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Meckes family fun fact

Juliette got her first passport as
a baby to go withus to a )
conference in Banff... and so did Peter.

Advances in Stochastic Inequalities and Their
Applications

(This wasn’t the first conference for either of them.)
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It goes back farther than that:
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dehydrogenase adaptation of rat liver'
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Department of Pharmacology, State University of New York, Upstate Medical
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She had to unlearn this habit on her way to becoming a
biologist!



The dark side to this kind of background...

Young Elizabeth Elder (later Meckes) tuned out when she
heard “Na, K-ATPase”.

Biophysical Journal Volume 79 August 2000 853-862
Combined Allosteric and Competitive Interaction between Extracellular

Na™ and K* During lon Transport by the a,, a,, and a5 Isoforms of the
Na, K-ATPase

David M. Balshaw,* Lauren A. Millette,” Katherine Tepperman, and Earl T. Wallick*



The dark side to this kind of background...

Young Elizabeth Elder (later Meckes) tuned out when she
heard “Na, K-ATPase”.

Biophysical Journal Volume 79 August 2000 853-862
Combined Allosteric and Competitive Interaction between Extracellular

Na™ and K* During lon Transport by the a,, a,, and a5 Isoforms of the
Na, K-ATPase
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She sidestepped having this as a potential problem by going
into pure mathematics.
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| also went to those lectures and had an idea how to apply
Stein’s method to the central limit problem for convex bodies:

Are marginals of the uniform measure on a
high-dimensional convex body typically almost
Gaussian?

and quickly got stuck.
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| asked Elizabeth for help and the result was:

“Theorem” (E. and M. Meckes, 2007)

If n is big and a probability measure ;. on R" has certain kinds
of symmetries, and satisfies some other hypotheses, then
certain (one-dimensional) marginals of i are quantifiably
almost Gaussian.

Remarks:

@ Think of this as a Berry—Esseen-type theorem with
stochastic independence replaced by a geometric
symmetry condition.

@ The “other hypotheses” are now known to hold for uniform
measures on convex bodies.

@ Elizabeth and | each wrote follow-ups to this work but didn’t
work together on this again.
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“Theorem” (Chatterjee—Ledoux, 2009)

If1 < k < nandA is an n x n Hermitian matrix, then the
eigenvalues of almost all k x k principal submatrices of A are
almost the same.

Elizabeth and | realized we could prove a coordinate-free
version of this by combining some basic matrix analysis with
tools she was using to study random marginals:

“Theorem” (E. and M. Meckes, 2011)

If1 < k < nandA is an n x n Hermitian matrix, then the
eigenvalues of almost all k-dimensional compressions of A are
almost the same.
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A little while after that...

Elizabeth improved her methods and thus her results for
random marginals (measure-theoretic Dvoretzky theorem).

We applied the same improvements to eigenvalues of random
compressions, then extended the same methods to
eigenvalues of other random matrix models.

For example:

Theorem (E. and M. Meckes, 2013)

Let U be an n x n random matrix uniformly chosen from any of
the classical compact matrix groups. Then

P [W1(uu, v) > Cn=2/8 ¢ t} <e ot
where t > 0, uy is the spectral measure of U, v is the uniform

measure on the circle, and Wy denotes
Wasserstein/Kantorovich distance.
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Summer 2011

The work for that paper was done during the summer of 2011.

Peter was born on July 20.

Elizabeth wrote on her web page:

| think of this paper as being unofficially dedicated to
our children: Peter, who stubbornly refused to be born
while most of the work in this paper was done; and
Juliette, who told me one morning that it would make
her happy if | proved a theorem that day (I'm pretty
sure it was what became Theorem 3.5).
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Then the next year...

Sandrine Dallaporta used determinantal point process
techniques to improve some of our results for eigenvalues of
Gaussian random matrices.

We adapted her techniques to the classical compact groups,
added in some cool results of Eric Rains, and mixed with
log-Sobolev inequalities to prove:

Theorem (E. and M. Meckes, 2013)

Let U be an n x n random matrix uniformly chosen from any of
the classical compact matrix groups and let1 < m < n. Then

P W1 (MU'” I/) > C\/m(log(n/m) + 1) +t| < e—cnztz/m
) = n ~ .
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Sabbatical in Toulouse, 2013-14

By then it got to be habit to discuss whatever we were working
on with each other, and we started writing the majority of our
papers together.

