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We weren’t the only ones at that breakfast table:
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Meckes family fun fact

Juliette got her first passport as
a baby to go with us to a
conference in Banff...

Advances in Stochastic Inequalities and Their
Applications

and so did Peter.

High Dimensional Probability VI

(This wasn’t the first conference for either of them.)
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R.C. Elder = “Dad”
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It goes back farther than that:

Annals of Mathematics, vol. 31 no. 4, Oct. 1930, pp. 641–654

John D. Elder = “Grandpa John”

Jay Tepperman =
“Grandpa Jay”

Helen M. Tepperman =
“Grandma”



The dark side to this kind of background...

Young Katherine Tepperman automatically stopped listening to
the dinner table conversation whenever she heard
“glucose-6-phosphate”.

Downloaded from journals.physiology.org/journal/ajplegacy at Oxford Univ Bodleian Lib (163.001.081.136) on May 10, 2021.

American Journal of Physiology, vol. 202 no. 3, March 1962, pp. 401–406

She had to unlearn this habit on her way to becoming a
biologist!
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The dark side to this kind of background...

Young Elizabeth Elder (later Meckes) tuned out when she
heard “Na, K-ATPase”.

Combined Allosteric and Competitive Interaction between Extracellular
Na! and K! During Ion Transport by the "1, "2, and "3 Isoforms of the
Na, K-ATPase

David M. Balshaw,* Lauren A. Millette,† Katherine Tepperman,† and Earl T. Wallick*
*Department of Pharmacology and Cell Biophysics, College of Medicine, and †Department of Biological Sciences, McMicken College of
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ABSTRACT A combined allosteric and competitive model describes the interaction between extracellular Na! and Rb!

during ion transport mediated by the Na, K-ATPase. The model was developed from experiments based on 86Rb uptake by
whole cells transfected with rat isoforms of the enzyme. In the absence of Na!, only a single transport site for extracellular
Rb! exists. After the occupation of the Na!-specific allosteric site, the Rb! transport pocket opens to allow occupation by
an additional Rb! and the subsequent transport of the two Rb! ions into the cells. Na! can also directly compete with Rb!

for binding to at least one of the transport sites. While the model derived here applies to each of the three rat isoforms of the
Na, K-ATPase expressed in HeLa cells, subtle differences exist among the isoforms. The !3* isoform has an increased
intrinsic affinity for Rb! and a lower affinity for the allosteric Na! site than !1 or !2*. The stimulation of uptake observed
according to the best-fit model is due to the displacement by Rb! of inhibitory Na! bound to the transport site.

INTRODUCTION

The Na, K-ATPase is the plasmalemmal enzyme that cata-
lyzes the nonequivalent transport of Na! and K! through
the membrane of all animal cells. This transport activity is
responsible for maintaining ion gradients and thus regulates
a wide variety of cellular functions, including cardiac con-
tractility, excitability of cells, and maintenance of osmotic
balance. Under physiological conditions, the enzyme pumps
three sodium ions out of the cell in exchange for the move-
ment of two potassium ions into the cell.

The generalized reaction mechanism of the Na,
K-ATPase, referred to as the Post-Albers scheme (for a
review see Glynn, 1993; Lingrel and Kuntzweiler, 1994),
suggests that the enzyme exists in at least two different
conformations, each of which can exist in either a phos-
phorylated or an unphosphorylated form. These states are
designated E1, which has a high affinity for intracellular
Na!, and E2, which has a high affinity for extracellular K!.
The cycling of the enzyme between the E1 forms, binding
cations at the intracellular face, and E2 forms, binding
cations at the extracellular face, results in the transport of
the ions through the membrane.

Historically, the mechanism of transport has been ana-
lyzed by investigating the transport of radioactive 86Rb,
which is a congener of K! (Bell et al., 1977). Studies of
86Rb transport have demonstrated that the overall rate-
limiting step in the enzymatic cycle is the release of Rb! at

