauser’s conjecture, nor should
it cast doubt on it. The competitive exclusion principle, which has been proved in
the setting of ordinary differential equation models by Levin (1970), states that the
number of coexisting species cannot exceed the number of resources they compete for.1

In Neuhauser’s situation the two species compete for space, so there should only be
one winner, even if different dispersal distributions are allowed. In our setting newly
disturbed space is a second resource, so a species adapted to that niche can coexist
with a superior competitor.

To produce our example we begin by fixing β2, δ2 and the ratio β1/δ1 so that

β2/(1 + β1/δ1) > δ2λc(N1) β1/δ1 > λc(N1) (1)

where λc(N1) is the critical value of β/δ for the contact process with neighborhood N1.

Theorem 1. Suppose (1). We can choose δ1, δ0, F , and M so that 1’s and 2’s coexist.

The second condition in (1) implies that when c2 = 0 particles of type 1 can survive
in the absence of 2’s. To explain the first condition, note that 1’s die at rate δ1 and
are born at a site at rate ≤ β1 so the set of sites occupied by 1’s is dominated by
a product measure with density β1/(δ1 + β1). In the limit as δ1 → ∞ with β1/δ1

fixed, the environment seen by the 2’s at different birth attempts are independent in
the dominating process. Thus in the limit as δ1 → ∞ the 2’s dominate a contact
process with birth rate β2δ1/(β1 + δ1) and death rate δ2. Thus it suffices to have
β2/(1 + β1/δ1) > δ2λc(N1) for the 2’s to survive in the system with no fire. Once this
is done it is easy to use known results for the contact process to show if δ0 ≤ c/F 2 and
c is small 2’s also survive in the presence of fires.

Proposition 1. Suppose (1). There are constants c and ∆ so that for any F > 0, the
2’s survive whenever δ1 ≥ ∆, and δ0 ≤ c/F 2.

The 1’s survive by migrating from existing patches to newly created ones. By
choosing the fire size F appropriately, the probability that a square contains a cleared
area which remains open (free of 2’s) for a long period of time is high. We choose δ0

to produce enough such gaps, but also to not burn them again before we are ready.

Proposition 2. Suppose (1). Fix δ1 ≥ ∆. If δ0 = a/F 3 with a sufficiently small,
F ≥ F0(a) and M is chosen appropriately then the 1’s survive.

Propositions 1 and 2 are proved by block constructions, so together they imply the
existence of a stationary distribution in which both types are present with positive
density. The remainder of the paper is devoted to proving the two propositions.

1To be precise, Levin’s result is for generic parameter values. In Neuhauser’s model if β1 = β2 and δ1 = δ2

coexistence is possible in d ≥ 3, but in this case we don’t really have two species.
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2 Preliminaries on contact processes

In this paper, unless stated otherwise, we denote a contact process on Z2 with neigh-
borhood N1 and initial configuration A by AA

t . We let LAA
t be the corresponding

process truncated to not allow births outside [−L,L]d, and suppose that A ⊂ [−L,L]d.
Define τA = min{t : AA

t = ∅} to be the extinction time for AA
t , and LτA the extinction

time for LAA
t . We now state two results for the contact process that will be used later

on. First a survival condition, due to Bezuidenhout and Grimmett (1990), which we
take from Theorems 2.12 and 2.23 of Liggett (1999).

Theorem 2. At survives if and only if it satisfies the following condition:
For every ε > 0 there are choices of n, L, T so that

P
{

L+2nA
[−n,n]d

T+1 ⊃ x + [−n, n]d for some x ∈ [0, L)d
}

> 1 − ε

and

P

{
L+2nA

[−n,n]d

t+1 ⊃ x + [−n, n]d for some 0 ≤ t < T,
and for some x ∈ {L + n} × [0, L)d−1

}
> 1 − ε.

Note that in contrast to the usual block construction, one of the new copies of the
completely filled square is on the side of the space time box.

The next theorem is a shape theorem proved by Durrett and Griffeath (1982), For
the contact process they did this only for large enough birth rate. Given the results
described in Chapter 2 of Liggett (1999), it is routine to extend this to all supercritical
contact processes. Readers who do not want to take this leap of faith can replace
λc(N1) by the critical value for the one dimensional nearest neighbor contact process.

