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Abstract

Wagner (1996) and Siegal and Bergman (2002) have studied a simple model of the

evolution of a network of N genes, in order to explain the observed phenomenon that

systems evolve to be robust. These authors primarily considered the case N = 10 and

used simulations to reach their conclusions. Here we investigate this model in more

detail, considering systems of different sizes with and without recombination, and with

selection for convergence instead of to a specified limit. For the simpler evolutionary

model lacking recombination, we analyze the system as a neutral network. This allows

us to describe the equilibrium distribution networks within genotype space. Our results

show that, given a sufficiently large population size, the qualitative observation that

systems evolve to be robust, is itself robust, as it does not depend on the details of the

model. In simple terms, robust systems have more viable offspring, so the evolution

of robustness is merely selection for increased fecundity, an observation that is well

known in the theory of neutral networks.
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1 Introduction

The idea that wild-type genotypes are mutationally robust, i.e., are buffered against the effect

of mutation goes back to Waddington (1942), an effect he called canalization. Waddington

argued that for a well adapted trait almost all mutations with an effect are deleterious.

For this reason, any modifier that reduces the effect of mutations and thus keeps the trait

closer to optimum should be selected. Following the classical work of Schmalhausen (1949),

Waddington (1957) and their contemporaries, research on robustness experienced a decline

in the 1970s and 1980s. However, in the early 1990s as powerful molecular techniques to

track and manipulate genotypes became routine, there was a renewed interest in the issue

of genetic robustness.

Scharloo (1991) describes the results of a number of early experiments with Drosophila.

More recently Rutherford and Lindquist (1998) and Queitsch, Sangster, and Lindquist (2002)

have examined the role of the heat shock protein Hsp90. All these experiments show increased

phenotypic variance in populations that carry a major mutation or are exposed to environ-

mental stress and this is interpreted as evidence for the existence of an evolutionary buffer

capable of hiding and then releasing genetic variation. See Stearns (2002) and Nivens (2004)

for more discussion of the experiments.

The evolution of mechanisms underlying the buffering of the phenotype against genetic

and environmental influences has received much theoretical attention, yet many issues remain

unresolved. For discussions see Meiklejohn and Hartl (2002), Gibson and Wagner (2002), or

de Visser et al. (2003). There have been a number of different approaches to modeling, see
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e.g., Hermisson, Hansen, and Wagner (2003), Hermisson and Wagner (2004). This paper

follows the approach of Wagner (1996) and Siegal and Bergman (2002) who investigated an

interacting network of N genes described by an N ×N matrix where 1 = on and −1 = off .

Masel (2004) later investigated a variant in which 1 = on and 0 = off.

In Section 2 we will describe the original version of Wagner’s model and Masel’s modi-

fication of the model. Section 3 introduces three population dynamics: one due to Wagner

(1996), one to Siegal and Bergman (2002), and an intermediate model which is a hybrid of

the two. Section 4 is devoted to a detailed study of the 2 × 2 case and a use of Markov

chain theory to derive a result for the asymptotic behavior in an infinite population for a

general N . In Section 5, we investigate systems with N = 4, 7, and 10 genes by simulation.

In Section 6, we discuss the conclusions we have reached based on our analytical results and

simulations.

2 The network model

Following Wagner (1996) we consider a finite population of M randomly mating individuals,

each of which has an interacting network of N genes. These interactions are represented

by an N × N matrix W , whose elements wij indicate the effect on gene i of the product of

gene j, which may involve activation (wij > 0) or repression (wij < 0). Changing expression

levels are modeled by the set of difference equations:

Si(t + 1) = σ

[

N
∑

j=1

wijSj(t)

]

(1)
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where σ is the sign function; σ(x) = 1 if x > 0, σ(x) = −1 if x < 0, and σ(0) = 0.

hi(t) =
∑N

j=1
wijSj(t) represents the sum of all regulatory effects of all of the network genes

on gene i. Ignoring the possibility that the sum is exactly zero, which in our model will

have probability 0, Si(t) only takes the values −1(not expressed) or 1(expressed). Siegal and

Bergman (2002) replace σ in (1) by a sigmoidal function:

f(x) =
2

1 + e−ax
− 1 (2)

