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Quantum Yang—Mills theories

» Quantum gauge theories, also known as quantum Yang—Mills
theories, are components of the Standard Model of quantum
mechanics.

» In spite of many decades of research, physically relevant
quantum gauge theories have not yet been constructed in a
rigorous mathematical sense.

» The most popular approach to solving this problem is via the
program of constructive field theory.

» In this approach, one starts with a statistical mechanical
model on the lattice; the next step is to pass to a continuum
limit of this model; the third step is to show that the
continuum limit satisfies certain ‘axioms’; if these axioms are
satisfied, then there is a standard machinery which allows the
construction of a quantum field theory.

» Taking this program to its completion is one of the Clay
millennium prize problems.
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Lattice gauge theories

» The statistical mechanical models considered in the first step
of the above program are known as lattice gauge theories.

P> A lattice gauge theory may be coupled with a matter field
(such as a Higgs field), or it may be a pure lattice gauge
theory.

> We will only deal with pure lattice gauge theories in this talk.

P A pure lattice gauge theory is characterized by its gauge
group (usually a compact matrix Lie group), the dimension of
spacetime, and a parameter known as the coupling strength.
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We will now define lattice gauge theories.

Let N> 1 and d > 2 be two integers.

Let G be a closed connected subgroup of U(N).

Let E be the set of positively oriented nearest-neighbor edges
of 7.

Let Q be the set of all functions from E into G. That is, an
element w € Q assigns a matrix we € G to each edge e € E.

If w e Q and e is a negatively oriented edge, we define

We = w;ll, where e~1 is the positively oriented version of e.
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Plaquettes
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A plaquette in Z9 is a sequence of four positively oriented
edges that form the boundary of a square.
Let P be the set of all plaquettes in Z.
Given some p € P and w € €, we define w, as follows.
Write p as a sequence of directed edges e1, e, €3, €4, each one
followed by the next.

€3

€| P |€2

€1

Let wp 1= We,We,WeyWey -

Although there is an ambiguity in this definition about the
choice of ep, that is not problematic because we will only use
the quantity %(Tr(wp)), which is not affected by this
ambiguity.
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Lattice gauge theory

» Endow the product space Q = GE with the product o-algebra
and let A\ denote the normalized product Haar measure on €.

» Pure lattice gauge theory on Z9 with gauge group G and
coupling parameter /3 (equal to the inverse of the squared
coupling strength) is formally defined as the probability
measure

dp(w) = Z e PH@ g\ (w)

on 2, where H is the formal Hamiltonian

H(w) ==Y R(Tr(wp))

peP

and Z is the normalizing constant.

» Note that this does not make sense as stated, since the
infinite series defining H is not convergent for most w € Q.
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Precise definition

» Although the definition of the probability measure 1 as stated
above does not make sense since the series defining H may
not be convergent, the conditional distribution of any finite
set of we's given all other we's, under such a hypothetical
probability measure i, is well-defined.

» In the language of mathematical physics, this defines is a
specification (of conditional distributions).

» Any actual probability measure p on Q which has these
specified conditional distributions is called a Gibbs measure for
this specification.

» It is not obvious that Gibbs measures exist. In the case of
lattice gauge theories with compact gauge groups, the
existence of at least one Gibbs measure follows from standard
results.

» Uniqueness is generally an open question unless 5 is small.
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Wilson loop observables
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Let us fix a lattice gauge theory on Z? with gauge group G
and coupling parameter 3.

Let 7 be a finite-dimensional irreducible unitary representation
of the group G, and let x, be the character of .

Let ¢ be a closed loop in Z9, with directed edges e, ..., ex.
Given a configuration w, the Wilson loop variable Wy(w) is
defined as Wy(w) := xr(we,we, « - - We, )-

Let (W) denote the expected value of Wj(w) under a given
Gibbs measure of our theory. This is known as a Wilson loop
expectation.

Calculating Wilson loop expectations is one of the main
problems in lattice gauge theories, for a variety of reasons
(which | do not have the time to go into).
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Gauge-string duality

» Gauge theories (i.e., Yang—Mills theories) are theories of the
quantum world. String theories are theories of gravity.

P It is a major goal of theoretical physics to make a connection
between the above two.

» Physicists have been aware of a duality between gauge
theories and string theories since the 1970s. A concrete
duality relation found by Maldacena (1997) kicked off a vast
field of research, now known as gauge-string duality or
gauge-gravity duality or AdS-CFT duality.
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Large N gauge theories: 't Hooft's approach

» Gauge groups such as SU(5), SU(3) and SU(2) x U(1) are
the ones that are relevant for physical theories.

» However, theoretical understanding is difficult to achieve.

» 't Hooft (1974) suggested a simplification of the problem by
considering groups such as SU(N) where N is large.

» The N — oo limit, after replacing 8 by N3, simplifies many
theoretical problems. This is known as the 't Hooft limit.

P> The result that | am going to present gives a duality between
a lattice gauge theory in the 't Hooft limit and a string theory
on the lattice.

Sourav Chatterjee Gauge-string duality and Meckes’s version of Stein’s method



A string theory on the lattice

» Basic objects: Collections of finitely many loops in Z9, called
‘strings’. Analogous to strings in the continuum.

» Strings can evolve in time according to certain rules.

P At each time step, only one loop in a string is allowed to be
modified.
» Four possible modifications:

» Positive deformation. (Addition of a plaquette without erasing
edges.)

> Negative deformation. (Addition or deletion of a plaquette
that involves erasing at least one edge.)

> Positive splitting. (Splitting a loop into two loops without
erasing edges.)

> Negative splitting. (Splitting a loop into two loops in a way
that erases at least one edge.)
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» The evolution of a string is called a trajectory.