Let ηt be a supercritical contact process, which includes the Richardson model
(contact process with death rate 0) as a special case. Let ν be the upper invariant
measure of ηt, which is the limit starting from all 1’s, and let ην

t the stationary process
starting from ν. Let τ = min{t : η0

t = ∅} and t(x) = min{t : x ∈ η0
t }. The set of sites

hit by time t is

Ht = {y ∈ Rd : ∃x ∈ Zd with ‖x − y‖∞ ≤ 1/2 and t(x) ≤ t},

The region where η0
t and ην

t are coupled is

Kt = {y ∈ Rd : ∃x ∈ Zd with ‖x − y‖∞ ≤ 1/2 and η0
t (x) = ην

t (x)}.

Theorem 3. Let η0
t be either a supercritical contact process or a Richardson process

(contact process with death rate 0) starting from 0. There is a convex set S ⊂ Rd such
that for any ε > 0,

(1 − ε)S ⊂ t−1Ht ⊂ (1 + ε)S and

(1 − ε)S ⊂ t−1(Ht ∩ Kt) ⊂ (1 + ε)S

for t ≥ T0(ε) a.s. on {τ = ∞}, where T0(ε) < ∞ is a random time.
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3 Proof of Proposition 1

We begin by constructing our process from a collection of Poisson processes. For
x, y ∈ Z2 and i = 1, 2, let {T i,x,y

n : n ≥ 1}, {U i,x
n : n ≥ 1} and {V x

n : n ≥ 1} be the
arrival times of Poisson processes with rates βipi(x, y), δi and δ0. At times U i,x

n , we
put a δi at x to kill the particle at x if it is of type i. At times T i,x,y

n we draw an arrow
of type i from x to y to indicate that there is a birth from x to y if x is occupied by
type i and y is empty. At time V x

n we put a δ at all y such that ‖y − x‖∞ ≤ F/2 to
kill all the particles inside the square. Our process has finite range so it follows from
a result of Harris (1972) that this gives a process well defined for all time.

We first show that the 2’s survive when there are no forest fires, i.e., δ0 = 0. This is
done by showing that the set of sites occupied by 2’s can out compete a process that is
stochastically larger than the sites occupied by 1’s. Let ξ̃i

t be the set of sites occupied
by i’s when δ0 = 0. Let ζ̃i

t be the set of sites occupied by i’s when δ0 = 0 and each
x ∈ Z2 not in state 2 flips from 0 to 1 at rate β1 and 1 to 0 at rate δ1 independent of
all other sites.

Lemma 1. Suppose ξ̃0 = ζ̃0 Using ≤ for stochastically smaller than, we have ξ̃1
t ≤ ζ̃1

t .

Proof. Since the death rate of 1’s in ξ̃t is equal to that of ζ̃t while the birth rate of 1’s
is smaller, this follows from Theorem 1.5 in Chapter 3 of Liggett (1985).

Lemma 2. Suppose β2, δ2, and the ratio r = β1/δ1 are given. Let γ = β2δ1/(β1 + δ1)
and let A = ζ̃2

0 . Writing a second superscript to indicate the value of β2, given ε, θ > 0
there is a ∆ such that there is a coupling with

P
(

LAA,γ−ε
t ≤ Lζ̃2

t ≤ LAA,γ+ε
t for 0 ≤ t ≤ T

)
> 1 − θ

whenever δ1 ≥ ∆ and A ⊂ Z2 ∩ [−L,L]2.

Proof. In the graphical representation, each site x receives a type-2 arrow at rate β2.
The arrivals in [0, T ] that touch some x ∈ [−L,L]2 are a Poisson point process. Let
T0 = 0 < T1 < T2 < . . . be the arrival times and N(t) be the number of arrivals by
time t. If N is large P (N(t) ≥ N) ≤ θ/3. Having chosen this value of N , if α is small

P

(
min

1≤i≤N
Ti − Ti−1 < α

)
≤ θ/3

Since ηt is a Markov process, the effect of a type-2 arrow to y at time t+h depends
only on the state of the process at time t. The process that flips between 1 and 0 at
rates δ1 and β1 is a two state Markov process, so if δ1 is large and β1/δ1 is fixed the
total variation distance between the process starting from 1 or 0 and product measure
is smaller than θ/3N at all times t ≥ α. Since the process of 2-arrows is independent
of the 1 flipping, and the latter has a stationary distribution β1/(β1 + δ1), combining
the last three estimates proves the result.

Note that this implies ζ̃2
t ⇒ AA,γ

t for all finite sets A and t < ∞, where ⇒ denotes
weak convergence. Also by construction one has ξ̃2

t ≥ ζ̃2
t for all t ≥ 0. Therefore once
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we show that ζ̃A
t survives the forest fires, the proof is complete. But this is easy if

we limit the frequency of our fires so that they are but small perturbations on the
graphical representation.

