The Problem

Given a population of size N, how long does it take until τ_k the first time we have an individual with a prespecified sequence of k mutations?

- Initially all individuals are type 0.
- Each individual is subject to replacement at rate 1.
- A copy is made of an individual chosen at random from the population.
- Type $j-1$ mutates to type j at rate u_j.

The malaria parasite *Plasmodium falciparum* has evolved resistance to chloroquine. This is due to two amino acid altering substitutions in PfCRT. Michael Behe in his book *The Edge of Evolution* calls such an event a chloroquine complexity cluster, or CCC. He concludes:

“There are 5000 species of modern mammals. If each species had an average of a million members and if a new generation appeared every year, and if this went on for two hundred million years, the likelihood of a single CCC appearing in the whole bunch over that entire time would only be 1 in a hundred.”
Theorem 1. If $N u_1 \to 0$ and $N \sqrt{u_2} \to \infty$

$$P(\tau_2 > t/N u_1 \sqrt{u_2}) \to e^{-t}$$

10,000 simulations of $n = 10^3$, $u_1 = 10^{-4}$, $\sqrt{u_2} = 10^{-2}$

Behe is wrong

If $N = 10^6$, $u_1 = u_2 = 10^{-9}$, waiting time is exponential $10^{7.5} = 31.6$ million years for one unspecified pair of mutations in one species.

“There are 5000 species of modern mammals. If each species had an average of a million members and if a new generation appeared every year, and if this went on for two hundred million years, the likelihood of a single CCC appearing in the whole bunch over that entire time would only be 1 in a hundred.”

References for $k=2$ result

Idea of Proof

Since 1’s mutate to 2’s at rate u_2, τ_2 will occur when there have been $O(1/u_2)$ births of individuals of type 1.

The number of 1’s is roughly a symmetric random walk, so τ_2 will occur when the number of 1’s reaches $O(1/\sqrt{u_2})$.

$N > 1/\sqrt{u_2}$ guarantees that up to τ_2 the number of 1’s is $o(N)$, so 1 mutations occur at rate $N u_1$.

The waiting time from the 1 mutation until the 2 mutant appears is of order $1/N u_1 \sqrt{u_2}$. For this to be much smaller than the overall waiting time $1/N u_1 \sqrt{u_2}$ we need $N u_1 \ll 1$.

A few details

Consider the multitype branching process in which individuals die at rate 1, give birth to a new individual of the same type at rate 1, and individuals mutate from type $j-1$ to type j at rate u_j.

The probability q that an individual of type 1 eventually has a descendant of type 2 satisfies

$$q = \frac{1}{2 + u_2} (2q - q^2) + \frac{u_2}{2 + u_2}$$

$$0 = q^2 + u_2 q - u_2$$

$$q = \frac{-u_2 + \sqrt{u_2^2 + 4u_2}}{2} \sim \sqrt{u_2}$$

The probability that an individual of type 1 eventually has a descendant of type 2, $\sim \sqrt{u_2}$.

If there were always N individuals of type 0, 1 mutants occur at times of a Poisson process with rate $N u_1$. The time τ_2 of the birth of the 1 individual that has a 2 descendant will be exponential with rate $\sim N u_1 \sqrt{u_2}$.

If $N u_1 \ll 1$, $\tau_2 - \tau_1 = O(1/\sqrt{u_2}) = o(1/N u_1 \sqrt{u_2})$.

If we wait for fixation, replace u_2 by $u_2 \beta$, where $\beta = $ fixation probability. Small surprise is time is only increased by $1/\sqrt{\beta}$.

If 1’s are mildly deleterious, which means fitness $1 - \rho \sqrt{u_2}$, instead of the usual $1 - O(1/N)$, time is increased by $1/R$ where $R = (-\rho + \sqrt{4 + \rho^2})/2$
Drosophila

Suppose a transcription factor binding site consists of 10 nucleotides. Taking 10^{-8} as mutation rate, $u_1 = 10^{-7}$ and $u_2 = (1/3) \times 10^{-8}$. $N = 5 \times 10^6$ chromosomes, so waiting time has mean $1/Nu_1 \sqrt{u_2} = 34,600$ generations or 3,460 years assuming 10 generations per year.

Nu_1 is not small, but Theorem 2 and simulations suggest this adds 25% to total = 4,325 years.

In neutral case $\beta = 1/2N$ increasing time by a factor of $1/\sqrt{\beta} = 2200$ to 9 million years.

If two fitnesses are 1 million years.

To get 1 individual of type 4, we need of order $= 5 / 2 = 2.5$.Nu_1 generations or 3,460 years assuming 10 generations per year.

Theorem 2. Suppose that $Nu_1 \rightarrow \lambda \in (0, \infty)$, $u_2 \rightarrow 0$, and $N \sqrt{u_2} \rightarrow \infty$ as $N \rightarrow \infty$. Then $\tau_2 \cdot Nu_1 \sqrt{u_2}$ converges to a limit that has density function

$$f_2(t) = h(t) \exp \left(- \int_0^t h(s) \, ds \right)$$

where $h(s) = \frac{1 - e^{-2s/\lambda}}{1 + e^{-2s/\lambda}}$.

