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Abstract

Inspired by previous work of Iwasa, Nowak, and Michor (2006), and Haeno,
Iwasa, and Michor (2007), we consider an exponentially growing population of
cancerous cells that will evolve resistance to treatment after one mutation or
display a disease phenotype after two or more mutations. We prove results
about the distribution of the first time when k mutations have accumulated in
some cell, and about the growth of the number of type k cells. We show that
our results can be used to derive the previous results about the tumor grown
to a fixed size.

1 Introduction

The mathematical investigation of cancer began in the 1950s, when Nordling (1953),
Armitage and Doll (1954, 1957), and Fisher (1959) set out to explain the age-
dependent incidence curves of human cancers. For a nice survey see Frank (2007).
Armitage and Doll (1954) noticed that log-log plots of cancer incidence data are lin-
ear for a large number of cancer types; for example, colorectal cancer incidence has a
slope of 5.18 in men and 4.97 in women. The authors used this observation to argue
that cancer is a multi-stage process and results from the accumulation of multiple
genetic alterations in a single cell. The math underlying this hypothesis was very
simple. Suppose Xi are independent and have an exponential distribution with rates
ui (i.e., the density function is uie

−uit and the mean is 1/ui). Noting that the sum
X1 + · · ·+ Xk has a density function that is asymptotically

u1 · · ·uk
tk−1

(k − 1)!
as t → 0, (1)
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the authors inferred that the slope of the age-incidence curve was the number of stages
minus 1, making colon cancer a six-stage process.

Later on, Knudson (1971) performed a statistical analysis of retinoblastoma, a
childhood eye cancer. His study showed that familial cases of retinoblastoma have an
earlier age of onset than the sporadic cases that emerge in families without a history
of the disease. Based on age incidence curves in the two groups, he hypothesized that
two mutagenic events or “hits” are necessary to cause cancer in the sporadic case,
but in individuals with the inherited form of the disease, a single hit is sufficient since
one mutation is already present at birth. This study led to the concept of a tumor
suppressor gene, i.e., a gene which contributes to tumorigenesis if inactivated in both
alleles. See Knudson (2001) for a survey.

Knudson’s research led to an explosion of papers on the multi-stage theory of
carcinogenesis too numerous to list here. Most studies, like the ones cited in the last
two paragraphs, merely fit curves to data on age specific incidence without considering
a population genetic model for the cell population. Iwasa et al. (2004,2005) were the
first to study waiting times in this way. They used a Moran model for a population of
a fixed size N in which type i cells are those with i ≥ 0 mutations, and type i mutates
to type i + 1 at rate ui+1. Let τk be the first time at which there is a type k-cell.
They considered a variety of scenarios based on the relative fitnesses of mutants. In
the neutral case, i.e., if the mutation does not alter the fitness or growth rate of the
cell, they showed:

Theorem 1. In a population of N cells, τ2 is approximately exponentially distributed
with rate Nu1u

1/2
2 , provided 1/

√
u2 � N � 1/u1.

They called this result “stochastic tunneling” because the 2’s arise before the 1’s reach
fixation. Durrett, Schmidt, and Schweinsberg (2009), see also Schweinsberg (2008),
generalized this result to cover τk.

In many cases, such as leukemia and polyps in colon cancer, the cell population
does not have constant size. For these reasons, Iwasa, Nowak, and Michor (2006)
considered the time to develop one mutation in an exponentially growing population
and Haeno, Iwasa, and Michor (2007) extended the analysis to waiting for two muta-
tions. Their model is a multi-type branching process in which type i cells are those
with i ≥ 0 mutations. Type-i cells give birth at rate ai and die at rate bi, where
λi = ai− bi > 0. The previous papers consider a number of different possibilities but
here will restrict our attention to the case in which i → λi is increasing.

We suppose that during their lifetimes, type-i cells mutate at rate ui+1 becoming
type i+1’s. This is slightly different than the previous approach of having mutations
with probability ui+1 at birth, which translates into a mutation rate of aiui+1, and
this must be kept in mind when comparing results. In applications, the mutation
rates are small compared to birth and death rates, so the reduction of the birth rate
of type-i’s to ai(1− ui+1) is an insignificant difference.
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1.1 Growth of type-0’s

The number of type-0 cells, Z0(t), is a branching process, so if Z0(0) = 1, EZ0(t) =
eλ0t and e−λ0tZ0(t) is a nonnegative martingale. Well known results imply that
e−λ0tZ0(t) → W0 as t →∞. A closed-form formula for the generating function ExZ0(t)

is known, see (15). To find the Laplace transform of W0, we let x = exp(−θe−λ0t) in
the closed form solution and look at the limit as t →∞ to conclude

