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ABSTRACT 

The symmetric island model with D demes and equal migration 

rates is often chosen for the investigation of the consequences of 

population subdivision. Here we show that a stepping stone model has a 

more pronounced effect on the genealogy of a sample. For samples from a 

small geographical region commonly used in genetic studies of humans 

and Drosophila, there is a shift of the frequency spectrum that decreases 

the number of low frequency derived alleles, and skews the distribution of 

statistics of Tajima, Fu and Li, and Fay and Wu. Stepping stone spatial 

structure also changes the two locus sampling distribution, increases both 

linkage disequilibrium and the probability that two sites are perfectly 

correlated. This may cause a false prediction of cold spots of 

recombination and may confuse haplotype tests which compute 

probabilities based on a homogeneously mixing population.  
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INTRODUCTION 

Homogeneously mixing populations of constant size are a convenient setting to 

develop the theory of population genetics. However, when one wants to understand 

patterns observed in data, one must consider the effects of population growth, 

bottlenecks, and population subdivision. When the consequences of population 

subdivision are investigated, symmetric island model with D demes and equal migration 

rates is the usual choice, and the case of two demes is especially popular. The island 

model is easy to analyze mathematically due to the fact that if two lineages are not in the 

same deme, then their relative location is not important. However, this has the unrealistic 

consequence that after one migration event, the lineage is distributed uniformly over the 

species range. 

An alternative approach to modeling spatial structure which does not suffer from 

this defect is the stepping stone model. In this paper, we will investigate the 

consequences of modeling space as a two dimensional stepping stone model in which 

there is an L by L grid of colonies and migration only to neighboring colonies. The 

migration scheme is very simple, however, it results in what Wright called isolation by 

distance. In other words, it takes a number of migration events for the lineages to spread 

across the system. As we will see, this feature, which is certainly present in Drosophila 

and early human populations, causes a dramatic change in the coalescence structure of 

lineages. 

The reason for this is intuitively clear. At small times the lineages have not had a 

chance to spread across the population, so the effective population size is reduced. The 

coalescence rate is increased reducing the number of low frequency derived alleles, 



 5

skewing the site frequency spectrum, and increasing linkage disequilibrium. These effects 

occur in the island model as well, two lineages sampled from one deme have an increased 

coalescence rate until one of them migrates, at which point they behave like a random 

sample from the overall population. In contrast, as we will later explain, in the stepping 

stone model the effective population size increases roughly linearly in time. 

The main point of this paper is to argue that spatial structure in the form of the 

stepping stone model has a different effect than the symmetric island model and can have 

a much greater impact on genealogies, so it should also be considered when one wants to 

asses the impact of spatial structure on estimation procedures or statistical tests. We begin 

by reviewing theoretical results of Cox and Durrett (2002), and Zähle, Cox, and Durrett 

(2005) for the coalescence time of a sample of size n, and contrast these results with the 

corresponding facts about the symmetric island model. The strange nonlinear time scaling 

needed to reduce genealogies in the stepping stone model to Kingman’s coalescent, 

indicates that there is a strong effect on commonly used statistics, but the exact nature of 

the changes are difficult to analyze mathematically. Because of this, we turn to 

simulations to demonstrate the effect of stepping stone spatial structure on the decay of 

linkage disequilibrium,  the site frequency spectrum, and the distribution of test statistics 

based on the site frequency spectrum. 

THEORETICAL RESULTS 

Wakeley, with various co-authors, has investigated the island model when the 

number of demes is large. Let N be the number of diploid individuals per colony. 

Wakeley (1998) has shown that for a scattered sample in which we get at most one 
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sequence from each deme, in the limit as D →∞ the genealogy of a sample of size n is 

the same as that of a homogenously mixing population of size.  

                           11eN ND
M

⎛ ⎞= +⎜ ⎟
⎝ ⎠

   where    M = 4Nm.                               (1) 

This formula for Ne is the same as the one of Nei and Takahata (1993). 

The reason for the simplification for large D is easy to understand. At most times 

all lineages are in different demes, their actual locations are irrelevant, and the 

coalescence times will have the lack of memory property that characterizes the 

exponential. If we sample n chromosomes from one deme then there is an initial period 

called “scattering phase,” which ends when all of the surviving lineages are in different 

demes. This initial phase is short compared to the coalescence time, so it is equivalent to 

a random reduction in the sample size. For more details, see page 1864 of Wakeley 

(1999). 