They choose a = 100 so f(x) is close to 1 when x 6∈ [−.03, .03]. Since this is only a

small perturbation of the sign function, we will simplify the analysis by using Wagner’s sign

function, which results in a dynamical system on the finite set {−1, 1}N . In the version of

the model used by Masel (2004), Si(t) takes values 1 (expressed) and 0 (not expressed) where

σ(x) = 1 if x ≥ 0 and σ(x) = 0 if x < 0. This is also a dynamical system on the finite set

{0, 1}N . In the 0, 1 map, Si(t) = (0, . . . , 0) can never be a fixed point. The 0, 1 mapping

is more realistic biologically since genes that are off, have no effect on anything while in the

−1,1 formulation if gene i is off it has a positive effect on gene j with Wi,j < 0. As we will

see later the 0,1 map has many more fixed points due to turning off various subsets of genes.

Note that by definition the all off state is not a fixed point.

2.1 Random networks

In a moment we will introduce the population dynamics into the system. However, in

order to assess how selection changes the collection of possible gene networks, we will first
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consider properties of randomly chosen 4 × 4 networks. For convenience we will rewrite the

state space {−1, 1}4 as {0, 1, . . . 15} by replacing −1 by 0 and regarding the sequence as

a binary number. For example, (1,−1,−1, 1) becomes 1001 = 9. We generated wij that

are independent and identically distributed uniform random variables on [−1, 1] and then

flipped the sign of each row (if necessary) to make (1, 1, 1, 1) = 15 a fixed point. We then

iterated the system starting from (1, 1,−1,−1) = 12 and (1, 1, 0, 0) = 12 when using the 0, 1

model. This choice is somewhat arbitrary, but when (1, 1, 1, 1) is a fixed point the qualitative

behavior of the system only depends on the number of −1’s in the initial state, so there are

only three interesting choices: 8, 12, and 14. For each matrix we generated, we iterated until

a fixed point was reached or the system settled into a periodic orbit. Then we counted the

number of times each state was the limiting fixed point, how long it took to reach (1, 1, 1, 1)

when it was the limit, the probability of reaching (1, 1, 1, 1) in 0 − 15 time steps, and the

lengths of the periodic orbits obtained. The results are presented in Figure 1.

To see the effect of the structure of the mapping on the statistics, we generated a random

mapping φ of {0, 1, . . . 15} into itself with φ(15) = 15, started from 12, and iterated φ and

recorded the outcomes as before. The results from the random map are much different from

the Wagner map and from the 0, 1 map. For the random map, 15 and 12 are more likely to

be the limiting fixed points, but all other limits occur with almost equal frequency, and the

time to reach 15 is much longer for the random map. For the 0, 1 map (the black bars) 15

is a fixed point most of the time and 0 is never a fixed point.

One reason for the difference in qualitative behavior is that the Wagner map has an
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antisymmetric property: σ(W (−s(t))) = −σ(Ws(t)) = −s(t + 1). To take this into account

we generated random maps of {0, 1, . . . 15} into itself with φ(15) = 15 and φ(15 − x) =

15 − φ(x). This reduced the discrepancy between the random map and the Wagner map.

Antisymmetry dictates that 3 can never be the limiting fixed point since we start at 12,

but 4, 8, 13, and 14 more frequently occur as limits in the Wagner system compared to the

antisymmetric one. The two antisymmetric systems have a similar distribution of the time

to reach 15. This is due in part to the fact that the states 0 − 7 are the mirror images of

states 8−15 for these systems so if a fixed point is to be reached at all it must happen before

8 steps. For the 0, 1 map the time to reach 15 is almost always 1 or 2, and 15 is reached on

average faster than with the Wagner map, see Fig. 1(b). After evolving the 4 × 4 matrices

as explained in a later section, the probability of reaching the fixed point 15 in fewer time

steps increases. Both the Wagner and the random antisymmetric system share a lack of

long period orbits of odd length. Indeed, a periodic orbit of length 9 is impossible under an

antisymmetric map because its reflection would be a second disjoint periodic orbit. Periodic

orbits of length 7 are not ruled out by antisymmetry but do not occur for the Wagner map.

The size of periodic orbits in the 0, 1 map is with high probability 2 or 3, while sizes 4 to

10 are less likely.

3 Population Dynamics

For simplicity, we will describe the simulations for the 4×4 case. We consider three different

evolutionary simulations. For all three, we assume the Wagner mapping for the network
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dynamics and for comparison in one of the scenarios we apply the 0, 1 map.