10,000 simulations of $N = 10^3$, $u_1 = 10^{-3}$, $\sqrt{u_2} = 10^{-2}$. The exponential with mean $1/Nu_1 \sqrt{u_2}$ is given by the thin line. The approximation from Theorem 2 by the thick line.

Sketch of proof

Let Q_1 be the law of the process starting from a single 1 and modified to have no further 1 mutations. Let $g_2(t) = Q_1(\tau_2 \leq t)$.

$$g_2(t) = -u_2 g_2(t) - g_2(t)^2 + u_2$$

Solve the ODE and then compute

$$P(\tau_2 \leq t) = 1 - \exp \left(-Nu_1 \int_0^t g(s) \, ds \right)$$

When $Nu_1 \not\rightarrow 0$

Theorem 3. Let $k \geq 2$. Suppose that:

(i) $Nu_1 \rightarrow 0$.

(ii) For $j = 1, \ldots, k - 1$, $u_j/u_{j+1} > b_j$ for all N.

(iii) There is an $a > 0$ so that $N^a u_k \rightarrow 0$.

(iv) $Nu_{k,k} \rightarrow \infty$.

Then for all $t > 0$, $\lim_{N \rightarrow \infty} P(\tau_k > t/Nu_{1,k}) = \exp(-t)$.

Probability type j has a type k descendant.

$$\sim r_{j,k} = u_{j+1}^{1/2} u_{j+2}^{1/4} \cdots u_k^{1/2(j-k)}$$

for $1 \leq j < k$.
Explanation of the Conditions

\[r_{j,k} = u_{j+1}^{1/2} u_{j+2}^{1/4} \cdots u_k^{1/2^{k-j}} \] for \(1 \leq j < k \)

(i) \(N u_1 \to 0 \) implies we can ignore \(\tau_k - \sigma_k \), where \(\sigma_k \) is the birth time of the type 1 with a type \(k \) descent.

(ii) \(u_{j+1}/u_j \to b_j \) for all \(N \). In cancer applications later mutation rates are larger, but in regulatory sequence example \(u_2 = u_1 / 30 \).

(iii) \(N^2 u_k \to 0 \) for some \(a > 0 \). Mutation rates can’t be too big.

\(\text{Use induction to reduce to two type case.} \)

If \(k = 4 \) and \(u_j = \mu \) then there are \(\mu^{-1/2} \) 3’s; \(\mu^{-3/4} \) 2’s; \(\mu^{-7/8} \) 1’s.

Processes live on different time scales.

\(\text{Back to reality} \)

Our results are appropriate for the regulatory sequence application since one is interested in the typical amount of time that the process takes.

However, most cancers occur in less than 1% of the population so we are looking at the lower tail of the distribution. Let \(g_1(t) = Q_1(\tau_k \leq t) \) where \(Q_1 \) is the probability for the branching process started with one type 1.

In the case \(u_j \equiv \mu \)

\[g_1'(t) = \mu g_1(t) - (1 - \mu) g_1(t)^2 - 2 \mu g_1(t) \]

One can inductively solve the differential equations and finds if \(t \ll \mu^{-1/2} \) then \(g_1(t) \approx \mu^{k-1} k^{-1} / (k-1)! \)

\(10,000 \) simulations with \(N = 10^3 \), \(u_1 = 10^{-4} \), \(\sqrt{2} = 10^{-3} \)

\(\gamma = 1 \), \(\alpha = 1.433 \)

When \(N_{\tau_1,k} \neq \infty \)

Fixation of 1 before \(\tau_k \) and stochastic tunneling each have positive probability.

Theorem 4. Let \(k \geq 2 \). Assume

(i) \(N u_1 \to 0 \).

(ii) For \(j = 1, \ldots, k - 1 \), \(u_{j+1}/u_j \to b_j \) for all \(N \).

(iii) There is an \(a > 0 \) so that \(N^2 u_k \to 0 \).

(iv) \((N_{\tau_1,k})^2 \to \gamma > 0 \), and we let

\[\alpha = \sum_{k=1}^{\infty} \frac{\gamma^k}{(k-1)! (k-1)!} \]

then for all \(t > 0 \), \(\lim_{N \to \infty} P(u_1 \tau_k > t) = \exp(-\alpha t) \).
Let $X_j(t)$ be the number of type j at time t.

If $X_1(0) = N\epsilon$ then $N^{-1} X_1(Nt) \to Z_t$ where Z_t is the Wright-Fisher diffusion process with infinitesimal generator $x(1-x)d^2/dx^2$.

When $X_1(Nt) = Nx$, mutations to type 2 that eventually lead to a type k individual occur at rate approximately

$$N \cdot Nx \cdot 2r_{2,k} \sim N^2 r_{1,k} r_2 x \to \gamma x,$$

so if we let $u(x)$ be the probability that the process Z_t hits 0 before reaching 1 or generating a type m mutation, then $u(x)$ satisfies

$$x(1-x)u''(x) - \gamma xu(x) = 0, \quad u(0) = 1, \quad u(1) = 0$$

The constant $\alpha = \lim_{\epsilon \to 0} (1 - u(\epsilon))/\epsilon$.

Rick Durrett (Cornell)