Ee−θW0 =
b0

a0

+

(
1− b0

a0

)
1− b0/a0

1− b0/a0 + θ

From this we see that if δ0 is a pointmass at 0, and λ0 = a0 − b0

W0 =d
b0

a0

δ0 +
λ0

a0

exponential(λ0/a0) (2)

where the exponential(r) distribution has density re−rt and mean 1/r.
If we let Ω0

0 = {Z0(t) = 0 for some t ≥ 0} then (14) below implies P (Ω0) = b0/a0,
i.e., W0 = 0 if and only if the process dies out. Letting Ω0

∞ = {Z0(t) > 0 for all t ≥ 0}
we have

(e−λ0tZ0(t)|Ω0
∞) → V0 = exponential(λ0/a0) (3)

and hence the Laplace transform

Ee−θV0 =
λ0

λ0 + a0θ
= (1 + cθ,0θ)

−1 . (4)

where cθ,0 = a0/λ0. Here and in what follows, c’s are constants that only depend on
the birth and death rates, and not on the mutational rates.

1.2 Type-1 Results

Let τ1 be the time of occurrence of the first type-1. Since type-1’s are produced at
rate u1Z0(t),

P (τ1 > t|Z0(s), s ≤ t, Ω0
∞) = exp

(
−u1

∫ t

0

Z0(s)ds

)
(5)

τ1 will occur when
∫ t

0
Z0(s) ds is of order 1/u1. A typical choice for u1 = 10−5, so

1/u1 is a large number, and we can use the approximation (Z0(s)|Ω0
∞) ≈ eλ0sV0.

Evaluating the integral, taking the expected value, and using (4), we conclude that

P (τ1 > t|Ω0
∞) ≈ E exp

(
−u1V0(e

λ0t − 1)/λ0)
)

=
λ0

λ0 + a0u1(eλ0t − 1)/λ0

=
(
1 + cτ,1u1(e

λ0t − 1)
)−1

(6)
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Figure 1: Results of 200 runs of the system with a0 = 1.02, a1 = 1.04, a2 = 1.06
bi = 1.0, ui = 10−5. Smooth curves the limit results for τi when i = 1, 2, 3.

where cτ,1 = a0/λ
2
0. The median t11/2 of the distribution has λ2

0 = a0u1(e
λ0t1

1/2 − 1) so

t11/2 =
1

λ0

log

(
1 +

λ2
0

a0u1

)
(7)

Figure 1 shows that (6) agrees well with the values of τ1 observed in simulations.
Parameters are given in the figure caption.

Our next step is to consider the growth of Z1(t). In Section 3 we show that

Mt = e−λ1tZ1(t)−
∫ t

0

u1e
−λ1sZ0(s) ds is a martingale

and use this to conclude

Theorem 2. e−λ1tZ1(t) → W1 a.s. with

EW1 = u1/(λ1 − λ0).

On Ω0
∞ we will eventually get a type-1 mutant with an infinite line of descent so

{W1 > 0} ⊃ {Ω0
∞}.

Let TM = min{t : Z0(t) = M}. The results of simulations given in Figure 3
of Iwasa, Nowak, and Michor (2006) show that when log P (W1 > x|TM < ∞) is
plotted versus log x, a straight line results. Since their M is large, this suggests that
(W1|Ω0

∞) has a power law tail. As we will now show, this is only approximately
correct. To begin, we consider Z∗i (t), the number of type-i’s at time t in a system
with Z∗0(t) = eλ0tV0 for all t ∈ (−∞,∞). Let

ch,1 =
1

λ0

(
a1

λ1

)λ0/λ1−1

Γ(1− λ0/λ1)Γ(λ0/λ1 + 1)
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Theorem 3. e−λ1tZ∗1(t) → V1 a.s. with

Ee−θV1 = 1/(1 + cθ,1u1θ
λ0/λ1)

where cθ,1 = cθ,0ch,1, and hence

P (V1 > x) ∼ cV,1u1x
−λ0/λ1

where cV,1 = cθ,1/Γ(1− (λ0/λ1)).

