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Quantum Yang–Mills theories

I Quantum gauge theories, also known as quantum Yang–Mills
theories, are components of the Standard Model of quantum
mechanics.

I In spite of many decades of research, physically relevant
quantum gauge theories have not yet been constructed in a
rigorous mathematical sense.

I The most popular approach to solving this problem is via the
program of constructive field theory.

I In this approach, one starts with a statistical mechanical
model on the lattice; the next step is to pass to a continuum
limit of this model; the third step is to show that the
continuum limit satisfies certain ‘axioms’; if these axioms are
satisfied, then there is a standard machinery which allows the
construction of a quantum field theory.

I Taking this program to its completion is one of the Clay
millennium prize problems.
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Lattice gauge theories

I The statistical mechanical models considered in the first step
of the above program are known as lattice gauge theories.

I A lattice gauge theory may be coupled with a matter field
(such as a Higgs field), or it may be a pure lattice gauge
theory.

I We will only deal with pure lattice gauge theories in this talk.

I A pure lattice gauge theory is characterized by its gauge
group (usually a compact matrix Lie group), the dimension of
spacetime, and a parameter known as the coupling strength.
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Notation

I We will now define lattice gauge theories.

I Let N ≥ 1 and d ≥ 2 be two integers.

I Let G be a closed connected subgroup of U(N).

I Let E be the set of positively oriented nearest-neighbor edges
of Zd .

I Let Ω be the set of all functions from E into G . That is, an
element ω ∈ Ω assigns a matrix ωe ∈ G to each edge e ∈ E .

I If ω ∈ Ω and e is a negatively oriented edge, we define
ωe := ω−1

e−1 , where e−1 is the positively oriented version of e.
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Plaquettes

I A plaquette in Zd is a sequence of four positively oriented
edges that form the boundary of a square.

I Let P be the set of all plaquettes in Zd .
I Given some p ∈ P and ω ∈ Ω, we define ωp as follows.
I Write p as a sequence of directed edges e1, e2, e3, e4, each one

followed by the next.

e1

e2

e3

e4 p

I Let ωp := ωe1ωe2ωe3ωe4 .
I Although there is an ambiguity in this definition about the

choice of e1, that is not problematic because we will only use
the quantity <(Tr(ωp)), which is not affected by this
ambiguity.
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Lattice gauge theory

I Endow the product space Ω = GE with the product σ-algebra
and let λ denote the normalized product Haar measure on Ω.

I Pure lattice gauge theory on Zd with gauge group G and
coupling parameter β (equal to the inverse of the squared
coupling strength) is formally defined as the probability
measure

dµ(ω) = Z−1e−βH(ω)dλ(ω)

on Ω, where H is the formal Hamiltonian

H(ω) := −
∑
p∈P
<(Tr(ωp))

and Z is the normalizing constant.

I Note that this does not make sense as stated, since the
infinite series defining H is not convergent for most ω ∈ Ω.

Sourav Chatterjee Gauge-string duality and Meckes’s version of Stein’s method



Precise definition

I Although the definition of the probability measure µ as stated
above does not make sense since the series defining H may
not be convergent, the conditional distribution of any finite
set of ωe ’s given all other ωe ’s, under such a hypothetical
probability measure µ, is well-defined.

I In the language of mathematical physics, this defines is a
specification (of conditional distributions).

I Any actual probability measure µ on Ω which has these
specified conditional distributions is called a Gibbs measure for
this specification.

I It is not obvious that Gibbs measures exist. In the case of
lattice gauge theories with compact gauge groups, the
existence of at least one Gibbs measure follows from standard
results.

I Uniqueness is generally an open question unless β is small.
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Wilson loop observables

I Let us fix a lattice gauge theory on Zd with gauge group G
and coupling parameter β.

I Let π be a finite-dimensional irreducible unitary representation
of the group G , and let χπ be the character of π.

I Let ` be a closed loop in Zd , with directed edges e1, . . . , ek .

I Given a configuration ω, the Wilson loop variable W`(ω) is
defined as W`(ω) := χπ(ωe1ωe2 · · ·ωek ).

I Let 〈W`〉 denote the expected value of W`(ω) under a given
Gibbs measure of our theory. This is known as a Wilson loop
expectation.