In the first simulation, which is similar to the approach of Wagner (1996), we have a fixed

optimum phenotype, which without loss of generality we can suppose is Sopt = (1, 1, 1, 1). To

generate the founding population, we generate 10, 000 random matrices with entries that are

independent and uniformly distributed on [−1, 1], and flip the sign of each row (if necessary)

so that we have 15 = (1, 1, 1, 1) as a fixed point. To see if this matrix will be included in the

initial population we iterate starting from 12 = (1, 1,−1,−1) and see if there is convergence

to the fixed point 15 = (1, 1, 1, 1). The rest is like a Wright-Fisher model: To create the

(n + 1)th generation, we randomly pick an individual (matrix) from the nth generation. In

each row with probability 1/4 we mutate one randomly chosen entry, and we replace that

entry by a uniform(−1, 1) random number. After mutation, we check if the individual is

developmentally stable and if its fixed point is Sopt = 15 . If so, then it is included in the

next generation. We continue this process until we have 10,000 individuals for the (n + 1)th

generation.

The model of Siegal and Bergman (2002) differs from the first simulation in two impor-

tant ways: they have selection for convergence but not to a predefined limit and reproduc-

tion occurs with recombination. In our version of their situation, to generate the founding

population, we generate a random matrix with entries that are independent and uniformly

distributed on [−1, 1], and that starting at 15 = (1, 1, 1, 1), reaches a fixed point. Again this

starting point can be chosen without loss of generality. Once this matrix has been found,

we clone it 10,000 times. To create the (n + 1)th generation, we randomly pick two indi-
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viduals (matrices) from the nth generation. To simulate recombination, we randomly pick

rows from these two matrices (with equal probability) to create a child. Once the child has

been made, we mutate at most one entry in each row with probability .1/4 = 1/40 ( we

use the same mutation rate as Siegal and Bergman (2002), .1 per matrix ), and we replace

that entry by a uniform(−1, 1) random number. After mutation, we check if the individual

is developmentally stable (i.e., if the iteration still reaches a fixed point). If it does, then

it is included in the next generation. We continue this process until we have the desired

number of individuals for the (n + 1)th generation. This simulation was done using both

Wagner map and the 0, 1 map. When we use the 0, 1 map, the only differences are the

mapping and the state space. For the 0, 1 map, the sign function is 0 when (WS)i (the sum

of all regulatory effects on gene i) is less than zero, and the sign function is 1 when (WS)i is

greater or equal to zero. The state space (phenotypic states) are now vectors whose entries

are ones and zeros instead of ones and negative ones.

To interpolate between the first two scenarios, we will also consider a system with se-

lection for convergence, but not to a predefined limit, and reproduction occurs without

recombination.

The simulations above have some minor differences from the simulations by Wagner

(1996) and Siegal and Bergman (2002). One significant difference is that in Siegal and

Bergman (2002), instead of using the sign function to determine the next state, they use a

sigmoidal function (2). Since the state space is continuous, they need a criterion to determine

when a fixed point has been reached. They average the distances between S(θ) and S(t) for
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θ = t− τ, .., t, where S(t) is the average over the last τ = 10 time steps. When this quantity

is less than ε = 10−4, then a fixed point is considered to have been reached. Individuals that

do not reach an equilibrium are assigned fitness zero.

4 Markov chain model

To gain further insight into the structure of the Wagner map, we will look at the simplest

nontrivial case. In the 2×2 we can explicitly draw out what the trajectories on the {−1, 1}2

state space will look like. Figure 2 has all the possible types of systems and how many of

each type occur (by permuting the positions of orbits and fixed points while still keeping

the system antisymmetric). The antisymmetry is geometrically an invariance through the

center of the square whose corners represent the states.