the intracellular surface; therefore, the studies of Rb! trans-
port have focused on this step (Forbush, 1987). Recently,
however, 86Rb uptake has been used to study the mecha-
nism of potassium binding and transport. Tepperman et al.
(1997) analyzed the effect of low concentrations of extra-
cellular K! on 86Rb uptake. Although the stoichiometry was
not directly measured, the model that yielded the best fit to
the data was consistent with the concept that the sodium
pump was capable of transporting three Na! for one K!.
Plotting the displacement of 86Rb uptake by nonradioactive
competitor (either Rb! or K!) revealed a stimulation of
uptake that could be explained in terms of positive cooper-
ativity. The displacement of uptake refers to plotting the
total amount of radioactivity entering the cells without the
traditional transformation into total ion transport, which
masks the stimulation. This cooperativity could be rational-
ized as an increased affinity for the second extracellular Rb
ion after the binding of the first ion. Conversely, the stim-
ulation could be rationalized as an increase in the rate of ion
flux when two Rb! were bound versus when only a single
ion occupies the transport pocket. In this earlier study, it
was not possible to distinguish between these two forms of
cooperativity. If, however, the concentrations of radioactive
and nonradioactive Rb! are independently varied, the data
fit models that suggest that both forms of cooperativity
exist, in different proportions for each of the three major
isoforms of the catalytic subunit (Balshaw and Wallick,
unpublished observations).

Extracellular Na! is known to act as a low-affinity com-
petitive inhibitor of K! binding at the extracellular surface
(Sachs, 1977). In addition to the competitive interaction
between Na! and K! at both the intracellular and extracel-
lular ion binding sites, extracellular Na! has been impli-
cated as an allosteric effector of K! uptake. The hypothesis
that external Na! has an allosteric effect initially came from
Cavieres, who proposed that Na! acts only as an allosteric
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She sidestepped having this as a potential problem by going
into pure mathematics.
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It begins

2004: Elizabeth was a PhD student at Stanford and I was a
lecturer.

Persi Diaconis gave a series of lectures on Stein’s method.

These led Elizabeth directly into her thesis work and
collaboration with Sourav Chatterjee.

I also went to those lectures and had an idea how to apply
Stein’s method to the central limit problem for convex bodies:

Are marginals of the uniform measure on a
high-dimensional convex body typically almost
Gaussian?

and quickly got stuck.



It begins

2004: Elizabeth was a PhD student at Stanford and I was a
lecturer.

Persi Diaconis gave a series of lectures on Stein’s method.

These led Elizabeth directly into her thesis work and
collaboration with Sourav Chatterjee.

I also went to those lectures and had an idea how to apply
Stein’s method to the central limit problem for convex bodies:

Are marginals of the uniform measure on a
high-dimensional convex body typically almost
Gaussian?

and quickly got stuck.



It begins

2004: Elizabeth was a PhD student at Stanford and I was a
lecturer.

Persi Diaconis gave a series of lectures on Stein’s method.

These led Elizabeth directly into her thesis work and
collaboration with Sourav Chatterjee.

I also went to those lectures and had an idea how to apply
Stein’s method to the central limit problem for convex bodies:

Are marginals of the uniform measure on a
high-dimensional convex body typically almost
Gaussian?

and quickly got stuck.



It begins

2004: Elizabeth was a PhD student at Stanford and I was a
lecturer.

Persi Diaconis gave a series of lectures on Stein’s method.

These led Elizabeth directly into her thesis work and
collaboration with Sourav Chatterjee.

I also went to those lectures and had an idea how to apply
Stein’s method to the central limit problem for convex bodies:

Are marginals of the uniform measure on a
high-dimensional convex body typically almost
Gaussian?

and quickly got stuck.



It begins

2004: Elizabeth was a PhD student at Stanford and I was a
lecturer.

Persi Diaconis gave a series of lectures on Stein’s method.

These led Elizabeth directly into her thesis work and
collaboration with Sourav Chatterjee.

I also went to those lectures and had an idea how to apply
Stein’s method to the central limit problem for convex bodies:

Are marginals of the uniform measure on a
high-dimensional convex body typically almost
Gaussian?

and quickly got stuck.



It begins
I asked Elizabeth for help and the result was:

“Theorem” (E. and M. Meckes, 2007)
If n is big and a probability measure µ on Rn has certain kinds
of symmetries, and satisfies some other hypotheses, then
certain (one-dimensional) marginals of µ are quantifiably
almost Gaussian.

Remarks:
Think of this as a Berry–Esseen-type theorem with
stochastic independence replaced by a geometric
symmetry condition.
The “other hypotheses” are now known to hold for uniform
measures on convex bodies.
Elizabeth and I each wrote follow-ups to this work but didn’t
work together on this again.
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Some time (and one child) later...

“Theorem” (Chatterjee–Ledoux, 2009)
If 1� k ≤ n and A is an n × n Hermitian matrix, then the
eigenvalues of almost all k × k principal submatrices of A are
almost the same.