During sabbatical we worked together on:

@ Comparison of metrics between log-concave distributions
(motivated by the central limit theorem for convex bodies)

@ Adapting the DPP techniques to quantify how uniformly
distributed the eigenvalues of Ginibre random matrices are

1.1 Linear Systems of Equations
Bread, Beer, and Barley

We begin with a very simple example. Suppose you have 20 pounds of raw barley
and you plan to turn some of it into bread and some of it into beer. It takes




Wrapping up

Our series of papers on convergence rates for spectral
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Theorem (E. and M. Meckes, 2017)

Let U be an n x n random matrix uniformly chosen from the
unitary group. Then

log n log n

c W

<Edk(pu,v) < C
where dy denotes Kolmogorov distance.

again proved using DPP techniques.
So

log n

q

[
but  Wi(uy,v) < Vo8

d ~
k(pu,v) - s
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Wrapping around

In the meantime, Elizabeth got interested in a conjecture of
Coram and Diaconis:
Take n consecutive eigenvalues of a random 2n x 2n
unitary matrix and stretch them around the whole unit
circle. The result is statistically indistinguishable from
the eigenvalues of a random n x n unitary matrix.

Inspired by this we proved:

Theorem (E. and M. Meckes, 2016)

Let Ny, ¢ be the number of eigenvalues of an n x n random
unitary matrix in an arc of length 6 € (0, 7). Then

Wi (N, Nopg/2) < CVno?.
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And coming full circle

There is a natural model of n x n Hermitian random matrices
with prescribed eigenvalues.

“Theorem” (E. and M. Meckes, 2020)

Let A be a fixed n x n Hermitian matrix and let U be ann x n
random matrix uniformly chosen from the unitary or orthogonal
group. Then the marginals of the entries of the random matrix
UNU* are quantifiably almost Gaussian.

We discussed perspectives and applications related to
quantum information theory, free probability, and randomized
linear algebra.
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And coming full circle

This is a quadratic version of results from Elizabeth’s thesis:

Theorem (E. Meckes, 2008)

Let U be an n x n random matrix uniformly chosen from the
orthogonal group, and let A be a fixed n x n matrix with
|Allps = v/n. Then

dT\/(Tr(AU), N(O7 1)) < 5\_/§1
(Multivariate versions appear in Chatterjee—E. Meckes, 2008.)

The newer theorem considers the distributions of random
variables Tr(AUAU*).

The proofs of both are via Stein’s method.
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Our penultimate (?) paper

Around 2007 we tossed around an idea for a proof using Stein’s
method, but it took us twelve years to figure out which theorem
we should be using it to prove:

“Theorem” (E. and M. Meckes, 2021)

Let A be an n x n random matrix whose distribution is
spherically symmetric. If p is a polynomial, then the distribution
of the linear eigenvalue statistic Tr p(A) is quantifiably almost
Gaussian.
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To be continued...

We started working on another paper involving Stein’s method
and eigenvalues of random matrices in February 2020.

An early observation from this project: most of the applications
of the Infinitesimal Version of Stein’s Method of Exchangeable
Pairs are subsumed in a single normal approximation theorem
which makes no mention of exchangeable pairs:

Proposition (Univariate version, for simplicity)
Suppose X is a uniform random point in a compact Riemannian
manifold Q, f : Q — R is smooth, and A\ > 0. Then

drv (f(X), N(0, 1)) < %E (|Af(X) M| + IV = )\D
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To be continued...

This is a slight generalization of main results from two 2009
papers by Elizabeth.

It is essentially proved (using exchangeable pairs) in those
papers as well as in papers of Fulman (2009 and 2012) and
Débler and Stolz (2011).

The main results of these papers (plus E. Meckes 2008 and E.
and M. Meckes 2020) are all consequences of this master
normal approximation lemma and its multivariate version.






