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Log Sobolev inequalities

A metric space (X , d) equipped with a Borel probability measure ρ
satisfies a log Sobolev inequality (LSI) with constant C > 0 if, for
every locally Lipschitz function f : X → R,∫

(f 2 log f 2)dρ−
(∫

f 2dρ

)
log

(∫
f 2dρ

)
≤ 2C

∫
|∇f |2dρ,

where

|∇f |(x) := lim sup
y→x

|f (y)− f (x)|
d(y , x)

.

We’ll be focused on the setting of X a Riemannian manifold
(M, g) equipped with the standard Riemannian distance d = dg
and ρt = Law(Bt) where Bt is a Brownian motion on M.



Brownian motion on a Lie group

In particular, when M = G is a Lie group, the Brownian motion
may be expressed as the solution of the SDE

dBt = Bt ◦ dWt

with B0 = e, where Wt is BM on g = Lie(G ).

As an illustrating example, we focus on the even more specific case
that G = U(N) is the N × N unitary matrices with Lie algebra
u(N), the skew-Hermitian matrices. For A,B ∈ u(N), let

〈A,B〉 = NTr(B∗A)

and, identifying TIU(N) ∼= u(N), we may extend this to a
bi-invariant Riemannian metric on U(N).



Brownian motion on U(N)

We may describe Brownian motion UN
t on U(N) as the solution to

the SDE

dUN
t = UN

t ◦ dWN
t

= UN
t dWN

t −
1

2
UN
t dt

with UN
0 = IN , where Wt is a standard Brownian motion on u(N)

(for example, take {ξk}N
2−1

k=0 an onb of u(N) wrt the given inner

product and WN
t =

∑N2−1
j=0 bjtξj , where the bjt are independent

standard BMs on R).

We’re interested in understanding LSIs for Law(UN
t ).



Some motivation: The empirical spectral measure

A matrix U ∈ U(N) has N eigenvalues on S1, e iθ1 , . . . , e iθN .
The spectral measure of U is the probability measure on S1

µU :=
1

N

N∑
j=1

δ
e
iθj .

For each fixed t > 0, Ut is a random unitary matrix, and we
denote its empirical spectral measure by µNt := µUt .



Spectrum of BM on U(20)
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Some motivation: ESM → Biane’s measure

Theorem (Biane, 1997)

There exists a deterministic probability measure νt on S1 so that
µNt converges weakly almost surely to νt :
for all f ∈ C (S1),

lim
N→∞

∫
S1

f dµNt =

∫
S1

f dνt a.s.

Rates of convergence of µNt → ν?



The equilibrium case

Theorem (Meckes–Meckes, PTRF 2013)

Let UN be a Haar-distributed (uniform) random matrix in U(N),
and let ν be the uniform measure on S1. Then

E[W (µUN , ν)] ≤ C
logN

N

and with probability 1

W (µUN , ν) ≤ C
logN

N

for all sufficiently large N.

Proof relied on concentration of measure techniques.



Concentration via LSI

Let (X , d) denote a metric space with Borel probability measure ρ.

If (X , d , ρ) satisfies a LSI with constant C > 0, then for any
L-Lipschitz F : X → R with E|F | <∞

ρ (|F − EF | ≥ r) ≤ 2e−r
2/L2C .



LSI for heat kernel measure
When (X , d) is a Riemannian manifold (M, g , dg ), let ∇ and ∆
denote the gradient and Laplace-Beltrami operators acting on
C∞(M). Let

Pt f (x) := et∆/2f (x) := E[f (Bx
t )] =

∫
M
f dρxt

where {Bx
t }t≥0 is a Brownian motion on M started at x .

(i) [Bakry–Émery, 1984] Ric ≥ −k if and only if

|∇Pt f | ≤ K (t)Pt |∇f | , ∀f ∈ C∞c (M) and t > 0, (*)

holds with K (t) = ekt .

(ii) If (*) holds, then LSI is satisfied for ρxt with coefficient

C (t) =

∫ t

0
K 2(s)ds.



LSI for heat kernel measure

(i) Ric ≥ −k if and only if

|∇Pt f | ≤ K (t)Pt |∇f | , ∀f ∈ C∞c (M) and t > 0, (*)

holds with K (t) = ekt .

(ii) If (*) holds, then LSI is satisfied for ρxt with coefficient

C (t) =

∫ t

0
K 2(s)ds.

(i) RicU(N) ≥ 0 =⇒

|∇Pt f | ≤ Pt |∇f | ,∀f ∈ C∞c (U(N)) and t > 0,

(ii) Thus LSI for Law(Ut) is satisfied with coefficient C (t) = t.

But we should be able to do better. . . .



Transformations of LSI

It’s well-known that LSI behaves well under certain operations.

I (tensorization) Suppose that (Xi , di , ρi ) satisfy LSI with
constant Ci <∞. Then for X = X1 × · · · × Xn equipped with
product distance and product probability measure
ρ := ρ1 ⊗ · · · ⊗ ρn, (X , d , ρ) satisfies LSI with constant
C := max1≤i≤n Ci .