Iwasa, Nowak, and Michor (2006)’s α = λ0/λ1, so our result is consistent with the
conclusions given in their (15a) and (15b). The big values of V1 come from mutations
at negative times, so W1 does not have a power law tail. To upper bound the difference
between the distributions of W1 and V1 note that the expected number of type-1’s
produced at times t ≤ 0 is u1a0/λ

2
0. In the concrete example considered in Figure 1,

a0 = 1.02, b0 = 1, and u = 10−5 which is 0.0255 so this does not change the limiting
distribution by much and the simulated distributions will look like power laws.

A useful consequence of the proof of Theorem 3 is

Corollary. If we condition on the value of V0 then V1 = limt→∞ is the sum of points
of a Poisson process on (0,∞) with intensity Cu1V0x

−λ0/λ1.

Here the Poisson points are the sizes of the contributions of different mutations to
the limit V1.

1.3 Type-2 Results

We can derive an approximation for the waiting time for the first type 2, τ2, by using
the same reasoning in (5) and (6) for τ1.

P (τ2 > t|Z1(s), s ≤ t, Ω0
∞) ≈ exp

(
−u2V1e

λ1t/λ1

)
(8)

Taking expected values and using Theorem 3, we obtain

P (τ2 > t|Ω0
∞) ≈

(
1 + cτ,2µ2e

λ0t
)−1

where µ2 = u1u
λ0/λ1

2 , cτ,2 = cθ,1λ
−λ0/λ1

1 , and we have omitted the −1 after eλ0t because
it is not important in this result. Solving we get an approximation for the median
value of τ2:

t21/2 ≈
1

λ1

log

(
1

u2

)
+

1

λ0

log

(
1

u1cτ,2

)
(9)

and it follows easily that

P (τ2 > t21/2 + x/λ0) →
1

1 + ex
(10)

Figure 1 compares (10) with simulations of τ2.
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1.4 Type-k Results

To study the growth of the number of type k’s for k ≥ 2, we note that

e−λktZk(t)−
∫ t

0

uke
−λksZk−1(s)ds is a martingale

and use this conclude that

Theorem 4. For k ≥ 2, e−λktZk(t) → Wk a.s. with

EWk =
k∏

j=1

uj

λk − λj−1

Using the approach in the proof of Theorem 3 we can show that if we let

ch,k =
1

λk−1

(
ak

λk

)λk−1/λk−1

Γ(1− λk−1/λk)Γ(λk−1/λk + 1)

and µk =
∏k

j=1 u
λ0/λj−1

j then we have

Theorem 5. e−λktZ∗k(t) → Vk a.s. with

Ee−θVk =
(
1 + cθ,kµkθ

λ0/λk
)−1

and hence P (Vk > x) ∼ cV,kµkx
−λ0/λk , where cV,k = cθ,kΓ(1− λ0/λk).

As before, this gives us estimates for the waiting time distribution

P (τk+1 > t|Ω0
∞) ≈ E exp(−Vkuk+1e

λkt/λk)

=
(
1 + cτ,k+1µk+1e

λ0t
)−1

where cτ,k+1 = cθ,kc
λ0/λk

h,k . Again, we can solve to find the median

tk+1
1/2 =

k+1∑
j=1

1

λj−1

log

(
1

uj

)
+

1

λ0

log

(
1

cτ,k+1

)
(11)

and it follows easily that

P (τk+1 > tk+1
1/2 + x/λ0) →

1

1 + ex
(12)

Note that the shape of the limit distribution is the same as for τ2 but is translated in
time. Figure 1 compares (12) whne k = 3 with simulations of τ3.
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1.5 Fixed size results

In Iwasa, Nowak, and Michor (2006) and Haeno, Iwasa, and Michor (2007), the
authors consider the system at TM , the first time at which there are M type-0 cells.
With a little more work, we are able to reproduce and extend their results.

1.5.1 P (τ1 < TM)

Using the calculation in (5),

P (τ1 > TM |Z0(s), s ≤ TM , Ω0
∞) = exp

(
−u1

∫ TM

0

Z0(s) ds

)
≈ exp

(
−Mu1

∫ ∞

0

e−λ0s ds

)
= exp (−Mu1/λ0) (13)

If we let Z̃1(t) = (Z1(t)|Z0(0) = 0, Z1(0) = 1), i.e., the branching process started
with no type 0’s and one type 1, then similar reasoning shows

P (Z1(TM) > 0|Z0(s), s ≤ TM , Ω∞)

= 1− exp

(
−u1

∫ TM

0

Z0(s)P (Z̃1(TM − s) > 0) ds

)
Using Z0(s) ≈ Me−λ0(TM−s), changing variables r = TM − s, and using (17) below to
evaluate P (Z̃1(TM − s) > 0) the above

