Southeastern Probability Conference

Limit theorems for Betti numbers of random simplicial complexes
(based on joint work with Elizabeth Meckes)
Over the past 15 years or so “stochastic topology”, the study of random shapes, has been an active field.

This has some proposed applications, including to topological data analysis.
We’re often interested in combinatorial stochastic topology, e.g. random simplicial complexes.
AIM Workshop on Topological Complexity of Random Sets
August 2009
Let X_n denote a set of n i.i.d. random points in \mathbb{R}^d. E.g. let X_n be a set of n i.i.d. uniform random points in the unit d-dimensional cube $[0,1]^d$.

Let $C(n,r)$ denote the random Čech complex. I.e. take the union of balls of radius r around the points in X_n.
I had been studying topological properties of $C(n, r)$, namely: what is the homology like?

Are there any k-dimensional holes, and if so how many?
I didn’t realize at the time that random Čech complexes had been previously studied...
Theorem. (K.) Let $r = n^{-\alpha}$, $d \geq 2$, and $1 \leq k \leq d-1$.

If $\alpha < 1/d$ or $\alpha > \frac{k + 2}{d(k + 1)}$ then w.h.p. $H_k(C(n, r)) = 0$.

If $\frac{1}{d} < \alpha < \frac{k + 2}{d(k + 1)}$ then w.h.p. $H_k(C(n, r)) \neq 0$.

Theorem. (K.) If $r \ll n^{-1/d}$ then $\mathbb{E}[\beta_k] \asymp n^{k+2} r^{d(k+1)}$.

Here $\beta_k = \beta_k [C(n, r)]$ denotes the kth Betti number, i.e. the number of k-dimensional holes.

After the AIM meeting, I asked Meckes if we could try to prove a CLT for Betti numbers.

We exchanged several emails and made some headway, and she invited me to visit her at CWRU in March 2010. During this time, we worked out most of the main ideas...
Theorem. If $r \ll n^{-1/d}$ then $\frac{\beta_k - \mathbb{E}[\beta_k]}{\sqrt{\text{Var}[\beta_k]}} \to \mathcal{N}(0,1)$.

Some interesting headway has been made on random geometric complexes since then...

This paper proves a CLT for the Betti numbers in the regime where $r \asymp n^{-1/d}$.

“The proofs combine probabilistic arguments from the theory of stabilizing functionals of point processes and topological arguments exploiting the properties of Mayer-Vietoris exact sequences.”
Some interesting headway has been made on random geometric complexes since then...

This paper studies random Čech complexes in a flat torus \mathbb{T}^d, and the threshold for homology $H_k(C(n,r))$ to become isomorphic with the homology of the ambient torus $H_k(\mathbb{T}^d)$.
Theorem (Bobrowski).
Consider the random Cech complex $C(n,r)$ in a flat torus \mathbb{T}^d made by identifying the opposite sides of $[0,1]^d$. Let $\mathcal{H}_{k,r}$ be the event that $H_k(C(n,r)) \cong H_k(\mathbb{T}^d)$.

Set $\Lambda = \omega_d nr^d$. Let $1 \leq k \leq d-2$.

- If $\Lambda \geq \log n + (k-1) \log \log n + \omega(1)$ then $\Pr(\mathcal{H}_{k,r}) \to 1$.
- If $\Lambda \leq \log n + (k-1) \log \log n - \omega(1)$ then $\Pr(\mathcal{H}_{k,r}) \to 0$.

- If $\Lambda \geq \log n + (d-1) \log \log n + \omega(1)$ then $\Pr(\mathcal{H}_{d-1,r}) \to 1$.
- If $\Lambda \leq \log n + (d-1) \log \log n - \omega(1)$ then $\Pr(\mathcal{H}_{d-1,r}) \to 0$.

Let $G(n,p)$ denote the Erdős–Rényi random graph.
I.e. $G(n,p)$ has vertex set $[n]=\{1,2,\ldots,n\}$ and every edge has probability p, independently.

Let $X(n,p)$ denote the random clique complex.
I.e. $X(n,p)$ is the maximal simplicial complex compatible with $G(n,p)$.
The Betti numbers of a random clique complex $\beta_k(X(n,p))$ when $n = 100$.

The Betti numbers of $X(n,p)$ plotted vertically against edge probability p; in this example $n = 100$. The peaks are β_0, β_1, β_2, β_3, β_4, β_5 in that order.
Theorem. (K.-Meckes) If $n^{-1/k} \ll p \ll n^{-1/(k+1)}$ then

$$\frac{\beta_k - \mathbb{E}[\beta_k]}{\sqrt{\text{Var}[\beta_k]}} \to \mathcal{N}(0,1).$$

The bouquet-of-spheres conjecture.

If $n^{-1/k} \ll p \ll n^{-1/(k+1)}$ and $k \geq 3$ then w.h.p. $X(n,p)$ is homotopy equivalent to a bouquet of k-dimensional spheres.

"... However, that does not explain why so many simplicial complexes that arise in combinatorics are homotopy equivalent to a wedge of spheres. I have often wondered if perhaps there is some deeper explanation for this." – Robin Forman
“Wonderful family and friends, some theorems.”
– Elizabeth Meckes’s six word memoir