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Elizabeth’s talk title at that conference

When is Normal Normal?

A more recent talk at the Simons Institute, October 2020

Projections of Probability Distributions:

A Measure-theoretic Version of Dvoretzky’s theorem
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The Main Objects of Interest

in this Talk



What do we mean by projections?

One-dimensional projections

High-dimensional vector

X (n) taking values in Rn

e.g. uniformly distributed in a convex body in Rn

(compact convex set with a non-empty interior)

One-dimensional projections

Let θ(n) be a vector on Sn−1

The projection is then

W
(n)
θ = 〈X (n), θ(n)〉

Rn

Rn
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What do we mean by projections?

Multi-dimensional projections

High-dimensional vector

X (n) taking values in Rn

Multidimensional Projections

The Stiefel manifold of orthonormal k-frames in Rn

Vn,k := {A ∈ Rn×k : ATA = Ik},

where Ik is the k × k identity matrix.

For k < n, choose an,k ∈ Vn,k . Then

W (n)
a = an,kX

(n) defines a k-dimensional projection
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Projections onto lower-dimensional bases/subspaces
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Motivation and Context

Theme of this talk

Understand high-dimensional objects by looking at their (random)

lower-dimensional projections
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Motivation, Context and

Elizabeth Meckes’ Work



Motivation and Context

First Motivation

High-dimensional Probability and Statistics

Understanding high-dimensional data

by studying its

lower-dimensional projections

is of relevance, e.g., in

sparse recovery, information retrieval, statistics, projection-pursuit
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Understanding high-dimensional data

Projection-Pursuit Algorithm

Kruskal (1969)

Friedman and Tukey (1974)

Diaconis and Friedman (1984, 1987)

Projection Pursuit: Find the “interesting” directions

Figure from Projection Pursuit by P. Huber
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Motivation and Context

The focus of this talk:

Second Motivation

Asymptotic Convex Geometry

or

Asymptotic Geometric Analysis

concerned with

the geometry of Banach spaces

and convex bodies

in high dimensions
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Motivation – Study of Convex Bodies in High Dimensions
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Dvoretsky’s Theorem

Dvoretsky’s Theorem

(Aryeh Dvortesky ’61; Vitali Milman ’71)

Every sufficiently high-dimensional normed vector space has subspaces

that are approximately Euclidean

Every convex body (compact convex set with non-empty interior) of

dimension N has a section d(N) with d(N)→∞ as N →∞ that is

arbitrarily close to being isometric to an ellipsoid.
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Two-dimensional Projections of the Cube

Most projections look Gaussian
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A Rigorous Universality Result

The CLT for Convex Sets [Klartag ’07]

There exist εn, δn → 0 such that for every isotropic logconcave random

vector X (n), there exists a measurable subset A ⊂ Sn−1 with measure

σn−1(A) ≥ 1− δn, such that for all θn ∈ A,

dTV (〈X n, θn〉,Z n) ≤ εn,

where Z n ∼ N (0, In) is the standard Gaussian in Rn.

Can be viewed as a

“measure-theoretic Dvoretzky theorrem”, to quote E. Meckes (2012)

where the Gaussian distribution now plays the role that the Euclidean

norm did in Dvoretzky
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Some Intuition

X (n) = (X1, . . . ,Xn) ∼ Unif([−1, 1]n), θ(n) ∈ Sn−1, ι(n) = (1, . . . , 1)/
√
n

Rn

〈X (n), ι(n)〉 recovers the usual CLT

Rn

〈X (n), θ(n)〉
14 / 42



History of the CLT for convex sets

• Early results on approximate Gaussian marginals by Borel;

Sudakov; Weiszacker; Diaconis & Freedman; Klartag;

• Anttila, Ball and Perissinaki (2003) and Brehm and Voigt

(2000) showed that if X (n) is symmetric and satisfies a “thin-shell

condition” then most projections are almost Gaussian.