Elizabeth and I realized we could prove a coordinate-free
version of this by combining some basic matrix analysis with
tools she was using to study random marginals:

“Theorem” (E. and M. Meckes, 2011)
If 1� k ≤ n and A is an n × n Hermitian matrix, then the
eigenvalues of almost all k-dimensional compressions of A are
almost the same.
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A little while after that...
Elizabeth improved her methods and thus her results for
random marginals (measure-theoretic Dvoretzky theorem).

We applied the same improvements to eigenvalues of random
compressions, then extended the same methods to
eigenvalues of other random matrix models.

For example:

Theorem (E. and M. Meckes, 2013)
Let U be an n × n random matrix uniformly chosen from any of
the classical compact matrix groups. Then

P
[
W1(µU , ν) ≥ Cn−2/3 + t

]
≤ e−cn2t2

,

where t > 0, µU is the spectral measure of U, ν is the uniform
measure on the circle, and W1 denotes
Wasserstein/Kantorovich distance.
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Summer 2011

The work for that paper was done during the summer of 2011.

Peter was born on July 20.

Elizabeth wrote on her web page:

I think of this paper as being unofficially dedicated to
our children: Peter, who stubbornly refused to be born
while most of the work in this paper was done; and
Juliette, who told me one morning that it would make
her happy if I proved a theorem that day (I’m pretty
sure it was what became Theorem 3.5).
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Then the next year...

Sandrine Dallaporta used determinantal point process
techniques to improve some of our results for eigenvalues of
Gaussian random matrices.

We adapted her techniques to the classical compact groups,
added in some cool results of Eric Rains, and mixed with
log-Sobolev inequalities to prove:

Theorem (E. and M. Meckes, 2013)
Let U be an n × n random matrix uniformly chosen from any of
the classical compact matrix groups and let 1 ≤ m ≤ n. Then

P

[
W1(µUm , ν) ≥ C

√
m(log(n/m) + 1)

n
+ t

]
≤ e−cn2t2/m.



Then the next year...

Sandrine Dallaporta used determinantal point process
techniques to improve some of our results for eigenvalues of
Gaussian random matrices.

We adapted her techniques to the classical compact groups,

added in some cool results of Eric Rains, and mixed with
log-Sobolev inequalities to prove:

Theorem (E. and M. Meckes, 2013)
Let U be an n × n random matrix uniformly chosen from any of
the classical compact matrix groups and let 1 ≤ m ≤ n. Then

P

[
W1(µUm , ν) ≥ C

√
m(log(n/m) + 1)

n
+ t

]
≤ e−cn2t2/m.



Then the next year...

Sandrine Dallaporta used determinantal point process
techniques to improve some of our results for eigenvalues of
Gaussian random matrices.

We adapted her techniques to the classical compact groups,
added in some cool results of Eric Rains,

and mixed with
log-Sobolev inequalities to prove:

Theorem (E. and M. Meckes, 2013)
Let U be an n × n random matrix uniformly chosen from any of
the classical compact matrix groups and let 1 ≤ m ≤ n. Then

P

[
W1(µUm , ν) ≥ C

√
m(log(n/m) + 1)

n
+ t

]
≤ e−cn2t2/m.



Then the next year...

Sandrine Dallaporta used determinantal point process
techniques to improve some of our results for eigenvalues of
Gaussian random matrices.

We adapted her techniques to the classical compact groups,
added in some cool results of Eric Rains, and mixed with
log-Sobolev inequalities to prove:

Theorem (E. and M. Meckes, 2013)
Let U be an n × n random matrix uniformly chosen from any of
the classical compact matrix groups and let 1 ≤ m ≤ n. Then

P

[
W1(µUm , ν) ≥ C

√
m(log(n/m) + 1)

n
+ t

]
≤ e−cn2t2/m.



An observation about lemmas

A useful lemma often gets more citations than a big theorem.

My most often-cited result in the last few years is probably a
lemma from that last paper (concentration for Lipschitz
functions of independent unitary random matrices), proved
while we drove from Juliette’s preschool to the university one
morning.

But most of the recent citations go here:
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Sabbatical in Toulouse, 2013–14

By then it got to be habit to discuss whatever we were working
on with each other, and we started writing the majority of our
papers together.

During sabbatical we worked together on:

Comparison of metrics between log-concave distributions
(motivated by the central limit theorem for convex bodies)

Adapting the DPP techniques to quantify how uniformly
distributed the eigenvalues of Ginibre random matrices are
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Wrapping up
Our series of papers on convergence rates for spectral
measures of random matrices finished up with:

Theorem (E. and M. Meckes, 2017)
Let U be an n × n random matrix uniformly chosen from the
unitary group. Then

c
log n

n
≤ EdK (µU , ν) ≤ C

log n
n

,

where dK denotes Kolmogorov distance.

again proved using DPP techniques.

