A Measure-Theoretic Dvoretzky Theorem and Applications to Data Science

 SEPC in honor of Elizabeth MeckesSayan Mukherjee

Duke University
https://sayanmuk.github.io/

My last communication

Nov 11, 2020:
Thanks for asking about the workshop, but I don't think I really have anything suitable to talk about. The bigger reason, though, is that I am unfortunately in the middle of a really shitty health crisis, and it seems fairly likely that l'll be pretty much out of commission for a while, so I can't make any commitments at the moment. Sorry. :(

A simple question

What random projections of high-dimensional data or high-dimensional distributions look like ?

1. Exploratory data analysis;

A simple question

What random projections of high-dimensional data or high-dimensional distributions look like ?

1. Exploratory data analysis;
2. Concentration of measure, local theory of Banach spaces;

A simple question

What random projections of high-dimensional data or high-dimensional distributions look like ?

1. Exploratory data analysis;
2. Concentration of measure, local theory of Banach spaces;
3. Proof technique in theory of CS;

A simple question

What random projections of high-dimensional data or high-dimensional distributions look like ?

1. Exploratory data analysis;
2. Concentration of measure, local theory of Banach spaces;
3. Proof technique in theory of CS;
4. Numerical method for scaling algorithms;

A simple question

What random projections of high-dimensional data or high-dimensional distributions look like ?

1. Exploratory data analysis;
2. Concentration of measure, local theory of Banach spaces;
3. Proof technique in theory of CS;
4. Numerical method for scaling algorithms;
5. Proof technique in compressive sensing and theory of deep neural networks;

A simple question

What random projections of high-dimensional data or high-dimensional distributions look like ?

1. Exploratory data analysis;
2. Concentration of measure, local theory of Banach spaces;
3. Proof technique in theory of CS;
4. Numerical method for scaling algorithms;
5. Proof technique in compressive sensing and theory of deep neural networks;
6. Tightest result by Elizabeth - (a) entropy methods and (b) use geometric ideas/arguments.

The problem

1) High dimensional data: X is a random vector in \mathbb{R}^{d} with
$\mathbb{E} X=0$ and $\mathbb{E}\left[|X|^{2}\right]=\sigma^{2} d$

The problem

1) High dimensional data: X is a random vector in \mathbb{R}^{d} with
$\mathbb{E} X=0$ and $\mathbb{E}\left[|X|^{2}\right]=\sigma^{2} d$
2) Random projection: $\Theta=\left(\Theta_{1}, \ldots, \Theta_{k}\right)$ be a $d \times k$ random projection matrix where

$$
X_{\theta}=\left(\left\langle X, \Theta_{1}\right\rangle, \ldots,\left\langle X, \Theta_{k}\right\rangle\right)=\Theta^{T} X
$$

The problem

1) High dimensional data: X is a random vector in \mathbb{R}^{d} with
$\mathbb{E} X=0$ and $\mathbb{E}\left[|X|^{2}\right]=\sigma^{2} d$
2) Random projection: $\Theta=\left(\Theta_{1}, \ldots, \Theta_{k}\right)$ be a $d \times k$ random projection matrix where

$$
X_{\theta}=\left(\left\langle X, \Theta_{1}\right\rangle, \ldots,\left\langle X, \Theta_{k}\right\rangle\right)=\Theta^{T} X
$$

3) Marginals are Gaussian: for what values of k is following distance $d\left(X_{\theta}, \sigma Z\right)$ small, where Z is the standard Gaussian random vector in \mathbb{R}^{k}.

The problem

1) High dimensional data: X is a random vector in \mathbb{R}^{d} with $\mathbb{E} X=0$ and $\mathbb{E}\left[|X|^{2}\right]=\sigma^{2} d$
2) Random projection: $\Theta=\left(\Theta_{1}, \ldots, \Theta_{k}\right)$ be a $d \times k$ random projection matrix where

$$
X_{\theta}=\left(\left\langle X, \Theta_{1}\right\rangle, \ldots,\left\langle X, \Theta_{k}\right\rangle\right)=\Theta^{T} X
$$

3) Marginals are Gaussian: for what values of k is following distance $d\left(X_{\theta}, \sigma Z\right)$ small, where Z is the standard Gaussian random vector in \mathbb{R}^{k}.
4) Answer: pre-Elizabeth $k=o(\log (d))$;

Elizabeth $k<\frac{2 \log d}{\log (\log (d))}$.

Data Science to Math

Tukey and data depth

> Are there interesting projection directions?