The total number of systems that are possible is determined by a particular choice of sign

of the quantities wi1 ± wi2 for i = 1, 2 because the form of Wagner’s map means that these

quantities determine what the mapping does to (1, 1) and (1,−1), which with the asymmetry

property specifies the full dynamics. For example any system whose matrix entries satisfy

w11 + w12 > 0, w11 − w12 > 0, w21 + w22 > 0 and w21 − w22 > 0 will map (1, 1) → (1, 1) and

(1,−1) → (1, 1). This leads to a geometrical way to categorize such systems since the first 2

inequalities restrict to the intersection of two half planes in the (w11, w12) plane, see Figure 3

and the second two inequalities restrict to a similar region in the (w21, w22) plane. Using this

counting procedure there are 16 possible systems in all because there are 4 distinct regions

in the (w11, w12) plane times another 4 in the (w21, w22) plane. Suppose we have a network
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with matrix W , and we regard its (w11, w12) entries and (w21, w22) entries as points in two

planes (separate copies of R2). As already mentioned, it is enough to know what the signs of

wi1 ±wi2, i = 1, 2, are in order to specify the dynamics completely. Those sign combinations

place the points representing each row in a particular sector of the (wi1, wi2) planes.

Now consider what happens when a mutation occurs on this network: mutations are

independent so the effect on row 1 and row 2 of the matrix can be considered separately.

With this assumption it is seen that if row i is affected by mutation, the point representing

the row will be translated in the wi1 or wi2 direction, i.e. parallel to the coordinate axes.

There are two possibilities at this stage: either the new point still lies within the same sector,

and therefore the network keeps the same dynamics, or it leaves the sector which means it

has switched to become a different dynamical system. For a particular example, consider a

network in which wi1 ± wi2 are > 0. The sector that row 1 belongs to is shown in Figure

3 (and of course a similar picture exists for row 2). The possible effects of mutation are

depicted by the arrows.

To simplify the situation we suppose that there are K possible values for each entry in

the matrix and that mutations are uniform over the set of possible values. This way we can

write down quite easily a transition probability that gives the effect of the mutation step on

the first row of a matrix:

p(w11, w12; w11, w12) = 1 − 2µ

p(w11, w12; w
∗

11
, w12) = µ/K
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p(w11, w12; w11, w
∗

12
) = µ/K

where µ is the probability of mutation. To make the notation more compact we will write

x for the current state (w11, w12) and y for the state after a possible mutation. Since a

mutation can take us to a nonviable state we have
∑

y p(x, y) < 1, where the sum is over all

states y in the optimum phenotype region (the neutral network). In an infinite population

in which the initial state consisted of a fraction µ(x) of matrices with row 1 equal to x, the

state after one time step would be

∑

x µ(x)p(x, y)
∑

x,y µ(x)p(x, y)

and the state after time n would be

∑

x µ(x)pn(x, y)
∑

x,y µ(x)pn(x, y)
(3)

where n is the nth power of the transition probability. Being a symmetric nonnegative

matrix, see e.g., Seneta (1973), as n → ∞

pn(x, y) ∼ λnu(x)u(y)

where λ is the largest eigenvalue and u is the associated eigenvector. Using this with (3) we

see that asymptotically the population becomes distributed according to u(y)/
∑

x u(x).
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This result was derived earlier by van Nimwegen et al. (1999) page 9717. In that work,

formulas are derived for the proportions of the population on nodes of the neutral network

in equilibrium. This corresponds to the stationary distribution of our Markov Chain model.

The equilibrium equations of that model are equivalent to ours where we identify the largest

eigenvalue as the proportion of individuals remaining on the network after one time step

(one generation).

The eigenvector does not depend on the mutation rate, only the convergence rate does.

To see this let A be the matrix given by the transition probabilities above and note it can

be written as (µB + I) where I is the identity matrix and B is a matrix independent of µ.

If u is an eigenvector of A with eigenvalue λ(µ) then Au = (µB + I)u = λ(µ)u so

Bu =
λ(µ) − 1

µ
u

If we change the mutation rate from µ to θ, then u will be an eigenvector with eigenvalue

θ
λ(µ) − 1

µ
+ 1

Thus the family of eigenvectors stays the same and all the matrices have the same dominant

eigenvector. Again, this result can be found in van Nimwegen et al. (1999), see equation [6].

Here we have restricted our attention to N = 2 for simplicity. The analysis above can be

extended to discretized N ×N networks, or using the theory of Harris chains to our original

continuous chain.
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Figure 4a gives the dominant eigenvector calculated from the transition probability p.