So

dK (µU , ν) ≈ log n
n

but W1(µU , ν) .

√
log n
n

.
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Wrapping around

In the meantime, Elizabeth got interested in a conjecture of
Coram and Diaconis:

Take n consecutive eigenvalues of a random 2n × 2n
unitary matrix and stretch them around the whole unit
circle. The result is statistically indistinguishable from
the eigenvalues of a random n × n unitary matrix.

Inspired by this we proved:

Theorem (E. and M. Meckes, 2016)
Let Nn,θ be the number of eigenvalues of an n × n random
unitary matrix in an arc of length θ ∈ (0, π). Then

W1
(
Nn,θ,N2n,θ/2

)
≤ C
√

nθ2.
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And coming full circle

There is a natural model of n × n Hermitian random matrices
with prescribed eigenvalues.

“Theorem” (E. and M. Meckes, 2020)
Let Λ be a fixed n × n Hermitian matrix and let U be an n × n
random matrix uniformly chosen from the unitary or orthogonal
group. Then the marginals of the entries of the random matrix
UΛU∗ are quantifiably almost Gaussian.

We discussed perspectives and applications related to
quantum information theory, free probability, and randomized
linear algebra.
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And coming full circle

This is a quadratic version of results from Elizabeth’s thesis:

Theorem (E. Meckes, 2008)
Let U be an n × n random matrix uniformly chosen from the
orthogonal group, and let A be a fixed n × n matrix with
‖A‖HS =

√
n. Then

dTV
(
Tr(AU),N(0,1)

)
≤ 2
√

3
n − 1

.

(Multivariate versions appear in Chatterjee–E. Meckes, 2008.)

The newer theorem considers the distributions of random
variables Tr(AUΛU∗).

The proofs of both are via Stein’s method.



And coming full circle

This is a quadratic version of results from Elizabeth’s thesis:

Theorem (E. Meckes, 2008)
Let U be an n × n random matrix uniformly chosen from the
orthogonal group, and let A be a fixed n × n matrix with
‖A‖HS =

√
n. Then

dTV
(
Tr(AU),N(0,1)

)
≤ 2
√

3
n − 1

.

(Multivariate versions appear in Chatterjee–E. Meckes, 2008.)

The newer theorem considers the distributions of random
variables Tr(AUΛU∗).

The proofs of both are via Stein’s method.



Our penultimate (?) paper

Around 2007 we tossed around an idea for a proof using Stein’s
method, but it took us twelve years to figure out which theorem
we should be using it to prove:

“Theorem” (E. and M. Meckes, 2021)
Let A be an n × n random matrix whose distribution is
spherically symmetric. If p is a polynomial, then the distribution
of the linear eigenvalue statistic Tr p(A) is quantifiably almost
Gaussian.
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To be continued...

We started working on another paper involving Stein’s method
and eigenvalues of random matrices in February 2020.

An early observation from this project: most of the applications
of the Infinitesimal Version of Stein’s Method of Exchangeable
Pairs are subsumed in a single normal approximation theorem
which makes no mention of exchangeable pairs:

Proposition (Univariate version, for simplicity)
Suppose X is a uniform random point in a compact Riemannian
manifold Ω, f : Ω→ R is smooth, and λ > 0. Then

dTV
(
f (X ),N(0,1)

)
≤ 1
λ
E
(
|∆f (X ) + λf (X )|+

∣∣∣‖∇f (X )‖2 − λ
∣∣∣).
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To be continued...

This is a slight generalization of main results from two 2009
papers by Elizabeth.

It is essentially proved (using exchangeable pairs) in those
papers as well as in papers of Fulman (2009 and 2012) and
Döbler and Stolz (2011).

The main results of these papers (plus E. Meckes 2008 and E.
and M. Meckes 2020) are all consequences of this master
normal approximation lemma and its multivariate version.
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Döbler and Stolz (2011).

The main results of these papers (plus E. Meckes 2008 and E.
and M. Meckes 2020) are all consequences of this master
normal approximation lemma and its multivariate version.



To be continued...

This is a slight generalization of main results from two 2009
papers by Elizabeth.

It is essentially proved (using exchangeable pairs) in those
papers as well as in papers of Fulman (2009 and 2012) and
Döbler and Stolz (2011).

The main results of these papers (plus E. Meckes 2008 and E.
and M. Meckes 2020) are all consequences of this master
normal approximation lemma and its multivariate version.



Thank you

Elizabeth Samantha Elder Meckes
June 23, 1980 – December 16, 2020


