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Over the past 15 years or so “stochastic 
topology”, the study of random shapes, 

has been an active field. 

This has some proposed applications, 
including to topological data analysis.



We’re often interested in combinatorial stochastic 
topology, e.g. random simplicial complexes.
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Let  denote a set of  i.i.d. random points in 

. E.g. let  be a set of  i.i.d. uniform 

random points in the unit -dimensional cube .

Xn n
ℝd Xn n

d [0,1]d

Let  denote the random Čech complex. I.e. 
take the union of balls of radius  around the 

points in .

C(n, r)
r

Xn





I had been studying topological properties 
of , namely: what is the homology like?C(n, r)

Are there any -dimensional holes, and 
if so how many?

k



I didn’t realize at the time that random  
Čech complexes had been previously studied…



Robins, Vanessa.  Betti number signatures of homogeneous Poisson 
point processes. Phys. Rev. E. 74 (2006), no. 1, 87–127. 

three orders of magnitude less than the value of E!1!"2" /#
and four orders less than E!2!"2" /#. A close inspection of
Fig. 7 shows that this error is significant only for the com-
puted values of E!1!"" /# with "$6.

IV. POISSON-DELAUNAY CELL ANALYSIS
OF ALPHA SHAPES

The probability distribution for the size and shape of a
cell in the Delaunay complex of a Poisson point process is
completely characterized by a result due to Miles #21$ and
given in Eq. !9". The criteria for a simplex from the Poisson-
Delaunay complex to belong to an alpha shape are based
only on the size and shape of that simplex, and that of its
adjacent simplices. The ergodicity of the Poisson-Delaunay

complex means that the expected number of k-dimensional
simplices, %, in a bounded region, R, that satisfy condition A,
is related to the probability that a randomly selected simplex
has property A,

EN%% ! R&% is A' = #k(R(Pr!A" ,

where #k is the intensity of the k-dimensional cells, not the
vertices !which have intensity #0=#". Since the Betti num-
bers of alpha shapes are determined by numbers of simplices
with certain properties, see !1", the Poisson-Delaunay cell
!PDC" distribution can be used to obtain results about the
Betti numbers of an alpha shape.

This section summarizes the relevant results about the
PDC distributions in two and three dimensions, and then
derives low-intensity expansions for the expectation per unit
area of !1 in 2D and expectation per unit volume of !1 and
!2 in 3D.

A. Distributional properties of PDCs

For an extensive review of Poisson-Delaunay cells, see
Ref. #22$.

TABLE II. Coefficients in the expansions of &k for the 3D
Poisson-Boolean model of balls with radius ' for the limit "
= 4

3(#'3→0. Results are from Ref. #18$.

"0 "1 "2 "3 "4

&1 /# 1 −8 32 −85.3333 170.6667
&2 /# 4 −49 302.2238 −1250.5030
&3 /# 22 −359.4203 2959.1209
&4 /# 139.7867 −2842.60
&5 /# 964.68

FIG. 6. !Color online" 3D Betti numbers. Results from 50 simu-
lations of, on average, 105 points in the unit cube. Mean values of
the Betti number per unit volume, !0 !dark blue dots", !1 !pale
magenta dots", and !2 !mid-toned red dots", are plotted as functions
of the reduced density "= 4

3('3 !top" and ball volume fraction )
=1−e−" !bottom". The two critical densities from percolation
theory are marked by dotted black lines at "1=0.341 889 !)1
=0.289 573" and "2=3.5032 !)2=0.9699".

FIG. 7. !Color online" 3D Betti numbers. The same results as in
Fig. 6 but plotted with logarithmic axes to show the power-law
scaling of !1 and !2 for small ". The solid black lines show the
leading order behavior of E!1 /#)0.5747"2, and E!2 /#
)0.015"3 derived in Secs. IV C and IV D.
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Kahle, M.  Random geometric complexes. Disc. 
Comp. Geom. 45 (2011), 553-573. 

Theorem. (K.) Let , , and . 

If  or  then w.h.p. .

If  then w.h.p. .

r = n−α d ≥ 2 1 ≤ k ≤ d − 1

α < 1/d α >
k + 2

d(k + 1)
Hk(C(n, r)) = 0

1
d

< α <
k + 2

d(k + 1)
Hk(C(n, r)) ≠ 0



Kahle, M.  Random geometric complexes. Disc. 
Comp. Geom. 45 (2011), 553-573. 

Theorem. (K.) If  then .r ≪ n−1/d 𝔼[βk] ≍ nk+2rd(k+1)

Here  denotes the th Betti number, 

i.e. the number of -dimensional holes.

βk = βk [C(n, r)] k
k



After the AIM meeting, I asked Meckes if we 
could try to prove a CLT for Betti numbers.

We exchanged several emails and made some 
headway, and she invited me to visit her 
at CWRU in March 2010. During this time, 
we worked out most of the main ideas…



Kahle, M. and Meckes, E.  Limit theorems for Betti numbers of 
random simplicial complexes. Homology Homotopy Appl. 15 
(2013),  343-374. 

Theorem. If  then            .r ≪ n−1/d βk − 𝔼[βk]
Var[βk]

→ 𝒩(0,1)

Kahle, M. and Meckes, E.  Erratum to “Limit theorems for Betti 
numbers of random simplicial complexes”. Homology Homotopy 
Appl. 18 (2016),  129-142. 