Proof of Proposition 1. For any chosen ε, the idea is to choose δ0 small enough so that
the chance of a forest fire interfering with a given space-time block has probability ≤ ε
and hence can be neglected.

Let At be a contact process with birth rate γ′ = β2 δ1/(β1 + δ1)− ε′ and death rate
δ2. Since β2δ1/(β1+δ1) > δ2λc(N1), we can pick ε′ small enough to have γ′ > δ2λc(N1).
Then by Theorem 2, there are choices of n, L and T so that in the absence of fires

P
{

L+2nA
[−n,n]2

T+1 ⊃ x + [−n, n]2 for some x ∈ [0, L)2
}

> 1 − ε

and

P

{
L+2nA

[−n,n]2

t+1 ⊃ x + [−n, n]2 for some 0 ≤ t < T,
and for some x ∈ {L + n} × [0, L)

}
> 1 − ε.

Since a fire eliminates all the points within [x − F/2, x + F/2]2, our space-time
block [−L − 2n,L + 2n]2 × [0, T + 1] is affected only if the center of a fire is inside
[−F/2 − L − 2n, F/2 + L + 2n]2. Let τ = (F + 2L + 4n + 1)2(T + 1). The probability
our space-time block is unaffected by fires is bounded below by

1 −
∫ τ

0
δ0e

−δ0t dt = e−δ0τ > 1 − ε

if δ0 ≤ c/F 2, where c > 0 is some constant. Lemma 2 states that L+2nζ̃
2,[−n,n]2

t ≥
L+2nA

[−n,n]2

t with probability > 1 − ε whenever δ1 ≥ ∆. Combining the estimates
above we get

P
{

L+2nζ
2,[−n,n]2

T+1 ⊃ x + [−n, n]2 for some x ∈ [0, L)2
}

> (1 − ε)3

and

P

{
L+2nζ

2,[−n,n]2

t+1 ⊃ x + [−n, n]2 for some 0 ≤ t < T,
and for some x ∈ {L + n} × [0, L)

}
> (1 − ε)3.

Setting ε small enough, we have recreated the block events of Theorem 1. For reasons
that are explained in detail in Liggett’s (1999) book, ζ2

t dominates a supercritical k-
dependent oriented percolation and therefore has a positive probability of survival.
This completes the proof since by construction ξ2

t ≥ ζ2
t for all time.

4 Proof of Proposition 2

4.1 Size of a fire box

We first determine an appropriate size F for our fires. Recall that the 1’s survive by
colonizing the gaps created by forest fires. So we want a fire to create enough space for
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the 1’s to migrate from afar, and survive within the area for a long period of time. To
accommodate these needs, we define three squares centered at 0, labeled B1, B2, and
B3 with sides of lengths 2L, 2r1L and 2r2L = 2F , where 1 < r1 < r2. The innermost
square B1 provides the space for 1’s to land, the square B2 allows them room to grow
and the perimeter area B3 − B2 serves as a buffer against the 2’s. We want to show
the following.

Proposition 3. Suppose β2, δ2 are fixed and c1β1 > δ1λc(N1). Here c1 is the coefficient
for short-range births in the dispersal function p1(x, y), and λc(N1) the critical value
of β/δ for survival of the contact process with neighborhood N1. Then there are choices
of r1, r2, and T so that in the absence of interference of other forest fires the following
events happen with probability ≥ 1 − θ for large L

(i) if B1 receives a type 1 particle whose descendent survive within B2 for a period
of T , then they will survive within B2 for a period of 7T/2.

(ii) if B3 does not contain any 2’s at time 0, 2’s do not reach B2 by time 7T/2.

In the first lemma we prove (i). To grow the set of 1’s we only use the short range
edges, and hence have a version of the process Ax

t . Recall that r1Lτ is the extinction
time of r1LAx

t . Let Hx
t and Kx

t , as in Theorem 3, be the set of sites hit and coupled
for Ax

t . For simplicity let Cx
t = Hx

t ∩ Kx
t ⊂ Hx

t . Let DR(y) be a square of side 2R
centered at y and let DR = DR(0). Since β and δ are fixed, there are R1,2 > R1,1 > 0
such that DR1,1 ⊂ S ⊂ DR1,2 , where S is the limiting shape of A0

t . Let

Gx
t = {(1 − ε)DR1,1 ⊂ t−1(Cx

t − x),
t−1(Hx

t − x) ⊂ (1 + ε)DR1,2}. (2)