Data $D_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$, and random projection matrix P
$\operatorname{depth}\left(\theta, D_{n} ; P\right)=\frac{1}{n} \#\left\{i: P^{T} x_{i} \geq P^{T} \theta\right\}$

Random projections and Exploratory Data Analysis (EDA)

1) Implementing data depth: Donoho, Huber, Friedman, Kruskal, Stuetzle, Fisherkeller, Diaconis

Random projections and Exploratory Data Analysis (EDA)

1) Implementing data depth: Donoho, Huber, Friedman, Kruskal, Stuetzle, Fisherkeller, Diaconis
2) Projection pursuit: Donoho, Huber, Friedman, Kruskal, Stuetzle, Fisherkeller, Diaconis

Random projections and Exploratory Data Analysis (EDA)

1) Implementing data depth: Donoho, Huber, Friedman, Kruskal, Stuetzle, Fisherkeller, Diaconis
2) Projection pursuit: Donoho, Huber, Friedman, Kruskal, Stuetzle, Fisherkeller, Diaconis
3) WHP no interesting directions: Diaconis \& Freedman, Sudakov

An asymptotic result

Theorem (Diaconis and Freedman)

Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and that $n(\nu)$ and $d(\nu)$ goto infinity as $\nu \rightarrow \infty$. There is a $\sigma^{2}>0$ such that for all $\varepsilon>0$

$$
\begin{gathered}
\frac{1}{n}\left|\left\{j \leq n:\left|\left|x_{j}\right|^{2}-\sigma^{2} d\right|>\varepsilon d\right\}\right| \quad \xrightarrow{\nu \rightarrow \infty} 0 \\
\frac{1}{n^{2}}\left|\left\{j, k \leq n:\left|\left\langle x_{j}, x_{k}\right\rangle\right|>\varepsilon d\right\}\right| \xrightarrow{\nu \rightarrow \infty} 0 .
\end{gathered}
$$

An asymptotic result

Theorem (Diaconis and Freedman)

Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and that $n(\nu)$ and $d(\nu)$ goto infinity as $\nu \rightarrow \infty$. There is a $\sigma^{2}>0$ such that for all $\varepsilon>0$

$$
\begin{gathered}
\frac{1}{n}\left|\left\{j \leq n:\left|\left|x_{j}\right|^{2}-\sigma^{2} d\right|>\varepsilon d\right\}\right| \quad \xrightarrow{\nu \rightarrow \infty} 0 \\
\frac{1}{n^{2}}\left|\left\{j, k \leq n:\left|\left\langle x_{j}, x_{k}\right\rangle\right|>\varepsilon d\right\}\right| \xrightarrow{\nu \rightarrow \infty} 0 .
\end{gathered}
$$

Let $\theta \in \mathbb{S}^{d-1}$ be distributed uniformly on the sphere, and $\mu_{\nu}^{\theta}=\frac{1}{n} \sum_{i} \delta_{\left\langle\theta, x_{i}\right\rangle}$. As μ_{ν}^{θ} tends to $N\left(0, \sigma^{2}\right)$ weakly in probability.

A quantitative result

Bounded-Lipschitz distance
$d_{B L}(P, Q)=\sup _{f}\left|\int d P-\int f d Q\right|, \quad f: \mathbb{R}^{k} \rightarrow[-1,1]$, one Lipschitz.

A quantitative result

Bounded-Lipschitz distance

$$
d_{B L}(P, Q)=\sup _{f}\left|\int d P-\int f d Q\right|, \quad f: \mathbb{R}^{k} \rightarrow[-1,1], \text { one Lipschitz. }
$$

Theorem (Elizabeth)
For projection pursuit most k-dimensional projections of n data points in \mathbb{R}^{d} are close to Gaussian, when n and d are large and $k=c \sqrt{\log (d)}$.

A quantitative result

Bounded-Lipschitz distance
$d_{B L}(P, Q)=\sup _{f}\left|\int d P-\int f d Q\right|, \quad f: \mathbb{R}^{k} \rightarrow[-1,1]$, one Lipschitz.

Theorem (Elizabeth)
For projection pursuit most k-dimensional projections of n data points in \mathbb{R}^{d} are close to Gaussian, when n and d are large and $k=c \sqrt{\log (d)}$.

Stein's method of exchangeable pairs.

Dvoretzky's theorem

A conjecture by Grothendieck: Given a symmetric convex body in Euclidean space of sufficiently high dimensionality, the body will have nearly spherical sections.