Thin-shell condition

X (n) satisfies an ε-thin-shell estimate if there exists m > 0 such that

P

(∣∣∣∣∣
∥∥X (n)

∥∥
√
n
−m

∣∣∣∣∣ > εm

)
< ε.

• Anttila, Ball and Perissinaki verified the thin-shell condition for

symmetric convex bodies such as `np balls, 1 < p <∞, and other

uniformly convex bodies with some restrictions on their modulus of

convexity.
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History of the CLT for convex sets

1. Klartag (2007) proved the CLT for convex sets by showing that

isotropic log-concave measures satisfy the thin-shell condition

His work also allowed for multi-dimensional projections

2. E. Meckes wrote two single-author papers on this topic:

• “Projections of probability distributions: A measure-theoretic

Dvoretzky theorem,” E. Meckes, Geometric aspects of functional

analysis, 317-326, 2012.

• “Approximation of projections of random vectors,” E. Meckes,

Journal of Theoretical Probability, 25 (2), 333-352, 2013.

3. in addition to an earlier joint paper with Mark Meckes:

“The central limit problem for random vectors with symmetries”,

E.S. Meckes and M.W. Meckes, Journal of Theoretical Probability,

20 (4), 697-720, 2007.
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Meckes’ Result on Multidimensional Projections

X (n) an n-dimensional random vector, ak,n ∈ Vk,n Stiefel manifold

W (n)
a = ak,nX

(n)

• She used Stein’s method to get quantitative bounds on the distance

between W
(n)
a and the k-dimensional Gaussian distribution.

• This allowed her to study the case when k = kn grows with the

dimension

• She unearthed the beautiful phase transition result that Gaussian

projections are guaranteed if and only if for some δ < 2,

kn ≤ δ
log n

log log n
.

Moreover, this condition is tight !!

• Klartag (2007) had showed that when specialized to logconcave

measures, Gaussian behavior for high-dimensional random

projections is possible even when kn = nα
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Beyond Universality



Beyond the CLT ...

1. The CLT for convex sets is a beautiful universality result that shows

“most” marginals of a convex body are Gaussian.

2. But it is in a way bad news, as it says that looking at (fluctuations

of) projections does not allow one to distinguish between different

convex bodies ...

3. Alternative: Try to establish large deviation principles and see if they

contain interesting geometric information
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Large deviation principles



Recall the Definition

Large deviation principle (LDP)

A sequence of random variables (W (n))n∈N is said to satisfy a large

deviation principle with speed sn and a good rate function (GRF)

I : R 7→ [0,∞) if for any measurable set A

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1

sn
logP(W (n) ∈ A)

≤ lim sup
n→∞

1

sn
logP(W (n) ∈ A) ≤ − inf

x∈Ā
I(x),

where I is lower semi-continuous and with compact level sets.

For a nice set A,

P(W (n) ∈ A) ≈ e−snI (A).
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A Classical LDP: Cramér’s Theorem

Consider an i.i.d. sequence {Xi}

P

(
1

n

n∑
i=1

Xi ≥ x

)
≈ e−nI (x)

• The probability of O(1) fluctuations of the empirical mean shows an

exponential decay, whose rate depends on the distribution of Xi

Theorem (Cramér (’38))
If Λ(t) = logE[etX1 ] is finite in a neighborhood of 0, { 1

n

∑n
i=1 Xi}n∈N

satisfies an LDP with speed n and rate function

Iι(x) = Λ∗(x)
.

= sup
t∈R

[xt − Λ(t)].
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Large Deviation Principles for Random Projections

Consider first 1-dimensional projections: θ(n) ∈ Sn−1

W
(n)
θ = κn〈X (n), θ(n)〉

Rn

〈X (n), ι(n)〉

When X (n) is a product measure µ⊗n, Cramér’s theorem (1938)

• implies an LDP with κn = n−1/2 if θ(n) = ι(n) = (1, 1, . . . , 1)/
√
n

• and (nearly) implies an LDP if Θ(n) is a random vector on Sn−1

distributed according to σn−1 the unique rotation invariant measure

on Sn−1
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Beyond Product Measures: Random Projections

Question:

What sequences of random variables {X (n)}n∈N are such that their

multidimensional projections satisfy a large deviation principle (LDP)?