> A trajectory is called vanishing if it ends in nothing in a finite
number of steps.
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Action of a vanishing trajectory

» The lattice string theory defined here has a parameter .

» Depending on the value of 3, each step of a trajectory is given
a weight, as follows.

> Let m be the total number of edges in the string before the
step is taken.

» The weight of the step is defined to be:

—B/m if the step is a positive deformation;
B/m if the step is a negative deformation;
—2/m if the step is a positive splitting;
2/m if the step is a negative splitting.
» The weight or action of a vanishing trajectory X is defined to

be the product of the weights of the steps in the trajectory.
Denoted by wg(X).
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Gauge-string duality in the 't Hooft limit

Theorem (C., 2019)

There exists B9 > 0 such that the following is true. Let ¢ be a
fixed loop in Z9. Let (W,) denote the expectation of the Wilson
loop variable W, (for the defining representation of SO(N)) with
respect to any Gibbs measure of SO(N) lattice gauge theory on 7.9
with coupling parameter Nj3. If |3| < o, then

jim W) _ > we(X),

N—ooco N
XeXx(¢)

where X () is the set of all vanishing trajectories starting at ¢ and
wg(X) is the action of X defined earlier. Moreover, the infinite
sum on the right is absolutely convergent.
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Neighborhood of a string

» In the next few slides, | will try to give an outline of the proof
of this theorem.

» In addition to deformations and splittings, two additional
operations on strings are needed in the proof: mergers and

twistings.
> Let

D*(s) :={s’: s is a positive deformation of s},
D~ (s) := {s’ : s is a negative deformation of s},
S*(s) :={s": s is a positive splitting of s},
S7(s) :={s': s’ is a negative splitting of s},
M*(s) := {s’: s’ is a positive merger of s},

M~ (s) :={s’ : s’ is a negative merger of s},
T*(s) := {s': s’ is a positive twisting of s},

T~ (s) :={s': s’ is a negative twisting of s} .
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The master loop equation

Theorem (C., 2019)
For a string s = ({1, ...,¢,), define

<W€1 sz e W€n>

ols) i=

Let |s| be the total number of edges in's. Then

(N=1Dlslg(s) = > d(s)— D d(sh+N > ()

s'eT—(s) s’€TH(s) s'€S~(s)
f/vz<z>(s+f2¢ ——Zaﬁ
s’'eSt(s) s’eM—(s) s'eMT(s)
+NB Y, () -NB Y o)
s'eD(s) /€Dt (s)
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Proof sketch, given the loop equation

» The loop equation relates the expectation of the Wilson
variable for one string with the expectations of a set of
‘neighboring strings’.

» The recursion naturally leads to a formal expression in terms
of a sum over trajectories of strings.

» Main challenge is to prove convergence. This is the part that
needs (5 to be small. | will not talk about this part.

» The proof of the loop equation is obtained via a version of
Stein's method that | learned from Elizabeth Meckes when |
was a student at Stanford. This will be explained in the next
few slides.
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Meckes's infinitesimal Stein’'s method

Let G be a compact Lie group and let Q be G-valued random
variable distributed according to the Haar measure.

Suppose that for each € > 0, we have a G-valued random
variable Q. such that (Q, Q:) is an exchangeable pair of
random variables.

Then for any bounded measurable f,g: G — R,

E[(f(Q:)-f(Q))g(Q)] = —%E[(f(Qa)—f(Q))(g(Qa)—g(Q))]‘
Define an operator T as

E(f(Q:)|Q = x) — f(x)

2 i

Tf(x) := lim

e—0 e
assuming that the limit exists.
Then, taking g = 1 gives E(Tf(Q)) = 0 for any f.
Such a T is called a Stein operator for the Haar measure.
Elizabeth was the first to systematically investigate Stein
operators for Haar measures and other similar objects.
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Exchangeable pair for SO(N)

» Following constructions in Elizabeth's thesis, we construct an
exchangeable pair for SO(N) as follows.

» Choose (/,J) uniformly at random from
{(.):1<i#j< N}

» Let 7 be uniformly distributed in {—1,1}.

> Let R. be the N x N matrix whose (i,)*™" entry is

(V1—¢2 ifi=j=lori=j=J,
ne ifi=1/andj=J,

—ne ifi=Jandj=1,

1 if i=jandi¢&{l,J},
0 in all other cases.

\

» Finally, let Q- := R-Q. It turns out that (Q, Q:) is an
exchangeable pair.
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Stein equation for SO(N)

» Recall the equation

E[(f(Q)-1(Q))e(Q)] = —%E[(f(Qa)—f(Q))(g(Qe)—g(Q))]-

» Dividing both sides by €2 and sending £ — 0, we get the
following.

Theorem (C., 2019)

Let f and g be C? functions in a neighborhood of SO(N) C RV,

and let E(-) denote expectation with respect to the Haar measure.
Then

of 0°f
(o) - (e 5
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How to prove the loop equation

> Fix some edge e € /.
> Let Q = (gjj)i<ij<n be the element of SO(N) attached to e.
» Fact: If mis the number of occurrences of e and e~ 1 in ¢,

then W,
Wg = mz q,'jia ¢ .
i qij

> Let g be the density of the lattice gauge theory (restricted to
a finite cube) with respect to the product Haar measure.

» If (-) is expectation in the lattice gauge theory and E(-) is
expectation with respect to the product Haar measure, then

oW,
(We) = E(Weg) = mE(Z quaq__eg> :
i y

» One can now apply the Stein equation to the right-hand side.
It turns out that the resulting identity is the master loop
equation that was written down earlier.
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