Lemma 3. Let At be a supercritical contact process with birth rate β and death rate
δ. Let T = 8L/7R1,1 and let x ∈ [−L,L]2. For any θ > 0, we can choose r1 so that for
large L

P (Ax
t ⊂ B2 for t ≤ 7T/2 | r1Lτx ≥ T ) ≥ 1 − θ

and P (r1Lτx ≥ 7T/2 | r1Lτx ≥ T ) ≥ 1 − θ

Proof. Let ε = 1/2 in (2). Theorem 2 implies that there is a t∗ > 0 such that
P (Gx

t for all t ≥ t∗ | τx = ∞) ≥ 1 − θ. For L ≥ t∗R1,1/4, we have on E = ∩t≥t∗G
x
t ,

Cx
4L/R1,1

⊃ x + [−2L, 2L]2 ⊃ [−L,L]2

Hx
4L/R1,1

⊂ x + [−K,K]2 where K =
3
2
R1,2(4L/R1,1)

Letting r1 = 6R1,2/R1,1 + 1 we have on E,

P ([−L,L]2 ⊂ Cx
4L/R1,1

⊂ Hx
4L/R1,1

⊂ Dr1L | τx = ∞) > 1 − θ

Now {Gx
7T/2, τ

x = ∞} ⊂ {Gx
7T/2, τ

x ≥ T}, so

P (Gx
7T/2 | τx ≥ T ) ≥ P (Gx

7T/2 | τx = ∞)
P (τx = ∞)
P (τx ≥ T )

.
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The last fraction tends to 1 as T → ∞. By the definitions of Gx
t and r1,

{τx ≥ T} ∩ Gx
7T/2 = {r1Lτx ≥ T} ∩ Gx

7T/2

Since P (r1Lτx ≥ T ) ≤ P (τx ≥ T ) we have (recall 7T/2 = 4L/R1,1)

P (Gx
7T/2 | τx ≥ T ) ≤ P (Gx

7T/2 | r1Lτx ≥ T )
≤ P (r1Lτx ≥ 7T/2|r1Lτx ≥ T )

and the desired conclusions follow.

To prepare for the proof of Lemma 5 we observe that P (Gx
7T/2 | τx = ∞) → 1 as

T → ∞ so working backwards through the last few calculations shows that for large L

P (r1Lτx ≥ 7T/2) ≥ (1 − θ)P (τx = ∞) (3)

The next lemma proves (ii) in Proposition 3.

Lemma 4. If r2 is chosen large enough then, for large L, A0 ∩ B3 = ∅ implies

P (At ∩ B2 = ∅ for all t ≤ 7T/2) ≥ 1 − θ

Proof. Fix ε = 1/2. Let RA
t be the Richardson process with neighborhood N1 and

growth rate β2. Let S be the convex set that is the limit in Theorem 3. Suppose
R2,2 > R2,1 > 0 are two numbers such that DR2,1 ⊂ S ⊂ DR2,2 . Let

Gt = {(1 − ε)DR2,1 ⊂ t−1R0
t ⊂ (1 + ε)DR2,2}.

There is a constant t∗ such that P (Gt for all t ≥ t∗) ≥ 1 − δ.
Suppose t2 > t1 ≥ t∗. Then

P (Gt1) ≥ P (Gt1 , t2
−1R0

t2 ⊂ (1 + ε)DR2,2) ≥ 1 − δ

Since Rt is a Markov process,

δ > P (Gt1 , t2
−1R0

t2 6⊂ (1 + ε)DR2,2)

≥ P (t2−1R
(1−ε)t1DR2,1

t2−t1
6⊂ (1 + ε)DR2,2)P (Gt1 )

Since P (Gt1) ≥ 1 − δ, taking t2 = t1 + t gives

P ((t + t1)
−1R

(1−ε)t1DR2,1

t 6⊂ (1 + ε)DR2,2) ≤ δ/(1 − δ).