Dvoretzky's theorem

Theorem (Dvoretzky)

For every $d \in \mathbb{N}$ and $\varepsilon>0$ the following holds. Let $|\cdot|$ be the Euclidean norm on \mathbb{R}^{d}, and let $\|\cdot\|$ be an arbitrary norm. Then there exists a subspace $X \subset \mathbb{R}^{d}$ with $\operatorname{dim}(X) \geq c(\varepsilon) \log d$, and a number $A>0$ so that for every $x \in X$

$$
A|x| \leq\|x\| \leq(1+\varepsilon) A|x| .
$$

Here, $\boldsymbol{C}(\varepsilon)>0$ is a constant that depends only on ε.

A central limit theorem for convex sets

Theorem (Klartag)
Let X be a random vector in \mathbb{R}^{n} with an isotropic log-concave density. There are decreasing sequences ε_{n} and δ_{n} for which there exists a subset $\Theta \subset \mathbb{S}^{n-1}$ with $\sigma_{n-1}(\Theta) \geq 1-\delta_{n}$ such that for all $\theta \in \Theta$

$$
d_{T V}(\langle X, \theta\rangle, Z)<\varepsilon_{n}, \quad Z \sim N(0,1) .
$$

Also

$$
\varepsilon_{n} \leq C \frac{\log \log n+2}{\log n+1}, \quad \delta_{n} \leq \exp \left(-c n^{99}\right) .
$$

Random subspaces

The Stiefel manifold is the set

$$
\mathcal{M}_{d, k}=\left\{\left(\theta_{1}, \ldots, \theta_{k}\right): \theta_{j} \in \mathbb{R}^{d},\left\langle\theta_{i}, \theta_{j}\right\rangle=\delta_{i j}\right\} .
$$

$\mathcal{M}_{d, k}$ has a rotation-invariant Haar probability measure.

A measure-theoretic Dvoretzky theorem

Theorem (Elizabeth)

Let X be a random vector in \mathbb{R}^{n} satisfying
$\mathbb{E} X=0, \mathbb{E}|X|^{2}=\sigma^{2} d$, and $\sup _{\xi \in \mathbb{S}^{d-1}} \mathbb{E}\langle\xi, X\rangle^{2} \leq L$
$\mathbb{E}\left||X|^{2} \sigma^{-2}-d\right| \leq L \frac{d}{\sqrt{\log (d)}}$.

A measure-theoretic Dvoretzky theorem

Theorem (Elizabeth)

Let X be a random vector in \mathbb{R}^{n} satisfying
$\mathbb{E} X=0, \mathbb{E}|X|^{2}=\sigma^{2} d$, and $\sup _{\xi \in \mathbb{S}^{d-1}} \mathbb{E}\langle\xi, X\rangle^{2} \leq L$
$\mathbb{E}\left||X|^{2} \sigma^{-2}-d\right| \leq L \frac{d}{\sqrt{\log (d)}}$.
For $\theta \in \mathcal{M}_{d, k}$ set X_{θ} as the projection of X onto the span of θ.
Fix $\delta \in(0,2)$ and let $k=\delta \frac{\log (d)}{\log (\log (d))}$. Then there is a $c>0$
depending on δ, L, L^{\prime} such that for $\varepsilon=\frac{2}{[\log (d)]^{c}}$, there is a subset
$\mathcal{I} \subseteq \mathcal{M}_{d, k}$ with $\mathbb{P}\left[\mathcal{I}^{c}\right] \leq C e^{-c^{\prime} d \varepsilon^{2}}$, such that for all $\theta \in \mathcal{I}$

$$
d_{B L}\left(X_{\theta}, \sigma Z\right) \leq C^{\prime} \varepsilon .
$$

Analogy

- Given \mathbb{R}^{d} add structure:

1. Dvoretzky theorem: the norm
2. Meckes theorem: the distribution

Analogy

- Given \mathbb{R}^{d} add structure:

1. Dvoretzky theorem: the norm
2. Meckes theorem: the distribution

- There is a natural invariant

1. Dvoretzky theorem: Euclidean norm
2. Meckes theorem: Gaussian distribution

Math back to Data Science

Compressed sensing

1) A signal $X \in \mathbb{R}^{d}$
2) A linear measurement device Θ which is $d \times k$ matrix
3) An observation

$$
Z=\Theta^{T} X+\varepsilon, \quad \varepsilon \sim \mathrm{N}\left(0, \sigma_{k}^{2}\right)
$$

Compressed sensing

1) A signal $X \in \mathbb{R}^{d}$
2) A linear measurement device Θ which is $d \times k$ matrix
3) An observation

$$
Z=\Theta^{T} X+\varepsilon, \quad \varepsilon \sim \mathrm{N}\left(0, \sigma_{k}^{2}\right)
$$

The question: How many measurements k and what conditions on the noise do we need to recover X ?