I (under Lipschitz mappings) Suppose that (X , dX , ρ) satisfies
LSI with constant C . Let F : (X , dX )→ (Y , dY ) be an
L-Lipschitz map. Then (Y , dY , ρ ◦ F−1) satisfies LSI with
constant L2C .

We combine these tools and the known estimate from the
curvature bound, with a smart coupling of Brownian motions,
inspired by an analogous result for Haar measure on U(N)
[Meckes–Meckes, ECP 2013]



The coupling

Lemma (Meckes-M)

Let b0 be an R-valued Brownian motion and zt := e ib
0
t /N , and let

Vt be a Brownian motion on SU(N) issued from the identity. Then
ztVt is a Brownian motion on U(N).

Proof. Note that zt satisfies the SDE

dzt = zt
idb0

t

N
− 1

2N2
zt dt.

Setting Zt := zt IN

dZt = Zt dbt −
1

2N2
Ztdt

where bt = b0
t ξ0 with ξ0 = iIN/N.



The coupling

Let β = {ξj}N
2−1

j=1 be an onb of su(N), and let {bjt}N
2−1

j=1 be
independent R-valued BM. Then

W̃t =
N2−1∑
j=1

bjtξj

is a BM on su(N), and Vt satisfies the SDE

dVt = Vt ◦ dW̃t

= Vt dW̃t +
1

2
Vt

∑
ξ∈β

ξ2 dt

= Vt dW̃t −
(
N2 − 1

2N2

)
Vt dt.



The coupling

Now, {ξj}N
2−1

j=0 is an onb of u(N), and ztVt = ZtVt satisfies

d(ZtVt) =

(
Ztdbt −

1

2N2
Zt dt

)
Vt + Zt

(
Vt dW̃t −

(
N2 − 1

2N2

)
Vt

)
= ZtVt (dbt + dW̃t)−

1

2
ZtVt dt.

Since Wt = bt + W̃t is a BM on u(N), and that BM on U(N) is
the solution to

dUt = UtdWt −
1

2
Utdt,

this implies that ztVt ∈ SU(N) o S1 ' U(N) is a BM on U(N). �



Improving LSI on U(N)

I With this scaling of the metric RicSU(N) = 1
2 . Thus LSI holds

on SU(N) for Law(Vt) with coefficent

C (t) = 4(1− e−t/4).

I Elizabeth’s LEMMA: for the heat semi-group on S1,

|(Pt f )′| ≤ e−(t−a)/4

1− e−(t−a)/4
Pt |f ′|.

This proof was based on [Saloff-Coste 1994] uniform estimates
on the distance from the heat kernel on S1 to 1.

Combining this with RicS1 ≥ 0 shows that the LSI holds on
S1 for Law(e ibt ) with coefficient C (t) = min{t,C}.



Improving LSI on U(N)

I Define F : S1 × SU(N)→ U(N)

F (e iθ,V ) = e iθV .

Then F is Lipschitz and

F (e
ibt/N2 ,Vt)

d
= ztVt

d
= Ut .

Theorem (Meckes–M)

The LSI holds for the heat kernel measure Law(Ut) on U(N) with
coefficient C (t) = C ′min{t,C}.



Application to esm → Biane’s measure

Theorem (Meckes–M, 2018)

With probability one for N sufficiently large

sup
0≤t≤T

W1(µNt , νt) ≤ c
T 2/5 logN

N2/5
.

I previously known convergence rates were for moments of the
ensemble-averaged spectral measure [Collins–Dahlqvist–Kemp
2016]

I paper borrowed multiple techniques from Meckes–Meckes
toolkit

I the proof of concentration that appeared in the paper didn’t
go through LSI



General compact Lie groups as products

Proposition (Cheeger–Ebin 1975, Milnor 1976)

A simply connected Lie group G which admits a bi-invariant metric
is the product of a (compact) group with strictly positive Ricci
curvature and a group of curvature 0.

Let
z := {x ∈ g : [x , y ] = 0 for all y ∈ g}

which is an ideal of g. If G has a bi-invariant metric and I is any
ideal of g then I⊥ is also an ideal since

0 = 〈I , I⊥〉 = 〈[x , I ], I⊥〉 = 〈I , [x , I⊥]〉.

Thus, g splits as g = z⊕ h where h = z⊥. Let G = Z × H be the
corresponding splitting of G .



The coupling on general compact Lie groups

Let Z (t) and H(t) be Brownian motions on Z and H:

dZ (t) = Z (t)
m∑

k=1

zk ◦ dBk(t), dH(t) = H(t)
n∑

j=1

hj ◦ dWj(t)

where {Bk}, {Wj} are independent standard BMs and {zk} is an
onb of z and {hj} an onb of h. Then

d(Z (t)H(t)) = Z (t)
m∑
i=1

zi ◦dBi (t)H(t)+Z (t)H(t)
n∑

j=1

hj ◦dWj(t).

=⇒ Z (t)H(t) is a Brownian motion on G .



Improved LSI on general compact Lie groups

Theorem (Meckes–M–Wang, 21+)

For t > 0, the heat kernel measure on G satisfies the LSI with
coefficient C (t) = C ′min{t,C}.

Follows essentially as before from the tensorization property of the
LSI and the coefficient for the heat kernel measure on Z ∼ (S1)⊗m.
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