Note that, as one would expect, the distribution has smaller probabilities near the bound-

aries, since matrices lying near the boundaries of developmental stability are more sensitive

to mutations than those further away. This feature that the evolved ensemble tends to have

fewer members near the boundaries is a concrete visualization of what is described in De

Visser et al. (2003), “ A population that is mostly concentrated in the interior of wide parts

of the plateau will be much less sensitive than a population that is distributed over the nar-

rower parts, where mutations easily push individuals over the edge.” In van Nimwegen et al.

(1999), this corresponds to the highly connected region of the neutral space. The individuals

in the interior of the triangular region are connected to many same phenotype neighbors by

single mutation moves; ones at the narrow part of the triangular region nearest the origin

have the fewest neighbors in the neutral network. Figure 4b gives the distribution of w11

and w12 after 200 generations for our first simulation (selection for (1, 1) as an optimum and

no recombination). The distributions have been normalized such that the total probability

equals 1 and we average over 1000 runs. Figures 4c and 4d show what happens when we

reduce the mutation rate by a factor of 10. Figure 4c is the distribution after 200 generations.

Since the mutation rate is reduced, we do not see the concentration of probability in the

interior after this time. However by running for 10 times longer (2000 generations), Figure

4d, we recover a distribution which is similar in the higher mutation rate case.

This is expected given the independence of the dominant eigenvector from mutation rate

shown above. There is one caveat with this result – it does not hold if the product of the
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population size and the mutation rate, µ, is small. In that case the population becomes

concentrated at one point, very few offspring are lost to mutation, and all viable points are

visited with equal probability. For more discussion of this point, see the section on finite

population effects in van Nimwegen et al (1999).

4.1 Recombination

Consider the N = 2 case with recombination and selection only for developmental stability.

As described in 2 × 2 networks, there are sixteen dynamical systems possible depending on

the signs of the sums and differences of rows in a given network matrix. The set of dynamical

systems partitions into those that starting from (1, 1) converge to a fixed point and those that

end up in periodic orbits. The second case corresponds to being developmentally unstable,

and we can ask whether moving away from these genotypes during simulated evolution

naturally leads to a more robust genotype among the developmentally stable networks.

To examine this we have studied by simulation the fraction of a population of networks

that have a given sign combination after evolution, where the initial state is chosen to be

(1,1). In Table 1, −+ is short for wi1 + wi2 < 0 and wi1 − wi2 > 0 where i = 1, 2 is the row

number. The left margin gives the sign combinations for row 1 and the top margin gives the

sign combinations for row 2. So the combination (+-,-+) can be read as the regions that

satisfy: w11 + w12 > 0 , w11 − w12 < 0 and w21 + w22 < 0 ,w21 − w22 > 0. This combination

has a zero in the table since starting from (1, 1) the system moves into a periodic orbit

and so will never be developmentally stable. The four nonzero entries that lie in the first
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two rows and first two columns of the table have (1, 1) as a fixed point while the other two

have (1,−1) as their fixed point. As can be seen the combination (++, +−) is the most

robust followed by (++, ++) and (+−, +−) since they make up the largest percentages of

the evolved population, 54.6%, 14.9% and 16.4% respectively. Furthermore, these prevalent

combinations all have path lengths of zero (starting from (1, 1)). We can get a picture of

why (++, +−) is the most robust if we consider that after a recombination event, typically

one row of the parent matrix will be swapped with a completely random one. Consider a

matrix that has ++ as its first row: during recombination, if its second row gets swapped

(i.e. we move horizontally along Table 1), there is only a 1 in 4 chance the child will be

developmentally unstable. (Compare with the other sign combinations for row 1 which lead

to developmental instability more frequently). Similarly it is clear that the sign combination

+− for the second row is optimal. Therefore the most robust network to recombination

events should have the combination (++, +−) as is observed. We also observe that under

selection pressure for developmental stability, a high proportion of the evolved networks have

their initial state and limiting fixed point being equal i.e. they have a path length of zero.

For the 0, 1 map the regions are more complicated. For N = 2, the limiting fixed points

starting from (1, 1) are (1, 1), (1, 0) and (0, 1). The regions where the individuals are viable

are w11 + w12 ≥ 0 if one wants (1, 1) to be a fixed point. The regions w11 + w12 ≥ 0 and

w21 + w22 < 0 and w11 ≥ 0 and w21 < 0 in order to have (1, 0) as a fixed point. To have

(0, 1) be a fixed point we need w11 + w12 < 0 and w21 + w22 ≥ 0 and w22 ≥ 0 and w12 < 0.