Lessard and Wakeley (2004) have recently extended this analysis to the two-locus 

ancestral graph in a subdivided population. Wakeley and Lessard (2003) have applied 

these results to the study of LD in humans. They found that their model with a large 

number of demes fit the data for humans well (see Figure 2 on page 1049), in contrast to 

Reich et al. (2002) who did not get a good fit from the two island model. 

The stepping stone model has been extensively studied since its introduction by 

Kimura in the 1950s. There have been many important contributions by Kimura and 

Weiss, Malécot, Maruyama, Nagylaki, Crow and Aoki, Slatkin, and others. Here we will 

focus on recent results of Cox and Durrett (2002), and Zähle, Cox, and Durrett (2005), 

referring the reader to the 2002 paper for more on the historical development. 
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Cox and Durrett (2002) investigated the Moran model in which each individual is 

replaced at rate 1, replacement comes from a different deme with the migration 

probability m (called ν by Cox and Durrett), and the probability a migrant to x comes 

from y is q(y-x) where q is a probability distribution with finite range that has the same 

symmetries as the two dimensional lattice. This symmetry assumption implies that the 

two coordinates are uncorrelated and have the same variance  σ2. The grid of colonies is 

an L by L square and the difference y-x is computed modulo L, i.e., we have periodic 

boundary conditions that identify opposite edges of the square. This assumption is a 

mathematical convenience that has been used in many previous studies, but is not 

necessary. The proofs in Cox and Durrett (2002), and Zähle, Cox, and Durrett (2005) 

extend easily to a flat universe with migration out of the system suppressed or reflected 

back in, and the qualitative behavior is the same.  

Theorem 4 of Cox and Durrett (2002) shows that if we pick any two 

chromosomes and / logNm L →∞   as L → ∞ then the coalescence time divided by 2NL  

converges to an exponential distribution with mean 1. In words, if the per colony 

migration rate, Nm,  is much larger than log L the system is essentially homogeneously 

mixing. This is a strong migration limit which corresponds to results of Nagylaki (1980) 

and Notohara (1993) for the island model. It should also be compared to the remark of 

Kimura and Maruyama (1971) that “marked local differentiation of gene frequencies can 

occur if 1Nm < ” while “if 4Nm ≥ the whole population tends to behave as a panmictic 

unit.” As we can see from the mathematical result, the cutoff between the two behaviors 

is not constant somewhere between 1 and 4, but depends on the number of demes and 

increases like log L. 
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To state results for the case in which the local population size N is not much 

larger than log L, we need the following rescaled migration rate  

 22
log

Nm
L

πα σ= ⋅  

This definition may look mysterious but as we will see α is the natural rescaled migration 

rate for the stepping stone model, which is the analogue of M = 4Nm for the island 

model. Note that in the stepping stone model the variance σ2 joins the product Nm to give 

the composite parameter that describes the strength of migration, but in contrast to the 

island model this quantity is divided by log L. The 2π which comes from the central limit 

theorem is included to make the next formula simple.  

Theorem 5 of Cox and Durrett (2002) shows that two chromosomes sampled at 

random from the population have a coalescence time that is asymptotically, as L → ∞, 

exponential with mean 

 
2

2
2

log 1(1 )
2
L L NL

m
αα

πσ α
+

+ =  

This result is similar to one found by Barton et al. (2002) in a model with a grid of 

colonies with the local alleles frequencies modeled by diffusion processes. As stated in 

(9) of  Charlesworth, Charlesworth, and Barton (2003) if the density of individuals ρ = 1 

the mean coalescence time of two individuals is 

 
2

2
2

log( / ) 2
2

L KL Lσ
πσ

+  

 
where K is a constant. The second term and the K/σ inside the logarithm are there to make 

the approximation more accurate for small L. They are not important as L → ∞, so they 

should be dropped when comparing with our asymptotic result, but even with this there 
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remains the difference of the factor of 1+α. It is difficult to say what causes this 

difference since the result cited by Charlesworth, Charlesworth, and Barton (2003) and 

attributed to Barton et al. (2002) does not appear in that paper.  