The Stiefel manifold of orthonormal k-frames in Rn

Vn,k := {A ∈ Rn×k : ATA = Ik},

where Ik is the k × k identity matrix.

Random orthonormal frames/bases are chosen with respect to the

invariant measure σn,k on the (compact) Stiefel manifold.
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Asymptotic thin shell condition



Asymptotic thin shell condition

Recall Question:

What sequences of random variables {X (n)}n∈N are such that their

multidimensional projections satisfy a large deviation principle (LDP)?

Assumption A

The sequence of scaled norms {‖X (n)‖2/
√
n} satisfies an LDP at speed

sn with rate function JX : R→ [0,∞].

We say Assumption A* holds if Assumption A holds with sn = n.
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The sequence of scaled norms {‖X (n)‖2/
√
n} satisfies an LDP at speed

sn with rate function JX : R→ [0,∞].

We say Assumption A* holds if Assumption A holds with sn = n.

Suppose JX has a unique minimum at m > 0.

Fix ε > 0. Then for n large enough, X (n) satisfies the ε-thin-shell

estimate, that is,

P

(∣∣∣∣∣
∥∥X (n)

∥∥
2√

n
−m

∣∣∣∣∣ ≥ ε
)
≤ ε, for n large.

(for X (n) uniform on an isotropic convex body, m = 1)
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Recall Question:

What sequences of random variables {X (n)}n∈N are such that their

multidimensional projections satisfy a large deviation principle (LDP)?

Assumption A

The sequence of scaled norms {‖X (n)‖2/
√
n} satisfies an LDP at speed

sn with rate function JX : R→ [0,∞].

We say Assumption A* holds if Assumption A holds with sn = n.

In some cases, we need a rescaled version of Assumption A.

Assumption B

For certain sequence {bn}, the sequence of scaled norms

{bn‖X (n)‖2/
√
n} satisfies an LDP at speed sn with rate function

JX : R→ [0,∞].
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LDPs for random projections onto growing subspaces

Let Vn,k = {A ∈ Rn×k : ATA = Ik} denote the Stiefel manifold of

k-frames in Rn.

Fix n ∈ N, 1 ≤ kn ≤ n, and let

An,kn = [An,kn(i , j)]i=1,...,n; j=1,...,kn

be an n × kn random matrix drawn from the Haar measure on the Stiefel

manifold Vn,kn (invariant to orthogonal transformations)

The random

matrix AT
n,kn
∈ Vn,kn linearly projects a vector from n to kn dimensions.

Three regimes:

1. {kn} is constant at k ;

2. {kn} grows sublinearly, 1� kn � n;

3. {kn} grows linearly with rate λ, for some λ ∈ (0, 1], kn/n→ λ.

Goal: To prove LDP for

(i) {n−1/2AT
n,kn

X (n)} when kn is constant at k .

(ii) {Ln := 1
kn

∑kn
j=1 δ(AT

n,kn
X (n))j} when kn is growing.

(iii) {n−1/2‖AT
n,kn

X (n)‖q} in all regimes.
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Constant regime

Theorem [constant, kn ≡ k] (Kim, Liao, R ’20)

Suppose Assumption A*/B holds, with sequence {sn} and GRF JX .

Then {n−1/2AT
n,kX

(n)} satisfies an LDP in Rk at speed sn, with GRF

IAX ,k(x) :=

inf0<c<1

{
JX
(
‖x‖2

c

)
− 1

2 log
(
1− c2

)}
, if A* holds,

infc>0

{
JX
(
‖x‖2

c

)
+ c2

2

}
, if B holds.