≈ 1− exp

(
−u1M

∫ (1/λ0) log M

0

e−λ0r λ1

a1 − b1e−λ1r
dr

)
where we have stopped the integral when Z0(tM − r) ≈ Me−λ0r = 1. Changing
variables y = e−λ0r, dy = −λ0e

−λ0r dr the integral becomes

1

λ0

∫ 1

0

λ1

a1 − b1yα
dy

where α = λ1/λ0, which agrees with (7) of Iwasa, Nowak, and Michor (2006) once
one changes variables a0 = r, b0 = d, u1 = ru. Their derivation of this result is
not completely rigorous because they suppose that the number of resistant cells, Rx,
produced when Z0(t) = x are independent, whereas the occupation times |{t ≤ TM :
Zt(0) = x}| are correlated, but evidently this does not produce a significant error.

1.5.2 Z1(TM)

Working backward from TM , assuming deterministic growth of type-0 cells at rate
eλ0s, and using a calculation from the proof of Theorem 3, we can show

E exp

(
− θZ1(TM)

(Mu1)λ1/λ0

)
≈ exp

(
−u1

∫ 0

−∞
Meλ0s(1− φ̃−s(θ(Mu1)

−λ1/λ0)) ds

)
7



This leads to

Theorem 6. As M →∞, Z1(TM)/(Mu1)
λ1/λ0 converges to U1 in distribution where

E(exp(−θU1)) = exp(−c1,θu1θ
λ0/λ1)

and c1,θ is the constant in Theorem 2.

As in Theorem 3 it follows that P (U1 > x) ∼ cV,1u1x
−λ0/λ1 . From Theorem 6 we

see that if (Mu1)
λ1/λ0 << M , i.e., M << u

−λ1/(λ0−λ1

1 then Haeno, Iwasa, and Michor
(2007) are justified in looking at the time when the number of type 0’s reaches M
rather than when the total population reaches M , see their page 2211. In the concrete
example considered in Figure 1, this is M << 102.5.

1.5.3 P (τ2 < TM)

Using the reasoning for P (τ1 < TM), one can show

P (Z2(TM) > 0) ≈ 1− exp

(
−u1

λ0

∫ M

1

1− P

(
Z̃2

(
1

λ0

log

(
M

x

))
> 0

)
dx

)
After a change in notation, this is (3) in Haeno, Iwasa, and Michor (2007). To
make the connection see their (A3). However, this formula is not very useful, since
P (Z̃2(t) > 0) is not easy to compute. See their appendix A. One can get a better
formula by using Theorem 6 and (8) to conclude

P (τ2 < TM) ≈ E exp(−u2U1(Mu1)
λ1/λ0/λ1) = E exp(−θU1)

with θ = u2(Mu1)
λ1/λ0/λ1. Using the last result with Theorem 6, one can determine

the relative proportions of types 0 and 1 at time τ2. We leave the details to the reader.

1.6 Summary

Here, we have derived results for τk, the waiting time for the first type k, in a branching
process model for an exponentially growing population of cancerous cells. To obtain
simple formulas we considered a modification in which Z∗0(t) = eλ0tV0 for all t ∈
(−∞,∞). In this case

P (τk > t) ≈
(
1 + cτ,kµke

λ0t
)−1

where µk =
∏k

j=1 u
λ0/λj−1

j and cτ,k is an explicit constant that only depends on the
birth and death rates.

cτ,k =
a0

λ0

λ
−λ0/λk−1

k−1

k−1∏
i=1

[
1

λi−1

(
ai

λi

)λ0/λi−1

Γ(1− λ0/λi)Γ(1 + λ0/λi)

]λ0/λi−1
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Note that the exponential is eλ0t for all values of k. Simulations show that despite
the fact that various approximations were made in the derivations, the theoretical
results agreed well with simulation.

To obtain results for the waiting times via induction, we had to also consider
Z∗k(t), the number of type-k individuals at time t. e−λktZ∗k(t) → Vk where

Ee−θVk =
(
1 + cθ,kµkθ

λ0/λk
)−1

Invoking a Tauberian theorem we then concluded that Vk has a power law tail

P (Vk > x) ∼ cV,kµkx
−λ0/λk

confirming simulations of Iwasa, Nowak, and Michor (2006). These results consider
the process at a fixed time t, but lead easily to results for the system at time TM at
which there are M type-0 cells, and can be used to obtain results at time SM when
the total tumor size is M .