Theorem 2 in Zähle, Cox, and Durrett (2005) extends the result for the 

coalescence time of two chromosomes by showing that a sample of n chromosomes 

chosen at random from the population has the same genealogy as a sample of size n from 

a homogeneously mixing population of size 

                                            2 11eN NL
α

⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                                 (2) 

Note that this has the same form as Ne in the island model when the number of demes D 

= L2  and the scaled migration rate M = α. To illustrate the use of these formulas, 

consider our 10 x 10 grid with migration to nearest neighbors so L = 10 and σ2 = ½. If the 

local population size is N = 25 and we choose m = 0.1 so that 4Nm = 1 then α = 

π(0.25)/log(10) = 0.341 and Ne = 2500(1.341)/0.341 = 9829 versus the actual population 

size of 2500. 

In many genetic studies, samples are not chosen at random from the population as 

a whole. For example, one of the samples in Sabeti et al. (2002) consists of 73 Beni 

individuals who are civil servants in Benin City, Nigeria. To capture this type of local 

sample in our framework, we assume that the n chromosomes are sampled at random 

from a Lβ by Lβ square of colonies. Theorem 3 in Zähle, Cox, and Durrett (2005) shows 

that we get the ordinary coalescent after a nonlinear time change in which times 

2 2/ 4L mγ π σ  with 1β γ≤ ≤  correspond to time log(( ) /( ))γ α β α+ +  in the coalescent, 

and then time proceeds at the usual linear rate for a population with the Ne given in (2). 

Here, we have changed  Zähle, Cox, and Durrett’s (2005) 2m in the denominator to 
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4πmσ2. This does not affect the limit theorem, but as we will see, it makes for a better 

approximation. 

To help explain the time change, we note that the coalescence rate at time s = 

2 2/ 4L mγ π σ  (that is, 2log(4 ) / 2 logm s Lγ π σ= ) is 

 1 1log
2 log

d
ds s L

γ α
β α γ α

⎛ ⎞+
= ⋅⎜ ⎟+ +⎝ ⎠

 

 
To make a connection with simulation results in Figure 4 of Wilkins (2004) we have 

graphed 1 over the coalescence rate versus time s in Figure 1. This shows that the 

coalescence occurs much more rapidly in the initial stages of the stepping stone model 

compared to a homogeneously mixing population. The reason for graphing 1 over the rate 

is that this quantity is almost linear in time. This can be seen intuitively by noting that at 

time s, the central limit theorem says that lineages will be spread over a region with 

radius of order s  and hence area of order s, so the effective population size is of order 

s. 

 The remarks in the previous paragraph apply to times s = 2 2/ 4L mγ π σ  with γ ≤ 1. 

At times ≥ L2/4πmσ2 the lineages have had time to spread across the entire space. At this 

point the coalescence time, which is of order 2 logL L , is much larger than the time, of 

order L2/mσ2, needed for the a random walk on an L by L square that jumps at rate 2m and 

has variance σ2 to equilibrate in the uniform distribution (Cox and Durrett 2002). Thus 

the relative positions of lineages are unimportant and the system behaves as if it were 

homogeneously mixing. Since we have changed  Zähle, Cox, and Durrett’s (2005) 2m in 

the denominator to 4πmσ2, 1 over the coalescence rate increases until it becomes constant 

in the second regime, and the transition is continuous. 
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Zähle, Cox, and Durrett (2005) were able to compute various quantities for 

samples of size 2 under the infinite sites model including the expected number of 

pairwise differences and the probability for no coalescence before recombination for two 

loci with a per generation recombination probability r. They showed that the latter 

quantity decayed more slowly in the stepping stone model compared to a homogenously 

mixing population, but it is hard to relate this to commonly used measures of linkage 

disequilibrium.  

The limit theorem of Zähle, Cox, and Durrett (2005) is difficult to use for 

computations because the coalescence rate changes in time. For the ordinary coalescent 

one can easily compute the correlation between coalescence times at two loci for samples 

of size two by considering whether recombination or coalescence occurs first. One can 

find this result of Griffiths (1981) explained on pages 80-83 of Durrett (2002). However, 

in the situation of Zähle, Cox, and Durrett (2005) one must also consider the time at 

which the event occurs, and one can no longer obtain the answer by solving three 

equations in three unknowns. Thus, to investigate the effect of stepping stone population 

structure on samples of size n > 2, we turn to simulations. 