Define Y n
q,k := n−1/2‖AT

n,kX
(n)‖q

Corollary [LDP for q-norms of the projection]

{Y n
q,k}n∈N satisfies an LDP at speed sn with GRF

JYq,k
(x) := inf

z∈Rk
{IAX ,k(z) : ‖z‖q = x} , x ∈ R+.
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Examples satisfying the

asymptotic thin shell condition



Examples: 1. Product measures & 2. `np balls

Proposition [i.i.d. case] (corollary of Cramér ’38)

Let X1,X2, . . . be a sequence of i.i.d. real-valued random variables, and

let X (n) := (X1, . . . ,Xn). Suppose Λ(t) := logE[etX
2
1 ] <∞. Then,

{X (n)} satisfies Assumption A*, i.e., {‖X (n)‖2/
√
n} ∼ LDP at speed n.

Proposition [`np balls, p ∈ [1,∞)] (Kim, Liao, R ’20)

Let X (n,p) ∼ uniformly on scaled `np ball, Bn
p := {x ∈ Rn :

∑
|xi |p ≤ n}.

Then

1. for p ∈ [2,∞), {‖X (n,p)‖2/
√
n)} satisfies Assumption A*.

2. for p ∈ [1, 2), {‖X (n,p)‖2/
√
n)} satisfies Assumption B

Proof relies on a probabilistic representation for `np balls

X (n,p) (d)
= n1/pU1/n ξ(n,p)∥∥ξ(n,p)

∥∥
p

,

where U ∼ Uniform[0, 1] and ξ(n,p) = (ξ
(p)
1 , . . . , ξ

(p)
n ) where {ξ(p)

i } are

i.i.d. and has density fp(x) := 1
2p1/pΓ(1+1/p)

exp(−|x |p/p).
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= n1/pU1/n ξ(n,p)∥∥ξ(n,p)

∥∥
p

,

where U ∼ Uniform[0, 1] and ξ(n,p) = (ξ
(p)
1 , . . . , ξ

(p)
n ) where {ξ(p)

i } are

i.i.d. and has density fp(x) := 1
2p1/pΓ(1+1/p)

exp(−|x |p/p).
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Examples: 1. Product measures & 2. `np balls

Proposition [i.i.d. case] (corollary of Cramér ’38)
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LDPs for Euclidean norms Y
(n,p)

2,kn
= n−1/2‖AT

n,kX
(n,p)‖2

a double phase transition in the LDP speed: define κp = 2p/(2 + p)

Theorem (Kim, Liao, R ’20) related to Example 2

For p ∈ [1, 2), {Y (n,p)
2,kn
} ∼ LDP with

Projection subspace kn LDP speed sn LDP rate function

kn ≡ k nκp κ−1
p xκp

1� kn � nκp nκp κ−1
p xκp

kn = nκp nκp κ−1
p

xp

c̄(x)p − log(c̄(x))†

nκp � kn � n npk
−p/2
n

xp

p

kn ∼ λn np/2 xp

pλp/2

† : c̄(x) ∈ [1 + xp/(p+2),∞) is the unique positive solution to

cp+2 − cp − xp = 0.

Observation : x2p/(p+2) ≤ c̄(x)2 − 1 = xp/c̄(x)p ≤ xp
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LDPs carry geometric information

One-dimensional (k=1) projections of `np balls

Studied earlier by Gantert-Kim-R ’17

1. When p > 2, one-dimensional projections of `np balls satisfy an LDP

at speed n;

2. When p ∈ (1, 2), one-dimensional projections of `np balls satisfy an

LDP at speed nκp ;

Norms of high-dimensional (k=1) projections of `np balls

Studied by Alonso-Gutierrez-Prochno-Thale ’18) and Kim-Liao-R ’19

1. When the subspace is growing the speed of the LDP of the norms of

projections also depends on the relative growth of the subspace

dimension

2. The above double phase transition result provides the full picture

Open Question: What feature of the geometry of the `np ball is

captured by κp?
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Example 3.: Superquadratic Orlicz balls