The remainder of the paper is devoted to proofs. Section 2 establishes the branch-
ing process results we need. Theorems 1 and 2 are proved in Section 3, Theorem 3 in
Section 4, Theorem 4 in Section 5, and Theorem 5 in Section 6.

2 Branching process results

We begin by computing the extinction probability, ρ. By considering what happened
on the first jump

ρ =
b0

a0 + b0

· 1 +
a0

a0 + b0

· ρ2

Rearranging gives a0ρ
2 − (a0 + b0)ρ + b0 = 0. Since 1 is a root, the quadratic factors

as (ρ− 1)(a0ρ− b0) = 0, and

ρ =

{
b0/a0 if a0 > b0

1 if a0 ≤ b0

(14)

The generating function F (x, t) = ExZ0(t) can been computed by solving a differ-
ential equation. On page 109 of Athreya and Ney (1972), or in formula (5) of Iwasa,
Nowak, and Michor (2006) we find the solution:

F (x, t) =
b0(x− 1)− e−λ0t(a0x− b0)

a0(x− 1)− e−λ0t(a0x− b0)
(15)

Subtracting this from 1 gives

1− F (x, t) =
λ0(x− 1)

a0(x− 1)− e−λ0t(a0x− b0)
(16)
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Setting x = 0, we have

P (Z0(t) > 0) = 1− F (0, t) =
λ0

a0 − b0e−λ0t
(17)

e−λ0tZ0(t) is a nonnegative martingale and converges to a limit W0, with EW0 = 1
and

{W0 > 0} = {Z0(t) > 0 for all t} ≡ Ω0
∞

To compute the Laplace transform Ee−θW0 when a0 > b0, we set x = exp(−θe−λ0t)
in (15) to get

b0(exp(−θe−λ0t)− 1)− e−λ0t(a0 exp(−θe−λ0t)− b0)

a0(exp(−θe−λ0t)− 1)− e−λ0t(a0 exp(−θe−λ0t)− b0)

As t → ∞, e−λ0t → 0, so exp(−θe−λ0t) → 1, exp(−θe−λ0t) − 1 ∼ −θe−λ0t, and the
above simplifies to

≈ −b0θe
−λ0t − e−λ0tλ0

−a0θe−λ0t − e−λ0tλ0

=
b0θ + λ0

a0θ + λ0

Dividing top and bottom of this by a0 and recalling λ0 = a0 − b0 we have

=
(b0/a0)θ + 1− (b0/a0)

θ + 1− (b0/a0)
=

b0

a0

+

(
1− b0

a0

)
1− (b0/a0)

θ + 1− (b0/a0)

To invert the Laplace transform, we note that if δ0 is the point mass at 0 then
pδ0 + (1− p)exponential(ν) has Laplace transform

p + (1− p)
ν

ν + θ
=

pθ + ν

θ + ν

so p = b0/a0, in agreement (14), and ν = 1− (b0/a0).

3 Growth of the number of type 1’s

Our first result is no harder to prove for a general k than it is for k = 1, so to avoid
repeating the proof later we do it in general now. By considering the times s ≤ t at
which mutations occur and the growth rate of the resulting branching processes of
type-k cells,

EZk(t) =

∫ t

0

EZk−1(s)uke
λk(t−s) ds (18)

Lemma 1. Mt = e−λktZk(t)−
∫ t

0
uke

−λksZk−1(s) ds is a martingale.
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Proof. Let Ft be the σ-field generated by Zj(s) for 0 ≤ j ≤ k and s ≤ t. Taking
differences

Mt+h −Mt = e−λk(t+h)Zk(t + h)− e−λk(t)Zk(t)−
∫ t+h

t

uke
−λksZk−1(s) ds

Using the expected value formula (18) we see that

E(Zk(t + h)|Ft) = eλkhZk(t) + E

(∫ t+h

t

ukZk−1(s)e
λk(t+h−s) ds

∣∣∣∣Ft

)
Multiplying by e−λk(t+h) gives

E

(
e−λk(t+h)Zk(t + h)− e−λktZk(t)−

∫ t+h

t

ukZk−1(s)e
−λks ds

∣∣∣∣Ft

)
= 0

The desired result, E(Mt+h −Mt|Ft) = 0, follows.