After simulated evolution we have 79.1% of the matrices have (1, 1) as a fixed point, 10.4%
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of the matrices have (1, 0) as a fixed point, and 10.4% of the matrices have (0, 1) as a fixed

point.

5 Path length and probability of viability for N = 4, 7, 10

In higher dimensions it is impossible to visualize the distribution of even one row, so we

instead investigate statistics associated with the mapping. We compute the mean path

length at each time point for each run and then take the average over the number of runs.

Path length is the number of steps that the individual takes to reach an equilibrium (fixed

point), and a run simply means that a population of networks has been evolved for a fixed

number of generations which is 200 for the first simulation, and 1500 for the other two, which

have a mutation rate that is 10 times smaller.

In all three simulations, for all values of N , the path length gets smaller with time. Our

result in Figure 5a with N = 10 is similar to the one in Wagner (1996). Bergman and Siegal

(2002) have longer path lengths than we do in 5c because they have to wait at least ten

iterations (their τ) to be able to compute S(t), which is an average of the expression levels

in the time interval (t − τ, ..., t), and must wait longer for the average to be within 10−4 of

its limit.

When there is selection for convergence but not to a particular optimum then in the

absence of recombination path lengths are larger (see 5b), but are reduced dramatically by

recombination. Note that the path length for N = 4 is close to zero, i.e., the starting point

is often a fixed point. This phenomenon cannot be observed in the Bergman and Siegal
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(2002) set-up due to their definition of convergence time. Figure 5d shows the results for the

path length for the 0, 1 map. The initial path length is a lot smaller than for the Wagner

map. This is expected since the total number of fixed points for the 0, 1 map is bigger. If

we generate a million random matrices the percentage of fixed points reached starting from

15 is 49.8%, 40.1%, 32.3% for N = 4, 7, 10 respectively for the 0, 1 map. However, for the

Wagner map the number of fixed points reached is 22.5%, 12.1%, 7.1% for N = 4, 7, 10.

The second measurement we take is the probability of being viable after mutation, which

quantifies the degree of canalization. In the simulation with selection for a particular op-

timum, we perturb the evolved matrices (mutation of one single entry in each matrix) and

check whether the matrix still has the desired fixed point. When there is selection for con-

vergence but not to a particular optimum, we check whether the evolved matrices still reach

a fixed point after being perturbed. Figure 6 shows that the probability of being viable after

mutation in all simulations increases as the number of generations and the limit is larger

for larger N . Thus as, Wagner (1996) and Siegal and Bergman (2002) have seen, canaliza-

tion increases with complexity. (They keep N fixed at 10 and vary the fraction of nonzero

entries.) For the 0, 1 map, the probability of being viable starts at a pretty high value,

increases with generation number and then levels off.

6 Discussion

We have examined a model of the evolution of a population of genetic networks that extends

earlier work of Wagner (1996) and Siegal and Bergman (2002), who investigated particular
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cases of the model by simulation. The aim of this investigation is obtain a more thorough

understanding of the properties of the model, in order to better understand the conclusions

that can be drawn from the observed behavior. As in previous work, we find that the

networks evolve to be more robust. We find these conclusions in Wagner’s system with no

recombination and selection for convergence to a particular optimum (stabilizing selection),

in Siegal and Bergman’s system with recombination and selection for convergence but not to a

particular limit (developmental stability), as well as in a hybrid model with no recombination

and selection for convergence but not to a particular optimum.

There are differences in the degree of canalization under the three schemes. As Azevedo

et al. (2006) have pointed out, sexual reproduction and the accompanying recombination

enhances canalization. However, the qualitative behavior of our three models are similar

indicating that the evolution of robustness, is itself a robust conclusion. We found also

that the evolution of robustness did not depend on our choices of mapping for the network

dynamics. The reason for the evolution of robustness is easy to understand. Robust systems

are less sensitive to mutation and hence have a larger number of viable offspring. Thus

the selection for robustness is simply selection for greater fecundity, as Siegal and Bergman

(2002) remark on page 10530 in their results and discussion.

We also observe, as Wagner (1996) and Siegal and Bergman (2002) did previously, a

reduction in the mean length of the path to equilibrium, since longer paths are more easily

disturbed by mutation. A second by product of mutational robustness is the presence of

negative epistatic interactions observed by Azevedo et al. (2006). The equilibrium distribu-
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tion of the model concentrates on configurations that are less easily harmed by mutation, so

mutants will on the average experience a greater damage by a second mutation.