METHODS 

Model Simulation Parameters and Sampling Schemes: We simulated 

coalescent models with constant recombination and mutation rates across the locus in 

homogeneously mixing, island, and stepping stone models using Hudson’s ms program 

(Hudson 2002). We fix the physical size of our locus to 100 kb and set both mutation and 

recombination rate to be 10-8 /nucleotide/generation. Our sample size is fixed for all 

models at n = 40 chromosomes. In the spatial simulations there are 100 demes and m is 
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the probability that the new individual is a new migrant. In the stepping stone model, 

space is a 10 by 10 grid with periodic boundary conditions and with migration to the four 

nearest neighbor migration with equal probabilities.  

In order to try to minimize the differences between the spatial structures, we use 

Ne formulas from Nei and Takahata (1993) and Zähle, Cox, Durrett (2005) given earlier 

as (1) and (2) to determine the number of diploids per colony, N so that the computed Ne  

for the population is roughly 10,000. Table 1 lists the scaled migration rate (4Nm), 

number of diploids per colony (N) , and computed effective population sizes (Ne). The 

definition of effective population size we are using here is ½ the average coalescence 

time of two lineages, so this makes the mean number of pairwise differences the same. 

In order to understand the effect of sampling on the statistics, we employ two 

different sampling schemes for the island and stepping stone models: (i) Chromosomes 

are randomly selected from the population (random sampling). (ii) 40 chromosomes are 

sampled from one colony in the stepping stone model, or from one deme in the island 

model (local sampling). The second sampling strategy corresponds to sampling from one 

population. 

Decay of Linkage Disequilibrium: Following Pritchard and Przeworski (2001), 

we compute the square of the correlation coefficient, which for two loci with two alleles 

A and a, and B and b is 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

p AB p A p Br
p A p a p B p b

−
=  

 
for all pairs of segregating sites for which the minor allele frequency is at least 0.2. In 

order to average results over the replications, we create bins of size 1000 (0.01 times the 

length of our region) based on interSNP distance, and average the r2 observations in each 
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bin. The number of simulations used to compute averages was 400,000. In addition to 

investigating the mean values of r2 , we examine the distribution of r2 values for distances 

in the bins [0.1,0.11], [0.3,0.31], and [0.5,0.51], where the distance is measure relative to 

the length of the locus. That we are examining r2 for loci separated by roughly 10, 30, 

and 50Kb. The number of simulations used to determine the distribution of r2 was 

350,000.  

Site Frequency Spectrum: Since the alignment and ancestral state are known, 

we can compute for each SNP the observed number of chromosomes i (1 ≤ i ≤ 39) that 

have the mutant nucleotide. This number is then divided by the total number of 

segregating sites from all 350,000 replications, to get the site frequency distribution.  

SNP Density: We choose our physical sequence length to 10 kb. The number of 

segregating sites for 350,000 simulations was tabulated and normalized.   

Tajima’s (1989) D statistic and Fay and Wu’s (2000) H are calculated for each 

replication using Hudson’s “sample_stats” program, which is included with the ms 

program. The median, and  2.5, and 97.5 percentiles are computed over 350,000 

simulations.  

RESULTS 

To give a visualization of the impact of spatial structure on genetic data, Figure 2 

gives sample outcomes for a homogeneously mixing population, an island model local 

sample with 4Nm = 1, and a stepping stone local sample with 4Nm = 10. Notice that there 

are more SNPs and many more haplotypes in the homogeneously mixing population 

compared to the two spatial samples.  
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Decay of Linkage Disequilibrium: As Figure 3 shows, when 4Nm = 1, there is a 

large difference in the rate of decay of r2 between homogeneously mixing and the 

migration models. As expected, the stepping stone model has considerably more LD than 

the island model. When 4Nm=1, the stepping stone local sample has r2 ≈ 0.9 at a distance 

of 100kb, which is considerably larger than values observed in the human genome, but of 

course our universe is only a 10 by 10 array of colonies. The random samples have a 

faster decay of r2 than the local samples, but in contrast to the theoretical results quoted 

above, their behavior is not the same as that of homogeneously mixing population. One 

reason for this is that the sample size is n = 40, so n2 = 1600 is much larger than the 

number of demes, 100, and the assumption of the limit theorem is not justified. A simple 

calculation for 40 lineages and 100 demes shows that the probability that all lineages will 

be in separate demes is 0.000122. Using a Poisson approximation with mean 0.4 for the 

number of lineages in a deme, we see that on the average 5.26 demes will have two 

lineages.  