Definition

We say V is an Orlicz function if V : R→ R+ is convex and satisfies

V (0) = 0 and V (x) = V (−x) for x ∈ R. Further, we say V : R→ R+

is superquadratic if V is differentiable, V (x)/x2 is strictly increasing

Define the associated symmetric Orlicz ball by

Bn
V :=

{
x ∈ Rn :

n∑
i=1

V (xi ) ≤ n

}
.

Unlike `np balls, does not admit a probabilistic representation in terms of

iid random variables!

29 / 42



Example 3.: Superquadratic Orlicz balls

Definition

We say V is an Orlicz function if V : R→ R+ is convex and satisfies

V (0) = 0 and V (x) = V (−x) for x ∈ R. Further, we say V : R→ R+

is superquadratic if V is differentiable, V (x)/x2 is strictly increasing

Define the associated symmetric Orlicz ball by

Bn
V :=

{
x ∈ Rn :

n∑
i=1

V (xi ) ≤ n

}
.

Unlike `np balls, does not admit a probabilistic representation in terms of

iid random variables!

29 / 42



Example 3.: Superquadratic Orlicz balls

Definition

We say V is an Orlicz function if V : R→ R+ is convex and satisfies

V (0) = 0 and V (x) = V (−x) for x ∈ R. Further, we say V : R→ R+

is superquadratic if V is differentiable, V (x)/x2 is strictly increasing

Define the associated symmetric Orlicz ball by

Bn
V :=

{
x ∈ Rn :

n∑
i=1

V (xi ) ≤ n

}
.

Unlike `np balls, does not admit a probabilistic representation in terms of

iid random variables!

29 / 42



Example 3.: Superquadratic Orlicz balls

Definition

We say V is an Orlicz function if V : R→ R+ is convex and satisfies

V (0) = 0 and V (x) = V (−x) for x ∈ R. Further, we say V : R→ R+

is superquadratic if V is differentiable, V (x)/x2 is strictly increasing

Define the associated symmetric Orlicz ball by

Bn
V :=

{
x ∈ Rn :

n∑
i=1

V (xi ) ≤ n

}
.

Unlike `np balls, does not admit a probabilistic representation in terms of

iid random variables!

29 / 42



Asymptotic Thin Shell Cond. holds for superquad. Orlicz balls

J (u, v) := sup
s∈R,t∈R

{
su + tv − log

(∫
R
esV (x)+tx2

dx

)}
= sup

s<0,t∈R

{
su + tv − log

(∫
R
esV (x)+tx2

dx

)}
for u, v ∈ R+

Proposition [Assumption A* holds] (Kim, Liao, R ’20)

Suppose X (n) ∼ Uniform(Bn
V ). Then {‖X (n)‖2/

√
n} ∼ LDP at speed n

with GRF JX = JX ,V , where

JX ,V (z) := J (1, z2)− inf
x∈R+

J (1, x), z ∈ R+.
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Example 4.: Gibbs measures

Gibbs measures arising as equilibria of interacting diffusions

Define a Hamiltonian Hn : Rn → (−∞,∞] given by

Hn(x) :=
1

n

n∑
i=1

F (xi ) +
1

n2

n∑
i=1

n∑
j=1,j 6=i

G (xi , xj), x ∈ Rn.