While many of our conclusions are similar to earlier work, a few aspects of our work

are new. To better understand the impact of the population dynamics on the properties of

individual networks, we generated an ensemble of networks with either: a random dynamical

mapping, a random antisymmetric dynamical mapping or random Wagner-type mapping.

The distribution of the fixed points reached and the lengths of periodic orbits of these

randomly generated maps provide a baseline with which to compare the properties of the

evolved systems.

A second technical point is that we have returned to the original model of Wagner (1996)

in order to have dynamical systems with state space {−1, 1}d. These systems are trivial to

analyze since they can only have fixed points or periodic orbits. In addition, they allow us to

define the time, needed to reach the fixed point without averaging in time which artificially

inflates the convergence time and obscures the patterns in Figure 5.

The simple nature of the dynamical systems allows us to recognize the model as a neu-

tral network, i.e., a collection of mutually neutral genotypes which are connected by single

mutational steps, a framework that has earlier been used in the study of RNA secondary

structure, see e.g., van Nimwegen, Cruthchfield, and Huynen (1999) and Ancel and Fontana

(2000). This viewpoint allows not only a convenient mental picture of the “genotypic land-

scape” on which the system evolves, but also enables us to use results from Markov chain

theory to analyze the asymptotic behavior of the model in an infinite population, which is
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determined by the dominant eigenvector.
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Figure 1: Comparing the Wagner map, the antisymmetric map, the random map, and for
(a)-(c) we include the 0, 1 model. a. Frequency of fixed points, b. Frequency of time steps to
reach 15, c. Frequency of periodic orbits (by size), d. Frequency of reaching 15 (at different
time steps) evolved refers to networks that were evolved with no recombination and selection
for an optimum. The initial state is 12.
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Figure 2: An enumeration of all the possible dynamical systems of the Wagner type for a 2
gene interacting network. If a network is generated completely randomly it will be of one of
these forms with the probability given.
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Figure 3: A particular discretization of the (w11, w12) where w1i ∈ {−.7+0.1m|m = 0, .., 14}.
Since the other points have fitness zero, we keep track of the states within the triangular
region in the G matrix only. However transition probabilities are evaluated on the basis that
a state can move to anywhere in the square moving in a horizontal or vertical direction after
a mutation.
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Figure 4: The distribution of w11 and w12 under different conditions. a. The stationary
distribution given by the dominant eigenvector. b. The empirical distribution of w11 and
w12 after 200 generations, c the empirical distribution with reduced mutation rate by a
factor of ten at generations 200, d. same as (c) but at generation 2000. We see that the
combinations with higher probability are away from the boundaries since individuals with
those genotypes are more immune to mutations.
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Table 1

Row1\Row2 ++ +− −+ −−

++ 0.149260 0.546570 0 0.047830

+− 0.040460 0.163990 0 0

−+ 0 0.051890 0 0

−− 0 0 0 0

28



0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

Generation

P
at

h 
Le

ng
th

Selection & No Recombination

 

 

N=10
N=7
N=4

(a)

0 500 1000 1500
0

1

2

3

4

5

6

7

8

9

Generation

No Recombination & No Selection for an Optimum

 

 

N=10
N=7
N=4

(b)

0 500 1000 1500
0

1

2

3

4

5

6

7

8

9

Generation

P
at

h 
Le

ng
th

Recombination & No Selection for an Optimum

 

 

N=10
N=7
N=4

(c)
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Figure 5: Path length defined as the number of steps that it takes to reach a fixed point.
Population size is 10000 and number of runs is 200. (a) An asexual population with selection,
the fixed point has to be the optimum state. (b) An asexual population with no selection
for an optimum, (c) a sexual population with no selection for an optimum, and (d) As in (c)
but we used the 0, 1 version of the model.
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Figure 6: Probability of survival defined as being developmentally stable after one pertur-
bation. Population size is 10000 and number of runs is 200. (a) An asexual population with
selection, the fixed point has to be the optimum state. (b) An asexual population with no
selection for an optimum, (c) a sexual population with no selection for an optimum, and (d)
As in (c) but we used the 0, 1 version of the model.
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