When 4Nm=3, values of r2 are somewhat reduced. As expected they are the 

smallest for the random samples,  and largest for the local samples. When 4Nm = 10, the 

random samples are close to the homogeneously mixing case, but the curves for local 

samples are well above the homogeneously mixing decay curve.  

Distribution of r2: Figure 4 compares the distribution of r2 for a homogeneously 

mixing population and a stepping stone local sample with 4Nm = 10, for SNPs separated 

by 10-11, 30-31, or 50-51 Kb. Not only is the mean of r2 larger in the stepping stone 

model, but there is a significant probability that r2 = 1, even for SNPs separated by 50-51 

Kb.  
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Site Frequency Spectrum: As Figure 5 shows, in the case of a random sample, 

the site frequency spectrum for island and stepping stone model with 4Nm = 1 behave 

like a homogeneously mixing population. That is, as Fu (1995) has shown, the probability 

that k members of the sample have the mutant nucleotide is c/k, where c is a constant that 

makes the probabilities sum to 1. This is the behavior expected based on the theoretical 

results for random samples discussed earlier, which show that the genealogy of a random 

sample converges to that of Kingman’s coalescent. 

 For the local samples, the site frequency spectra differ from the prediction for a 

homogeneously mixing population. We see from panels b-d in Figure 5 that both models 

have a significant reduction in the proportion of singletons, even when 4Nm=10. This 

occurs because there is a greater initial coalescence rate due to the fact that the lineages 

are sampled from only one subpopulation. The reduction of singletons presents problems 

for the use of Fu and Li’s (1993) D statistic, which looks for an excess in the frequency 

of such mutations compared to the neutral expectation. 

For 4Nm = 1 and 4Nm = 3, both models exhibit an excess of intermediate and 

high frequency derived nucleotides compared to homogeneously mixing model. When 

4Nm = 10, the discrepancy at the high frequency end is almost gone but there are 

significant differences for rare alleles.  

SNP Density: Figure 6 shows that for random samples the SNP density from both 

migration models match closely the one for a homogeneously mixing population, even 

when 4Nm = 1. For local samples the SNP density is changed in the spatial models, see 

panels b-d, with the number of SNPs shifted toward smaller values, and the shift more 

pronounced for the stepping stone model than for the island model. Note that when 
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4Nm=1, more than 35% of segments of our 10Kb segments have zero SNPs in the 

stepping stone model, compared to 5% for the island model, while this almost never 

happens in a homogeneously mixing population. The skew in the distribution persists in 

local samples from both spatial models when 4Nm=3 and even 4Nm=10. 

Tajima's D is a statistic that is constructed by subtracting estimates of the scaled 

mutation rate based on the number of pairwise differences and the number of segregating 

sites. These components are related to the last two quantities we have investigated, so we 

should not expect much difference for a random sample, but a much larger one for a local 

sample. The results reported in Figure 7 follow this pattern. The medians for the random 

samples are close to the homogeneously mixing values. However, there are significant 

changes in the upper and lower cutoffs for the local samples and  in most cases a 

dramatic shift toward positive values as shown by the changes in the median and the 

upper cutoff. This agrees with our previous observation that there is an excess of 

mutations at intermediate frequencies. In the stepping stone local samples, and to a lesser 

extent in the island local samples, this shift is accompanied by an increase in variability 

that causes the lower tail cutoffs to decrease. This is unfortunate for researchers looking  

for negative values of Tajima’s D as indications of positive selection. This use of 

Tajima’s D has also been shown to be misleading in bottlenecked populations (Thornton 

and Jensen, in press). 

Fay and Wu's H is a statistic constructed by subtracting estimates of the scaled 

mutation rate based on the number of pairwise differences and another based on the 

homozygosity of derived variants. The difference is normalized so that the H statistic has 

variance 1. The homozygosity of derived variants is influenced most by variants at 
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intermediate and high frequencies respectively. See pages 1406 and 1408 of Fay and Wu 

(2000).  Since the most noticeable affect of spatial structure is to decrease the number of 

low frequency alleles, it is not surprising to see in Figure 8 that there are no systematic 

changes in the median of the H statistic, but the major effect is to increase the standard 

deviation and to expand the interval between the two cutoffs, which can result in spurious 

rejections of the neutral model. 