Further, for n ∈ N, let Pn ∈ P(Rn) be the probability measure given by

Pn(dx) :=
1

Zn
e−nHn(x)`(dx), x ∈ Rn,

where ` ∈ P(R) is a non-atomic, sigma-finite probability measure on R

Let Qn ∈ P(R) be the pushforward measure induced by Pn under the

mapping Rn 3 (x1, . . . , xn) 7→ 1
n

∑n
i=1 δxi ∈ P(R)
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Example: Gibbs measures

Theorem (Dupuis, Laschos, R ’20)

Under certain assumptions for the potentials F and G , {Qn} satisfies an

LDP in the Wasserstein space P2(R) at speed n with GRF I∗ defined by

I∗(µ) := I(µ)− inf
µ∈P2(R)

I(µ),

I(µ) := H(µ|`) +
1

2

∫
R×R

G (x , y)µ(dx)µ(dy) +

∫
R
F (x)µ(dx),

with H the relative entropy.

Corollary (Assumption A* holds for Gibbs measure)

Suppose X (n) is drawn from Pn. Then, {‖X (n)‖2/
√
n} ∼ LDP at speed

n with GRF

JX (x) := inf
{
J∗(µ) : µ ∈ P2(R), x =

√
M2(µ)

}
, x ≥ 0,

where M2(µ) is the second moment of µ.
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IV. Refined Large Deviations



IV. Refinements

So far ...

• Uniform measures on (suitably scaled sequences of) convex bodies

seem to satisfy many limit theorems that hold for product measures

...

• e.g. CLTs, LDPs ... with the latter containing more geometric

information about the high-dimensional body

• But LDPs do not capture all geometric information ...

e.g. the rate functions for `np balls and `np spheres coincide.

Can one get more information from lower-dimensional projections?

Perhaps look at refined estimates: sharp large deviations?
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Sharp large deviations accompanying Cramér’s theorem

Consider an i.i.d. sequence of non-lattice random variables {Xi} .

Theorem (Bahadur, Ranga-Rao ’60)

Let Λ be the log moment generating function of X1. Let a > 0 be such

that a = Λ′(τa) for some positive τa, and σ2
a = Λ′′(τa). Then we have

the following refinement of LDP

P

(
1

n

n∑
i=1

Xi ≥ a

)
=

e−nI(a)

σaτa
√

2πn
[1 + o(1)].

Question: Can we obtain a similar sharp estimate for (annealed)

random projections?
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A general result: Sharp density condition (SDC)

P
(
n−1/2AT

n,1X
(n) > a

)
?
=

e−nI
an
X (a)

σaτa
√

2πn
[1 + o(1)]

Assumption SDC

1. {‖X (n)‖2
2/n} satisfies an LDP with rate function J(x). Define

DJ := {x ∈ R : J(x) <∞}

2. The random variable ‖X (n)‖2
2/n has a density f n and let there exist

a differentiable function h and a constant α ∈ R such that the

following asymptotic estimate holds:

f n(x) = nαh(x)e−nJ(x)(1 + o(1))

uniformly in any compact neighborhood of x in DJ .

Remark: Assumption SDC-1. implies the asymptotic thin-shell condition
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Let Θ(n) be uniformly distributed on Sn−1.

Recall Asymptotic Thin Shell Theorem (Kim, Liao, R ’20)

Suppose Assumption A* holds, with GRF JX . Then the projection

{n−1/2
∑n

i=1 X
(n)
i Θn

i } satisfies an LDP at speed n, with GRF

I an
X (x) := inf

0<c<1

{
JX

(
‖x‖2

c

)
− 1

2 log
(
1− c2

)}
,

that is, this implies

P(n−1/2
n∑

i=1

X
(n)
i Θn

i > a) ∼ e−nI
an
X (a)

A Refinement: Theorem (Liao and R ’21)

Suppose {X (n)} satisfies Assumption SDC. For a > 0 such that

Ian
X (a) <∞. Then, there exists γan

a ∈ R+ such that

P

(
n−1/2

n∑
i=1

X
(n)
i Θn

i > a

)
=

1

γan
a n1−α e

−nIan
X (a)(1 + o(1)).
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Q. Are there examples satisfying Assumption SDC?
A. Yes. `np balls, p > 2, and superquadratic Orlicz balls
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Examples Satisfying Assumption SDC

Q. Are there examples satisfying Assumption SDC?

A. Yes. Superquadratic Orlicz balls, including `np balls, p > 2

Recall Definition of Orlicz balls

We say V is an Orlicz function if V : R→ R+ is convex and satisfies

V (0) = 0 and V (x) = V (−x) for x ∈ R. Further, we say V : R→ R+

is superquadratic if V is diffentiable and

V 2(x)/x →∞, as x →∞.

