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My last communication

Nov 11, 2020:

Thanks for asking about the workshop, but | don't think | really
have anything suitable to talk about. The bigger reason,
though, is that | am unfortunately in the middle of a really shitty
health crisis, and it seems fairly likely that I'll be pretty much out
of commission for a while, so | can’t make any commitments at

the moment. Sorry. (
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A simple question

What random projections of high-dimensional data or
high-dimensional distributions look like ?

1. Exploratory data analysis;

Concentration of measure, local theory of Banach spaces;
Proof technique in theory of CS;

Numerical method for scaling algorithms;

Proof technigue in compressive sensing and theory of
deep neural networks;

6. Tightest result by Elizabeth — (a) entropy methods and (b)
use geometric ideas/arguments.
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The problem

1) High dimensional data: X is a random vector in R? with
EX = 0 and E[|X[2] = 02d

2) Random projection: © = (04, ...,04) be a d x k random
projection matrix where

Xp = ((X,01),....(X,0,))=0"TX

3) Marginals are Gaussian: for what values of k is following
distance d(Xy,cZ) small, where Z is the standard Gaussian
random vector in R

4) Answer: pre-Elizabeth k = o(log(d)) ;

Elizabeth k < 2l




Data Science to Math



Tukey and data depth

Are there interesting
projection directions 7

Data D, = {z1,...,x,}, and random projection matrix P

depth(0, D,,; P) = ~#{i: P1x; > P10}
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Random projections and Exploratory Data Analysis
(EDA)

1) Implementing data depth: Donoho, Huber, Friedman,
Kruskal, Stuetzle, Fisherkeller, Diaconis

2) Projection pursuit: Donoho, Huber, Friedman, Kruskal,
Stuetzle, Fisherkeller, Diaconis

3) WHP no interesting directions: Diaconis & Freedman,
Sudakov



An asymptotic result

Theorem (Diaconis and Freedman)
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An asymptotic result

Theorem (Diaconis and Freedman)

Let X1, ..., X, € RY and that n(v) and d(v) goto infinity as
v — oco. Thereis a o2 > 0 such that for all ¢ > 0

1 . 1% o0
BH §n:||xj|2—02d|>5d} =20

1. V—00
— ik <n:[(x,x)| >ed}| =3 0.

Let 0 € S be distributed uniformly on the sphere, and
ué = 15" 8105y As 1l tends to N(0, o%) weakly in probability.
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Bounded-Lipschitz distance

dpr(P, Q) = sup /dP — / fdQ|, f:RX - [-1,1], one Lipschitz.
f

Theorem (Elizabeth)

For projection pursuit most k-dimensional projections of n data
points in RY are close to Gaussian, when n and d are large and

k = cy/log(d).

Stein’s method of exchangeable pairs.



Dvoretzky's theorem

A conjecture by Grothendieck: Given a symmetric convex body
in Euclidean space of sufficiently high dimensionality, the body
will have nearly spherical sections.




Dvoretzky's theorem

Theorem (Dvoretzky)

For every d € N and ¢ > 0 the following holds. Let | - | be the
Euclidean norm on R?, and let || - || be an arbitrary norm. Then
there exists a subspace X c RY with dim(X) > ¢(¢) log d, and a
number A > 0 so that for every x € X

Alx| < ix|| < (1 +¢)Alx].

Here, c(e) > 0 is a constant that depends only on .



A central limit theorem for convex sets

Theorem (Klartag)

Let X be a random vector in R” with an isotropic log-concave
density. There are decreasing sequences <, and ¢, for which
there exists a subset © c S"! with 0,,_1(©) > 1 — §,, such that
foralld € ©

drv((X,0),2Z) < en, Z~ N(0,1).

Also
loglogn + 2

< C
=n logn+ 1

99).

9 5/’7 < exp(—CfT



Random subspaces

The Stiefel manifold is the set

Mak ={ (01, 0) - 0 € R, (6, 6)) = ;|

M k has a rotation-invariant Haar probability measure.



A measure-theoretic Dvoretzky theorem

Theorem (Elizabeth)
Let X be a random vector in R” satisfying
EX = 0,E|X|? = 0%d, and SUPgcgd— E(¢, X)2 < L

2 2 d B
E||X25 2 — d| < LS.




A measure-theoretic Dvoretzky theorem

Theorem (Elizabeth)

Let X be a random vector in R" satisfying
EX = 0,E|X|? = 0%d, and SUPgcgd— E(¢, X)2 < L

E|| X202 -d| < L-2—.

H “o | = 7\ /log(d)

For 0 ¢ My« set Xy as the projection of X onto the span of 0.
Fix 6 € (0,2) and let k = 5|Og'?|i(gc(%). Then thereisa c > 0
depending on §, L, L’ such that for e = [Iog(zd)]c’ there is a subset

T C Mgk with P[Z°] < Ce~ %", such that for all § € Z

dg (Xy,0Z) < C'e.
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Analogy

» Given RY add structure:

1. Dvoretzky theorem: the norm
2. Meckes theorem: the distribution

» There is a natural invariant

1. Dvoretzky theorem: Euclidean norm
2. Meckes theorem: Gaussian distribution



Math back to Data Science
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Compressed sensing

1) A signal X € R?
2) A linear measurement device © which is d x k matrix
3) An observation

Z=0"X+¢e, &~N(0,0%)

The question: How many measurements k and what conditions
on the noise do we need to recover X ?