Let θ = δ/(1 − δ). Let m ≥ r1L and m ≥ (1 − ε)t∗R2,1. We can find t1 ≥ t∗ so that
m = (1 − ε)t1R2,1 and as a result

P (R[−m,m]2

7T/2 ⊂ (3/2)(7T/2 + t1)DR2,2) ≥ 1 − θ

Let r2 = (3/2)(7T/2 + t1)R2,2/L and U = Dr2L. Since Rt is self-dual and B2 ⊂
[−m,m]2

P (RUc

7T/2 ∩ B2 = ∅) = P (RB2

7T/2 ∩ U c = ∅) = P (RB2

7T/2 ⊂ U) ≥ 1 − θ.
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4.2 Block Construction

Like Proposition 1, Proposition 2 will also be shown by using a block construction. We
will make use of the following notation. Let L = {(m,n) ∈ Z2 : m + n is even} and
e1 = (1, 0). We have already defined F = r2L. Let α > 0, k = Fα, W = F + F 1+α,
and define

J− = [−kW, 0]2, J+ = (0, kW ]2 Jm,± = 2mkWe1 + J±

J−1,− J0,− J1,−

J−1,+ J0,+ J1,+

�����������������

@
@

@
@

@
@

@@R

Figure 1. Boxes in the block construction.

We also define

B(i, j) = [iW, (i + 1)W ] × [jW, (j + 1)W ], i, j ∈ Z
B2(x, y) = [x − r1L, x + r1L] × [y − r1L, y + r1L]

We say there is a source of 1’s at B(i, j) at stage n if there is a block B2(x, y) ⊂ B(i, j)
that is empty of 2’s and contains at least one type 1 particle at all times between 2nT
and 2(n + 1)T , where T will be chosen later. We say there is a source of 1’s in Jm,+

at stage n if there is a source of 1’s in one of the B(i, j)’s that make up Jm,+.
The next lemma is the key to proving Proposition 2.

Lemma 5. Suppose we have a source of 1’s at J0,+ at stage 0. k and W can be chosen
so that with probability ≥ 1 − θ, there are sources of 1’s at J−1,− and J1,− at stage 1.

We alternate between + to − for our sources to avoid possible interference. Once
Lemma 5 is proven, we will choose the cutoff M = 4kW . The events described in
Lemma 5 will have a finite range of dependence, so a standard argument, see e.g., Dur-
rett (1995), implies that our process will dominate a supercritical oriented percolation
on L, and Proposition 2 follows.

Proof. There are three steps in creating a source in an adjacent box:

• fire clears an area in [0, T/2] and no fire touches the clearing in [T/2, 4T ].
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• dispersal brings a 1 to the box B1 inside the clearing during [T/2, T ].

• the immigrant survives to time 4T without leaving B2, and without 2’s coming
into B2

We will show that the intersection of these events has probability ≥ η > 0 in a
given W × W square in J−1,− and J1,−. Since the J ’s are a grid of k2 such squares,
if k is large success will have high probability. At this point the reader might worry
about η becoming small as k gets large but this point will be addressed in the proof.

The probability of the first desired event happening in one specified W × W area
is at least

∫ (W−F )2T/2

0
δ0e

−δ0t dt ·
∫ ∞

(2F )27T/2
δ0e

−δ0t dt

= (1 − e−δ0(W−F )2T/2)e−14δ0F 2T

If we choose W = F + F 1+α, α > 0, then to get

e−14δ0F 2T ≥ 1 − θ and 1 − e−δ0(W−F )2T/2 ≥ 1 − θ

we need
δ0F

2T ≤ − log(1 − θ)/14 and δ0F
2+2αT/2 ≥ − log(θ)

The first is guaranteed by our assumption δ0 ≤ c/F 3 for a suitable choice of c. Once
we fix δ0 the second will hold when L and hence F is large.

Suppose there is a source in J0,+. It contains at least 1 particle for all times between
T/2 and T . Then the maximum L∞ distance between our source and an area cleared
by a nice fire in J1,− or J−1,−, see Figure 1, is 4kW . Thus, the minimum rate at which
our source spreads to the target B1 within the cleared area is u = c2β1|4kW |−ρL2. If
we let k = Fα, then there is a c < ∞ so that the probability of spread to the target
area between T/2 and T is bounded below by

1 − exp(−uT/2) ≥ 1 − exp(−cβ1L
3−(1+2α)ρ)

To check this note that W ≤ 2F 1+α and recall F and T are multiples of L. If (1+2α)ρ <
3 then for large L the last quantity is ≥ 1 − θ.

Once a particle has landed on an empty area, the probability that its descendent
will survive there till t = 4T is bounded below by

P (r1LAx
7T/2 6= ∅) ≥ (1 − θ)P (τx = ∞)

as shown in (3).
Combining the last three estimates, we see that the probability of producing a

source in a given W × W area in J1,− of J−1,− is bounded below as L → ∞. The
number of independent opportunities, k = Fα tends to ∞ so the probability of success
tends to 1 and the proof is complete.
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