Define the associated symmetric Orlicz ball by

Bn
V :=

{
x ∈ Rn :

n∑
i=1

V (xi ) ≤ n

}
.

Remark: When V (x) = |x |p, Bn
V is indeed the `np ball of radius n1/p

Theorem (Liao and R’ 21)

Superquadratic Orlicz balls satisfy the SDC with α = 1/2.
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A Geometric Consequence - Intersection of `np balls

A phase transition result for intersections of `np balls

• Intersection of `np balls (Schechtman-Zinn ’90;

Schechtman-Schmuckenschläger ’91)

For p ∈ (0,∞], q ∈ (0,∞), there exists cpq > 0 such that

∣∣∣B̂n
p ∩ tB̂n

q

∣∣∣→ {
0, if t < cpq,

1, if t > cpq,

where B̂n
p is the normalized `np ball with volume 1.

• Critical case: when t = cpq (Schmuckenschläger ’01)∣∣∣B̂n
p ∩ cpqB̂

n
q

∣∣∣→ 1

2
.

Remark: The proof makes use of the special probabilistic representation

for `np balls, the WLLN and the CLT
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Resolving an Open Problem: Intersections of Orlicz Balls

Theorem (Liao and R ’21)

Given Orlicz functions V1 and V2 such that V1(x)/V2(x)→∞ as

x →∞ and R1 > 0, for every R2 > 0, there exists an explicit constant

cR1 > 0 such that as n→∞

∣∣Bn
V1

(R1) ∩ Bn
V2

(R2)
∣∣∣∣Bn

V1
(R1)

∣∣ →


0, if cR1 > R2

1
2 if cR1 = R2

1, if cR1 < R2.

Remark: No explicit probabilistic representation in the case of Orlicz

balls, and so the proof is quite different.

the 0 and 1 limits use large deviations estimates (see also

Kabluchko-Prochno ’20), but the critical case requires sharp large

deviation estimates.
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Summary & Future work

• CLT for convex sets is a universal and beautiful result, but

nonuniversal large deviation results enables one to classify or

distinguish between different measures.

• A general sufficient condition was developed for (annealed) large

deviation principles to hold for random projections – asymptotic thin

shell condition.

• Various examples are shown to satisfy this condition, including those

not admitting a convenient representation.

• Sharp large deviation estimates obtained for (norms) of random

projections under SDC, which was verified for Orlicz balls

• Open: Verification of the asymptotic thin shell condition and SDC

for broader classes of convex bodies.

• Considered applications to asymptotic convex geometry (volumetric

properties for intersections of convex bodies)

• Future directions: further applications to high-dimensional statistics

and data science ...
40 / 42



References - Previous results

M. Anttila, K. Ball, and I. Perissinaki.

The central limit problem for convex bodies.

Transactions of the American Mathematical Society, 355(12):4723 - 4735, 2003.

B. Klartag.

Power-law estimates for the central limit theorem for convex sets.

Journal of Functional Analysis, 245(1):284 - 310, 2007.

E. Meckes.

Projections of probability distributions: A measure-theoretic Dvoretzky theorem.

In Geometric Aspects of Functional Analysis, volume 2050 of Lecture Notes in Mathematics, pages

317?326. Springer, 2012.

N. Gantert, S. S. Kim, and K. R.

Large deviations for random projections of `np balls.

Annals of Probability, 45:4419 - 4476, 2017.

Z. Kabluchko, J. Prochno, and C. Thäle.
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