DISCUSSION 

The spatial distribution of individuals in a local sample in the island model or 

stepping stone model causes coalescence to occur more rapidly in the early stages of the 

genealogy of a local sample. This shifts the site frequency spectrum from rare alleles 

toward those of intermediate frequency, and we have shown through simulation that this 

alters the distribution of test statistics of Tajima (1989), Fu and Li (1993), and Fay and 

Wu (2000). Here we have contrasted a local sample from one population with a sample 

chosen randomly form the entire population, and shown that the local sample will have 

fewer alleles. In a different direction, Ptak and Przeworski (2002) have shown that taking 

small samples from a large number of geographic locations can increase the number of 

rare alleles. 

Our simulation results have shown that stepping stone population structure 

produces a slow decay of linkage disequilibrium and dramatically increases the 

probability of perfect correlation, that is, r2= 1. This change in the two locus sampling 

distribution may cause trouble for likelihood methods, such as the ones McVean et al. 

(2004) have used to estimate recombination rates in humans. Low recombination rates 

could be assigned to intervals between markers with high correlation, when in reality this 
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is due to spatial structure. In making the last comment, we are not suggesting that when 

spatial structure is taken into account, all cold spots will suddenly become warm. 

However, the qualitative picture of recombination rate variability may be significantly 

changed. 

For a concrete example where spatial structure may have contributed to 

erroneously rejecting neutrality, we consider results of Hamblin and Aquadro (1996) for 

the glucose dehydrogenase gene based on a sample of 11 Drosophila simulans collected 

in 1984 in Raleigh, North Carolina. The only test that suggested a patterns of nonneutral 

evolution was Fu and Li’s test. In that case observing one singleton out of 26 segregating 

sites had a probability of p < 0.05 on a two tailed test, but might not be significant if one 

took into account that local sampling could itself reduce the number of singleton 

mutations. 

The effect of local population sampling in humans, particularly in European or 

North American populations may not be as dramatic, since as one goes back a few dozen 

generations the lineages disperse over a wide area. However, it could be more 

problematic when a population has occupied a small area for a long period of time. Sabeti 

et al. (2002) sample 73 Beni from Benin City, Nigeria  and sequenced a region around 

the G6PD locus. To argue that selection had acted on this locus they examined the decay 

of the extended haplotype homozygosity (EHH), i.e., the probability that two randomly 

chosen chromosomes carrying the same core haplotype were identical by descent up to 

that point. To evaluate the likelihood of the observed data, they used Hudson’s ms 

program to simulate homogeneously mixing populations of constant size, with 

exponential growth, a bottleneck, or a two island model. However, as we have shown, 
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stepping stone spatial structure can dramatically reduce the decay of linkage 

disequilibrium. 

We are not the first to have suggested that spatial structure of the human 

population may have played a role in the spurious detection of positive selection. Mekel-

Bobrov et al. (2005) and Evans et al. (2005)  in studies of ASPM (abnormal spindle-like 

microcephaly associated) and microcephalin genes that the presence of haplotypes with 

unusually large frequencies were caused by positive selection. Currat et al. (2006) argued 

that human demographic models with structure followed by population growth could 

explain the observed haplotype frequency patterns. In reply, Mekel-Bobrov et al. (2006) 

argued that bottleneck in Currat et al.’s model was unrealistically long and narrow.  

While one can debate the impact of spatial structure on genealogies that cannot be 

directly observed, there is clear evidence that some allele frequencies show pronounced 

spatial structure: for example, lactase persistence (Bersaglieri et al. 2004, Tishkoff et al. 

2007),  the CCR5-∆32 deletion which leads to strong resistance against HIV-1 (Stephens 

et al. 1998), and the Duffy blood group (Hamblin, Thompson, and DiRienzo 2002). One 

final observation that argues for the importance of spatial structure in shaping patterns of 

variability is that of Rosenberg et al. (2002), who have shown that with information about 

a large number of microsatellite loci, one can classify most of the 1056 individuals in a 

sample from 52 populations into their correct geographical regions.  