Proof of Theorem 2. If λ1 > λ0 then I1 =
∫∞

0
u1e

−λ1sZ0(s) ds converges and has

EI1 = u1

∫ ∞

0

e−(λ1−λ0)s ds = u1/(λ1 − λ0)

Xt = −Mt is a martingale with sup E(X+
t ) ≤ EI < ∞, so by the martingale conver-

gence theorem (see e.g., (2.10) in Chapter 4 of Durrett (2005)), Xt converges to a limit
X. Since I1(t) =

∫ t

0
uke

−λksZ0(s) ds → I1 as t →∞, it follows that e−λ1tZ1(t) → W1.
The martingale starts at 0 so Ee−λ1tZ1(t) = EI1(t) → EI1 and it follows from Fatou’s
lemma that EW1 ≤ EI1.

To conclude that EW1 = EI1, we will show supt E(e−λ1tZ1(t))
2 < ∞. We will

hold off on the proof until we can use induction to address all Wk at once in Section
4, see Lemma 5.

Proof of Theorem 3. To obtain information about the distribution of V1, recall
that Z∗1(t) is the number of type-1’s at time t in the system with Z∗0(t) = eλ0tV0 for
t ∈ (−∞,∞), let Z̃1(t) be the number of 1’s at time t in the branching process with

Z0(0) = 0, Z1(0) = 1, and let φ̃1,t(θ) = Ee−θZ̃1(t).

Lemma 2. E
(
e−θZ∗1 (t)|V0

)
= exp

(
−u1

∫ t

−∞ V0e
λ0s(1− φ̃1,t−s(θ)) ds

)
Proof. We begin with the corresponding formula in discrete time:

E
(
e−θZ∗1 (n)

∣∣Z0(m), m ≤ n
)

=
n−1∏

m=−∞

∞∑
km=0

e−u1Z0(m) (u1Z0(m))km

km!
φ̃1,n−m−1(θ)

km

=
n−1∏

m=−∞

exp
(
−u1Z0(m)(1− φ̃1,n−m−1(θ))

)
= exp

(
−u1

n−1∑
m=−∞

Z0(m)(1− φ̃1,n−m−1(θ))

)
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Breaking up the time-axis into intervals of length h and letting h → 0 and using
Z∗0(s) = W̄0e

λ0s gives the result in continuous time.

Replacing θ by θe−λ1t and letting t →∞

E
(
e−θV1|V0

)
= lim

t→∞
exp

(
−u1V0

∫ t

−∞
eλ0s(1− φ̃1,t−s(θe

−λ1t)) ds

)
(19)

To calculate the limit, we note that by (3)

Z̃1(t− s)e−λ1(t−s) ⇒ b1

a1

δ0 +
λ1

a1

exponential(λ1/a1) (20)

so multiplying by eλ1s and taking the Laplace transform, we have

1− φ̃t−s(θe
−λ1t) → λ1

a1

∫ ∞

0

(1− e−θx)(λ1/a1)e
λ1se−xeλ1sλ1/a1dx (21)

Using this in (19) and interchanging the order of integration

E
(
e−θV1|V0

)
= exp (−u1V0h(θ))

where

h(θ) = (λ2
1/a

2
1)

∫ ∞

0

(1− e−θx)

[∫ ∞

−∞
eλ0seλ1se−xeλ1sλ1/a1ds

]
dx. (22)

Changing variables u = xeλ1sλ1/a1, eλ1sds = a1 du/(λ2
1x) in the inside integral

and then y = θx, dy = θdx in the outside integral

h(θ) =
λ2

1

a2
1

∫ ∞

0

(1− e−θx)

[∫ ∞

0

a1

xλ2
1

(
a1u

λ1x

)λ0/λ1

e−u du

]
dx (23)

=
1

a1

(
a1θ

λ1

)λ0/λ1
∫ ∞

0

(1− e−y)y−λ0/λ1−1 dy

∫ ∞

0

uλ0/λ1e−u du

To make this easier to evaluate we integrate by parts in the first integral to convert
it into

λ1

λ0

∫ ∞

0

e−yy−λ0/λ1 dy

and both integrals are values of the Γ function: Γ(z) =
∫∞

0
tz−1e−t dt.

At this point we have shown

h(θ) = ch,1θ
λ0/λ1 (24)

where the constant

ch,1 =
1

λ0

(
a1

λ1

)λ0/λ1−1

Γ(1− λ0/λ1)Γ(λ0/λ1 + 1) (25)

12



Taking the expected value of exp(−u1V0h(θ)) now, and using (4) we have

E
(
e−θV1

)
=

1

1 + cθ,1u1θλ0/λ1
(26)

where cθ,1 = ch,1a0/λ0.
To show that V1 has a power law tail, we note that as θ → 0,

1− E
(
e−θV1

)
∼ cθ,1u1θ

λ0/λ1 (27)

and then use a Tauberian theorem from Feller Volume II (pages 442–446). Let

ω(λ) =

∫ ∞

0

e−λxdU(x)

Lemma 3. If L is slowly varying and U has an ultimately monotone derivative u,
then ω(λ) ∼ λ−ρL(1/λ) if and only if u(x) ∼ xρ−1L(x)/Γ(ρ).