I Calculating Wilson loop expectations is one of the main
problems in lattice gauge theories, for a variety of reasons
(which I do not have the time to go into).
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Gauge-string duality

I Gauge theories (i.e., Yang–Mills theories) are theories of the
quantum world. String theories are theories of gravity.

I It is a major goal of theoretical physics to make a connection
between the above two.

I Physicists have been aware of a duality between gauge
theories and string theories since the 1970s. A concrete
duality relation found by Maldacena (1997) kicked off a vast
field of research, now known as gauge-string duality or
gauge-gravity duality or AdS-CFT duality.
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Large N gauge theories: ’t Hooft’s approach

I Gauge groups such as SU(5), SU(3) and SU(2)× U(1) are
the ones that are relevant for physical theories.

I However, theoretical understanding is difficult to achieve.

I ’t Hooft (1974) suggested a simplification of the problem by
considering groups such as SU(N) where N is large.

I The N →∞ limit, after replacing β by Nβ, simplifies many
theoretical problems. This is known as the ’t Hooft limit.

I The result that I am going to present gives a duality between
a lattice gauge theory in the ’t Hooft limit and a string theory
on the lattice.
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A string theory on the lattice

I Basic objects: Collections of finitely many loops in Zd , called
‘strings’. Analogous to strings in the continuum.

I Strings can evolve in time according to certain rules.

I At each time step, only one loop in a string is allowed to be
modified.

I Four possible modifications:
I Positive deformation. (Addition of a plaquette without erasing

edges.)
I Negative deformation. (Addition or deletion of a plaquette

that involves erasing at least one edge.)
I Positive splitting. (Splitting a loop into two loops without

erasing edges.)
I Negative splitting. (Splitting a loop into two loops in a way

that erases at least one edge.)
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Trajectories

I The evolution of a string is called a trajectory.

I A trajectory is called vanishing if it ends in nothing in a finite
number of steps.
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Action of a vanishing trajectory

I The lattice string theory defined here has a parameter β.

I Depending on the value of β, each step of a trajectory is given
a weight, as follows.

I Let m be the total number of edges in the string before the
step is taken.

I The weight of the step is defined to be:

−β/m if the step is a positive deformation;

β/m if the step is a negative deformation;

−2/m if the step is a positive splitting;

2/m if the step is a negative splitting.

I The weight or action of a vanishing trajectory X is defined to
be the product of the weights of the steps in the trajectory.
Denoted by wβ(X ).
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Gauge-string duality in the ’t Hooft limit

Theorem (C., 2019)

There exists β0 > 0 such that the following is true. Let ` be a
fixed loop in Zd . Let 〈W`〉 denote the expectation of the Wilson
loop variable W` (for the defining representation of SO(N)) with
respect to any Gibbs measure of SO(N) lattice gauge theory on Zd

with coupling parameter Nβ. If |β| ≤ β0, then

lim
N→∞

〈W`〉
N

=
∑

X∈X (`)

wβ(X ) ,

where X (`) is the set of all vanishing trajectories starting at ` and
wβ(X ) is the action of X defined earlier. Moreover, the infinite
sum on the right is absolutely convergent.
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Neighborhood of a string

I In the next few slides, I will try to give an outline of the proof
of this theorem.

I In addition to deformations and splittings, two additional
operations on strings are needed in the proof: mergers and
twistings.

I Let

D+(s) := {s ′ : s ′ is a positive deformation of s} ,
D−(s) := {s ′ : s ′ is a negative deformation of s} ,
S+(s) := {s ′ : s ′ is a positive splitting of s} ,
S−(s) := {s ′ : s ′ is a negative splitting of s} ,
M+(s) := {s ′ : s ′ is a positive merger of s} ,
M−(s) := {s ′ : s ′ is a negative merger of s} ,
T+(s) := {s ′ : s ′ is a positive twisting of s} ,
T−(s) := {s ′ : s ′ is a negative twisting of s} .
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The master loop equation

Theorem (C., 2019)

For a string s = (`1, . . . , `n), define

φ(s) :=
〈W`1W`2 · · ·W`n〉

Nn
.