Some interesting headway has been made on 
random geometric complexes since then…

 Yogeshwaran, D.; Subag, Eliran; Adler, Robert J. Random 
geometric complexes in the thermodynamic regime. Probab. 

Theory Related Fields 167 (2017), no. 1-2, 107–142.

This paper proves a CLT for the Betti numbers in the regime 
where .r ≍ n−1/d

“The proofs combine probabilistic arguments from the theory of 
stabilizing functionals of point processes and topological 
arguments exploiting the properties of Mayer-Vietoris exact 

sequences.”



Some interesting headway has been made on 
random geometric complexes since then…

 Bobrowski, Omer. Homological connectivity of random Čech 
complexes. arXiv:1906.04861

This paper studies random Čech complexes in a flat torus 
, and the threshold for homology  to become 

isomorphic with the homology of the ambient torus .
𝕋d Hk(C(n, r))

Hk(𝕋d)



Theorem (Bobrowski).
Consider the random Cech complex  in a flat 
torus  made by identifying the opposite sides of 

. Let  be the event that .  

C(n, r)
𝕋d

[0,1]d ℋk,r Hk(C(n, r)) ≅ Hk(𝕋d)

• If  then .

• If  then .
Λ ≥ log n + (k − 1) log log n + ω(1) ℙ(ℋk,r) → 1
Λ ≤ log n + (k − 1) log log n − ω(1) ℙ(ℋk,r) → 0

Set . Let .Λ = ωdnrd 1 ≤ k ≤ d − 2

• If  then .

• If  then .
Λ ≥ log n + (d − 1) log log n + ω(1) ℙ(ℋd−1,r) → 1
Λ ≤ log n + (d − 1) log log n − ω(1) ℙ(ℋd−1,r) → 0

Bobrowski, Omer. Homological Connectivity in Random 
Cech Complexes. arXiv:1906.04861



Let  denote the Erdős-Rényi random 
graph. 

G(n, p)

I.e.  has vertex set   and 
every edge has probability , independently.

G(n, p) [n] = {1, 2, … , n}
p

I.e.  is the maximal simplicial 
complex compatible with .

X(n, p)
G(n, p)

Let  denote the random clique 
complex. 

X(n, p)
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Figure 1: (Color online.) The Betti numbers of X(n, p) plotted vertically against
edge probability p; in this example n = 100. The peaks are β0,β1,β2,β3,β4,β5 in
that order. Computation and graphic courtesy of Afra Zomorodian.

of E[βk] in that range was given. Here we prove a Central Limit Theorem for βk.
That is, we show that

βk − E[βk]√
Var[βk]

⇒ N (0, 1),

as n → ∞, where N (0, 1) is the normal distribution with mean 0 and variance 1.
The second model considered is the random Čech complex. This model is a higher-

dimensional analog of the random geometric graph; the underlying graph is a random
geometric graph and the presence of (k − 1)-dimensional faces is determined by k-
fold intersections of balls centered about the vertices. Čech complexes are homotopy
equivalent to Edelsbrunner and Mücke’s alpha shapes, widely applied in computa-
tional geometry and topology [7]. The analysis needed to obtain limit theorems for
the Betti numbers of random Čech complexes is more subtle than what is needed for
the Erdős–Rényi model; to prove the normal and Poisson approximation theorems
we must first establish limit theorems for certain hypergraph counts, extending some
of Mathew Penrose’s results for subgraph counts for geometric random graphs [17].

The final type of complex considered is the random Vietoris-Rips complex, denoted
V R(n, r). This is similar to the random Čech complex; the construction is to take
the clique complex of a random geometric graph. (A useful reference for geometric
random graphs is [17].) The topology is very different than for the clique complex
of the Erdős–Rényi random graph; for the contrast between X(n, p) and V R(n, r)
compare Figure 1 to Figure 2 at the beginning of Section 4. The analysis needed to
obtain limit theorems for the Betti numbers of V R(n, r) is essentially identical to
that needed for the random Čech complex. A minor example of this fact is that in
both cases, since β0 counts the number of connected components for the Čech and

The Betti numbers of a random clique complex  when .βk(X(n, p)) n = 100



Theorem. (K.-Meckes) If  then

.

n−1/k ≪ p ≪ n−1/(k+1)

βk − 𝔼[βk]
Var[βk]

→ 𝒩(0,1)

Kahle, M. and Meckes, E.  Limit theorems for Betti numbers of 
random simplicial complexes. Homology Homotopy Appl. 15 
(2013),  343-374. 

Kahle, M. and Meckes, E.  Erratum to “Limit theorems for Betti 
numbers of random simplicial complexes”. Homology Homotopy 
Appl. 18 (2016),  129-142. 



The bouquet-of-spheres conjecture. 

If  and  then w.h.p.  is homotopy 

equivalent to a bouquet of -dimensional spheres.

n−1/k ≪ p ≪ n−1/(k+1) k ≥ 3 X(n, p)
k

“… However, that does not explain why so many simplicial 

complexes that arise in combinatorics are homotopy equivalent 

to a wedge of spheres. I have often wondered if perhaps there 

is some deeper explanation for this.” – Robin Forman



“Wonderful family and friends, some theorems.”

– Elizabeth Meckes’s six word memoir