To use this result we note that if φ(θ) is the Laplace transform of the probability
distribution F , then integrating by parts gives∫ ∞

0

e−θxdF (x) = (e−θx)(F (x)− 1)
∣∣∞
0
− θ

∫ ∞

0

e−θx(1− F (x)) dx

so we have

1− φ(θ) = θ

∫ ∞

0

e−θx(1− F (x)) dx

Using (27), it follows that

1− E(e−θV1)

θ
∼ cθ,1u1θ

λ0/λ1−1

and we conclude
P (V1 > x) ∼ cV,1u1x

−λ0/λ1

where cV,1 = cθ,1/Γ(1− (λ0/λ1)).

Proof of the Corollary. If S is the sum of Poisson mean λ number of independent
random variables with distribution µ then

Ee−θS =
∞∑

k=0

e−λ λk

k!

(∫
e−θxµ(dx)

)k

= exp

(
−λ + λ

∫
e−θxµ(dx)

)
= exp

(
−
∫

(1− e−θ)λµ(dx)

)

13



Let A = Cu1V0, λε =
∫∞

ε
Ax−λ0/λ1 dx and µε have density λ−1

ε Ax−λ0/λ1 on (ε,∞).
If Sε is the sum of Poisson mean λε number of independent random variables with
distribution µε then

Ee−θSε = exp

(
−
∫ ∞

ε

(1− e−θ)Ax−λ0/λ1 dx

)
Letting ε → 0 and comparing with (23) gives the desired result.

4 Proof of Theorem 4

We begin by computing EZk(t) using EZk(t) =
∫ t

0
EZk−1(s)uke

λk(t−s)ds.

EZk(t) = u1u2 · · ·uk

k∑
j=0

eλjt

Γj,k

for k ≥ 1 (28)

where Γj,k =
∏

i≤k,i6=j(λj − λi).

Proof. Let Xj be independent exponential(γj), and let pk is the density function of
X0 + · · ·+ Xk, which satisfies the recursion

pk(t) =

∫ t

0

pk−1(s)γke
−γk(t−s) ds

Armitage (1952) has shown, see his paragraph 4, that

pk(t) = (−1)k+1γ0 · · · γk

k∑
j=0

eλjt

∆j,k

where ∆j,k =
∏

i≤k,i6=j(γi−γi). If we take γ = −λi then comparing the two recursions

and their initial condition EZ0(t) = eλ0t and p0(t) = γ0e
−γ0t shows

pk(t) = (−1)k+1EZk(t)
λ0 · · ·λk

u1 · · ·uk

The derivation of the formula for pk(t) only uses calculus which relies on the γi are
distinct, so the desired result follows.

Let Ik(t) =
∫ t

0
uie

−λisZk−1(s)ds and Ik = Ik(∞).

Lemma 4. For k ≥ 1, EIk < ∞.
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Proof Using EZ0(t) = eλ0t and (28)

EIk = E

∫ ∞

0

uke
−(λk−λk−1)s

(
e−λk−1sZk−1(s)

)
ds < ∞

To prove Theorem 4 now, observe that Xt = Ik(t)−e−λktZk(t) ≤ Ik is a martingale
and dominated by an integrable random variable, so (2.10) of Chapter 4 of Durrett
(2005) implies Xt → X a.s. Since Ik(t) → Ik a.s., it follows that e−λktZk(t) → Wk.
(28) implies that

Ee−λktZk(t) →
u1u2 · · ·uk

Γk,k

To prove that EWk = EIk we will show

Lemma 5. For k ≥ 0, supt E(e−λktZk(t))
2 < ∞.