Let |s| be the total number of edges in s. Then

(N − 1)|s|φ(s) =
∑

s′∈T−(s)

φ(s ′)−
∑

s′∈T+(s)

φ(s ′) + N
∑

s′∈S−(s)

φ(s ′)

− N
∑

s′∈S+(s)

φ(s ′) +
1

N

∑
s′∈M−(s)

φ(s ′)− 1

N

∑
s′∈M+(s)

φ(s ′)

+ Nβ
∑

s′∈D−(s)

φ(s ′)− Nβ
∑

s′∈D+(s)

φ(s ′) .
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Proof sketch, given the loop equation

I The loop equation relates the expectation of the Wilson
variable for one string with the expectations of a set of
‘neighboring strings’.

I The recursion naturally leads to a formal expression in terms
of a sum over trajectories of strings.

I Main challenge is to prove convergence. This is the part that
needs β to be small. I will not talk about this part.

I The proof of the loop equation is obtained via a version of
Stein’s method that I learned from Elizabeth Meckes when I
was a student at Stanford. This will be explained in the next
few slides.
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Meckes’s infinitesimal Stein’s method

I Let G be a compact Lie group and let Q be G -valued random
variable distributed according to the Haar measure.

I Suppose that for each ε > 0, we have a G -valued random
variable Qε such that (Q,Qε) is an exchangeable pair of
random variables.

I Then for any bounded measurable f , g : G → R,

E[(f (Qε)−f (Q))g(Q)] = −1

2
E[(f (Qε)−f (Q))(g(Qε)−g(Q))].

I Define an operator T as

Tf (x) := lim
ε→0

E(f (Qε)|Q = x)− f (x)

ε2
,

assuming that the limit exists.
I Then, taking g ≡ 1 gives E(Tf (Q)) = 0 for any f .
I Such a T is called a Stein operator for the Haar measure.
I Elizabeth was the first to systematically investigate Stein

operators for Haar measures and other similar objects.
Sourav Chatterjee Gauge-string duality and Meckes’s version of Stein’s method



Exchangeable pair for SO(N)

I Following constructions in Elizabeth’s thesis, we construct an
exchangeable pair for SO(N) as follows.

I Choose (I , J) uniformly at random from
{(i , j) : 1 ≤ i 6= j ≤ N}.

I Let η be uniformly distributed in {−1, 1}.
I Let Rε be the N × N matrix whose (i , j)th entry is

√
1− ε2 if i = j = I or i = j = J,

ηε if i = I and j = J,

−ηε if i = J and j = I ,

1 if i = j and i 6∈ {I , J},
0 in all other cases.

I Finally, let Qε := RεQ. It turns out that (Q,Qε) is an
exchangeable pair.
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Stein equation for SO(N)

I Recall the equation

E[(f (Qε)−f (Q))g(Q)] = −1

2
E[(f (Qε)−f (Q))(g(Qε)−g(Q))].

I Dividing both sides by ε2 and sending ε→ 0, we get the
following.

Theorem (C., 2019)

Let f and g be C 2 functions in a neighborhood of SO(N) ⊆ RN2
,

and let E(·) denote expectation with respect to the Haar measure.
Then

E
(∑

i ,k

xik
∂f

∂xik
g

)
=

1

N − 1
E
(∑

i ,k

∂2f

∂x2ik
g −

∑
i ,j ,k,k ′

xjkxik ′
∂2f

∂xik∂xjk ′
g

+
∑
i ,k

∂f

∂xik

∂g

∂xik
−
∑

i ,j ,k,k ′

xjkxik ′
∂f

∂xik

∂g

∂xjk ′

)
.
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How to prove the loop equation

I Fix some edge e ∈ `.
I Let Q = (qij)1≤i ,j≤N be the element of SO(N) attached to e.
I Fact: If m is the number of occurrences of e and e−1 in `,

then

W` = m
∑
i ,j

qij
∂W`

∂qij
.

I Let g be the density of the lattice gauge theory (restricted to
a finite cube) with respect to the product Haar measure.

I If 〈·〉 is expectation in the lattice gauge theory and E(·) is
expectation with respect to the product Haar measure, then

〈W`〉 = E(W`g) = mE
(∑

i ,j

qij
∂W`

∂qij
g

)
.

I One can now apply the Stein equation to the right-hand side.
It turns out that the resulting identity is the master loop
equation that was written down earlier.
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