1. Linear regression in statistics
2. Multivariate channel in communication systems
3. Signal acquisition in compressed sensing
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Not linear algebra @

Approximate message-passing (AMP) algorithm
1. Initialize x° = 0
2. Update

xT = pe’d 4+ xh),
’
6Z‘ — 7 _ eTXt 4 ggt—1 (n/(@Tgt—1 4 Xt_1)).



Typical phase diagram

number of
observations

Impossible

quality of data (SNR)
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Algorithms for approximate inference

Variational Inference

» Expectation consistent framework Opper & Winther 2004

Approximate message passing (AMP) with precise analysis via
state evolution formalism

» AMP Donoho et al. 2009, Bayati & Montanari 2011
» GAMP Rangan, 2011

» S-AMP Cakmak, Winther, Fleury, 2014

» O-AMP Ma & Ping 2016

» VAMP Rangan, Schniter, Fletcher, 2016

» GVAMP Schniter, Rangan, Fletcher 2016

14 / 49
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Wireless communication systems
» Gaussian case (free probability) Tse, 1999, Tulino & Verdd, 2004

» Binary case (replica method) Kabashima 2003, Tanaka 2004,
Tulino & Verdu, 2004

Replica method and compressed sensing

» Guo et al. 2008, Korada & Macris 2010, R. & Gastpar 2012, Wu &
Verdu 2012, Krzakala et al. 2012, Donoho et al. 2013, Tulino et
al. 2013, Huleihel & Merhav 2016
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Very recent progress

Rigorous proofs of replica formulas
» Linear model, [ID Gaussian matrix R & Pfister. 2016

» Another proof via spatial coupling Barbier, Dia, Macris,
Krzakala 2016

» GLM, IID Gaussian matrix Barbier, Krzakala, Macris, Miolane,
/deborova. 2017
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» Another proof via spatial coupling Barbier, Dia, Macris,
Krzakala 2016

» GLM, IID Gaussian matrix Barbier, Krzakala, Macris, Miolane,
/deborova. 2017

Focus on multilayer models
» ML-AMP Manoel, Krzakala, Mézard, Zdeborova 2017

» ML-VAMP Fletcher & Rangan 2017
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Compressed sensing and concentration of measure

Reeves and Pfister 2016: The replica prediction is correct for
.i.d. Gaussian measurement matrices provided that the signal
distribution, Py, has bounded fourth moment and satisfies a
certain ‘single-crossing’ property.

A basic challenge in the proof — control the measure of
non-Gaussianness of the conditional distribution of the new
measurement.

Conditional Central Limit Theorems for Gaussian Projections.
Reeves 2016: Adaptation and refinement of results very similar
to “measure-theoretic Dvoretzky theorem”.

Elizabeth — “We long suspected concentration of measure and
compressed sensing were somehow linked, these papers make
the connection clear.”
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Projections and isometries

Lemma (Johnson-Lindenstrauss)
Fix0 <e <1and{xi,...x,} € R%. Ifk > S log n then there
exists a linear map © : RY — RX such that for all i # |

(1T =8)llx =Xl < [[0(x;) =)l < (1 +¢)llxi — Xll.

An example: Random projections ©;; i N(O, 1) preserve
Isometries.
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Projections and homology

Given X = {xy,..., xn} € RY construct

S(X,7) =) B(xi,7), S(Xp.7")=|)B(®©"X,7),
i=1

=1

with © € My for what k and ranges of 7/, 7 does the following
hold (in an interesting way)

H.(S(X, 7)) = H(S(Xe,T')).

Do random projections:
1) Preserve homology ?
2) How is this different than preserving isometries ?
3) What do random projections do to critical points ?
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Inference of population structure

A classic problem in biology and genetics is to study population
structure.

(1) Does genetic variation in populations follow geography ?
(2) Can we infer population histories from genetic variation ?

(3) When we associate genetic loci (locations) to disease we
need to correct for population structure.



Genetic data

For each individual we have two letters from {A, C, T, G} at
each polymorphic (SNP) site which is coded as an integer
{0,1,2}
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Genetic data

For each individual we have two letters from {A, C, T, G} at
each polymorphic (SNP) site which is coded as an integer
{0,1,2}

CANER
) e

C — [C1 g eeeey Cm]



Genetic data encodes population history

From Novembre et al 2008 (Nature)
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Eigenstrat: Patterson et al 2006 (PLoS Genetics)
Combines principal components analysis and Tracy-Widom
theory to infer population structure.

__ Ci—py .
(1) M = ﬂf _jﬁ Vi, |.

3 (1—%)
(2) X = IMM
(3) Order A1, ...., \; and test for significant eigenvalues using
TW statistics

(4) Compute

P R VY
(M=) 22) = (T M)
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The challenge

Large datasets are being collected (UK Biobank)
n > 500,000 and m > 500, 000.

Can we extend Eigenstrat to this data to be run on a standard
desktop on the order of minutes?

Yes: use random projections and the power method:
Fast Principal-Component Analysis Reveals Convergent
Evolution of ADH1B in Europe and East Asia, American
Journal of Human Genetics, 2016.