Proof. The base case is easy. We look at the derivative d
dt

E(e−λ0tZ0(t))
2

= −2λ0E(e−λ0tZ0(t))
2 + e−2λ0t (E[a0Z0(t)(2Z0(t) + 1)]− E[b0Z0(t)(2Z0(t)− 1)])

= e−2λ0t(a0 + b0)EZ0(t) = e−λ0t(a0 + b0)

And it follows that supt E(e−λ0tZ0(t))
2 < ∞. Next, we suppose supt E(e−λk−1tZk−1(t))

2 ≤
ck−1 < ∞ and consider the derivative d

dt
E(e−λktZk(t))

2

= −2λkE(e−λktZk(t))
2 + e−2λktE[akZk(t)(2Zk(t) + 1)]

− e−2λktE[bkZk(t)(2Zk(t)− 1)] + e−2λktE[ukZk−1(t)(2Zk(t) + 1)]

= (ak + bk)e
−2λktEZk(t) + uke

−2λktE[Zk−1(t)(2Zk(t) + 1)]

To bound 2uke
−2λktE[Zk−1(t)Zk(t)], we use the Cauchy-Schwarz inequality and y1/2 ≤

1 + y for y ≥ 0 to get

≤ 2uke
−(λk−λk−1)tE[e−2λk−1tZ2

k−1(t)]
1/2E[e−2λktZ2

k(t)]1/2

≤ 2uke
−(λk−λk−1)tc

1/2
k−1

(
1 + E[e−2λktZ2

k(t)]
)

Comparison theorems for differential equations imply that E(e−λktZk(t))
2 ≤ m(t)

where m(t) is the solution of the differential equation

d

dt
m(t) = a(t)m(t) + b(t), m(0) = 0 (29)

with a(t) = 2ukc
1/2
k−1e

−(λk−λk−1)t, and

b(t) = (ak + bk)e
−2λktEZk(t) + 2uke

−2λktEZk−1(t) + 2ukc
1/2
k−1e

−(λk−λk−1)t

Solving (29) gives

m(t) =

∫ t

0

b(s) exp

(∫ t

s

a(r) dr

)
Since a(t) and b(t) are both integrable, m(t) is bounded.
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5 Proof of Theorem 5

Let Fk−1
t be the σ-field generated by Z∗j (s) for j ≤ k− 1 and s ≤ t. Let Z̃k(t) be the

number of type k’s at time t in the branching process with Zk(0) = 1 and Zj(0) = 0

for j ≤ k − 1, and let φ̃k,t(θ) = Ee−θZ̃1(t). The reasoning of Lemma 2 implies

E(e−θZ∗k(t)|Fk−1
t ) = exp

(
−uk

∫ t

−∞
Z∗k−1(s)(1− φ̃k,t−s(θ)) ds

)
Replacing Z∗k−1(s) by eλk−1sVk−1, θ by θe−λkt, and letting t →∞

E
(
e−θVk |Fk−1

∞
)

= lim
t→∞

exp

(
−ukVk−1

∫ t

−∞
eλk−1s(1− φ̃k,t−s(θe

−λkt)) ds

)
(30)

At this point the calculation is the same as the one in Section 3 with 1 and 0 replaced
by k and k − 1 respectively, and we conclude that

E
(
e−θVk |Fk−1

∞
)

= exp (−ukVk−1hk(θ)) (31)

where hk(θ) = ch,kθ
λk−1/λk and

ch,k =
1

λk−1

(
ak

λk

)λk−1/λk−1

Γ(1− λk−1/λk)Γ(λk−1/λk + 1)

Let cθ,k = cθ,k−1c
λ0/λk

h,k . When k = 2 taking expected value and using Theorem 3
gives

Ee−θV2 =
(
1 + cθ,2u1u

λ0/λ1

2 θλ0/λ2

)−1

Using this in (31)

Ee−θV3 =
(
1 + cθ,3u1u

λ0/λ1

2 u
λ0/λ2

3 θλ0/λ3

)−1

The pattern should be clear so we leave to the reader to check the induction step. The
result for P (Vk > x) follows from Lemma 3, and the proof of Theorem 5 is complete.

6 Proof of Theorem 6

We are interested in finding

lim
M→∞

exp

[
−u1

∫ 0

−∞
Meλ0s(1− φ̃−s(θ(Mu1)

−λ1/λ0)) ds

]
First, we make the change of variables s = t− 1

λ0
log(Mu1).

= lim
M→∞

exp

[
−
∫ 1

λ0
log(Mu1)

−∞
eλ0t(1− φ̃ 1

λ0
log(Mu1)−t(θ(Mu1)

−λ1/λ0)) dt

]

16



Taking the limit as M →∞ is essentially the same calculation as (21).

= exp

[
−
∫ ∞

−∞
eλ0t λ1

a1

∫ ∞

0

(1− e−θx)(λ1/a1)e
λ1te−xeλ1tλ1/a1 dx dt

]
We conclude by recognizing this double integral as h(θ) defined in (22) and computed
in (24).
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