In the other direction, one might argue that patterns of nucleotide variability are 

shaped over longer time scales than microsatellites, so only recent mutations will show 

the effects of population structure. However, this paper has clearly shown that the 

“isolation by distance” in stepping stone model has a profound effect on patterns of 
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variability, even when Nm is not much larger than 1, so it should also be considered when 

one wants to assess the impact of population subdivision on estimation procedures or 

statistical tests. 
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Model                                    4Nm              N              Computed Ne   
 
Island                                         1                50                   10,000      

Island                                         3                75                   10,000 

Island                                        10               91                   10,100 

Stepping Stone                           1               25                     9,829 

Stepping Stone                           3               51                   10,083  

Stepping Stone                          10              77                     9,957  

 
Table 1. Computed effective population size and scaled migration rates for island, and 
stepping stone models with our simulation parameters.  
 
 
 
 
 
 
 
 



 26

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000

 
 
Figure 1. 1 over coalescence rate in the Zähle-Cox-Durrett result. 
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Figure 2, panel a. Homogeneously mixing data set. 
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Figure 2, panel b. Island model data set. 
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Figure 2, panel c. stepping stone model. 
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Figure 3, panel a, Decay of r2 when 4Nm=1 
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Figure 3, panel b, Decay of r2 when 4Nm=3. 
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Figure 3, panel c, Decay of r2 when 4Nm=10. 
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Figure 4, panel a, distance 10-11 Kb.  
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Figure 4, panel b, distance 30-31 Kb. 
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Figure 4, panel c, distance 50-51 Kb.  
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Figure 5, panel a, Site frequency spectrum for random samples. 
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Figure 5, panel b, Site frequency spectrum for local samples 4Nm=1.  
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Figure 5, panel c, Site frequency spectrum for local samples 4Nm=3. 
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Figure 5, panel d, Site frequency spectrum for local samples 4Nm=10. 
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Figure 6, panel a, random samples. 
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Figure 6, panel b, 4Nm=1. 
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Figure 6, panel c, 4Nm=3. 
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Figure 6, panel d, 4Nm=10. 
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Figure 7, Tajima’s D, median and 95% interval. 
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Figure 8. Fay and Wu’s H, median and 95% interval.
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FIGURE CAPTIONS 
 
 

Figure 1. Plot of 1 over the coalescence rate for our concrete example. L = 10, N = 25,     

m = 0.1, 2 0.5σ = and β = 0.2. The first phase ends at time 2 2/(4 ) 1591L mπ σ = . After 

that time the value is 9829eN = . This graph is similar to simulation results presented in 

Figure 4 of Wilkins (2004), except that he uses a logarithmic time scale which turns the 

straight line into an exponential. 

 

Figure 2. Sample data sets for (a) a homogeneously mixing population, (b) island model 

with 4Nm = 1, and (c) stepping stone model with 4Nm=10. Asterisks mark nucleotides 

that are different from the ancestral state. The numbers at the right indicate how many 

times each haplotype was observed. Each square in the triangular plot represents r2 value 

for a pair of SNPs. r2 was calculated for all pairs of SNPs and shaded according to the 

magnitude. The color scale used was a gradation from white to black, with white 

representing r2 = 0 and black representing   r2 = 1. 

 

Figure 3. Decay of r2 for (a) 4Nm = 1, (b) 4Nm = 3, and (c) 4Nm = 10. Here and in all of 

our figures, the expectation for a homogeneously mixing population is given by a line. 

Island model results are graphed with square, stepping stone results with triangles, with 

filled symbols for random samples and hollow symbols for local samples. 

 

Figure 4. Comparison of the distribution of r2  for a homogeneously mixing population 

and a stepping stone local sample with 4Nm = 10 for distances (a) 10-11 Kb, (b) 30-31 

Kb, (c) 50-51 kB 
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Figure 5. Site frequency spectra for (a) random samples with 4Nm = 1, and local samples 

with (b) 4Nm = 1, (c) 4Nm = 3, and (d) 4Nm = 10. Symbols are as described in the 

caption to Figure 3. 

 

Figure 6. SNP Density under random sampling with 4Nm = 1, and local samples with (b) 

4Nm = 1, (c) 4Nm = 3, and (d) 4Nm = 10. . Symbols are as described in the caption to 

Figure 3. 

 

Figure 7. Medians and 95% intervals for Tajima’s D statistic for our spatial structures and 

sampling schemes. 

 

Figure 8.  Medians and 95% intervals for Fay and Wu’s H for our spatial structures and 

sampling schemes. 