Compressed sensing

1) A signal $X \in \mathbb{R}^{d}$
2) A linear measurement device Θ which is $d \times k$ matrix
3) An observation

$$
Z=\Theta^{T} X+\varepsilon, \quad \varepsilon \sim \mathrm{N}\left(0, \sigma_{k}^{2}\right)
$$

The question: How many measurements k and what conditions on the noise do we need to recover X ?

1. Linear regression in statistics
2. Multivariate channel in communication systems
3. Signal acquisition in compressed sensing

Algorithms for inference

Not linear algebra ${ }^{\circ}$

Algorithms for inference

Not linear algebra ${ }^{*}$

Approximate message-passing (AMP) algorithm

1. Initialize $x^{0}=0$
2. Update

$$
\begin{aligned}
x^{t+1} & =\eta\left(\Theta^{T} \varepsilon^{t}+x^{t}\right) \\
\varepsilon^{t} & =z-\Theta^{T} x^{t}+\frac{1}{\delta} \varepsilon^{t-1}\left(\eta^{\prime}\left(\Theta^{T} \varepsilon^{t-1}+x^{t-1}\right)\right)
\end{aligned}
$$

Typical phase diagram

Algorithms for approximate inference

Variational Inference

- Expectation consistent framework Opper \& Winther 2004

Approximate message passing (AMP) with precise analysis via state evolution formalism

- AMP Donoho et al. 2009, Bayati \& Montanari 2011
- GAMP Rangan, 2011
- S-AMP Çakmak, Winther, Fleury, 2014
- O-AMP Ma \& Ping 2016
- VAMP Rangan, Schniter, Fletcher, 2016
- GVAMP Schniter, Rangan, Fletcher 2016

Long history of related work

Over thirty years of work.

- Replica method Parisi, 1980
- Free probability theory Voiculescu, 1990

Long history of related work

Over thirty years of work.

- Replica method Parisi, 1980
- Free probability theory Voiculescu, 1990

Wireless communication systems

- Gaussian case (free probability) Tse, 1999, Tulino \& Verdú, 2004
- Binary case (replica method) Kabashima 2003, Tanaka 2004, Tulino \& Verdú, 2004

Long history of related work

Over thirty years of work.

- Replica method Parisi, 1980
- Free probability theory Voiculescu, 1990

Wireless communication systems

- Gaussian case (free probability) Tse, 1999, Tulino \& Verdú, 2004
- Binary case (replica method) Kabashima 2003, Tanaka 2004, Tulino \& Verdú, 2004

Replica method and compressed sensing

- Guo et al. 2008, Korada \& Macris 2010, R. \& Gastpar 2012, Wu \& Verdu 2012, Krzakala et al. 2012, Donoho et al. 2013, Tulino et al. 2013, Huleihel \& Merhav 2016

Very recent progress

Rigorous proofs of replica formulas

- Linear model, IID Gaussian matrix R \& Pfister. 2016
- Another proof via spatial coupling Barbier, Dia, Macris, Krzakala 2016
- GLM, IID Gaussian matrix Barbier, Krzakala, Macris, Miolane, Zdeborová. 2017

Very recent progress

Rigorous proofs of replica formulas

- Linear model, IID Gaussian matrix R \& Pfister. 2016
- Another proof via spatial coupling Barbier, Dia, Macris, Krzakala 2016
- GLM, IID Gaussian matrix Barbier, Krzakala, Macris, Miolane, Zdeborová. 2017

Focus on multilayer models

- ML-AMP Manoel, Krzakala, Mézard, Zdeborová 2017
- ML-VAMP Fletcher \& Rangan 2017

Compressed sensing and concentration of measure

Reeves and Pfister 2016: The replica prediction is correct for i.i.d. Gaussian measurement matrices provided that the signal distribution, P_{X}, has bounded fourth moment and satisfies a certain ‘single-crossing' property.

Compressed sensing and concentration of measure

Reeves and Pfister 2016: The replica prediction is correct for i.i.d. Gaussian measurement matrices provided that the signal distribution, P_{X}, has bounded fourth moment and satisfies a certain ‘single-crossing' property.

A basic challenge in the proof - control the measure of non-Gaussianness of the conditional distribution of the new measurement.

Compressed sensing and concentration of measure

Reeves and Pfister 2016: The replica prediction is correct for i.i.d. Gaussian measurement matrices provided that the signal distribution, P_{X}, has bounded fourth moment and satisfies a certain 'single-crossing' property.

A basic challenge in the proof - control the measure of non-Gaussianness of the conditional distribution of the new measurement.

Conditional Central Limit Theorems for Gaussian Projections. Reeves 2016: Adaptation and refinement of results very similar to "measure-theoretic Dvoretzky theorem".

Compressed sensing and concentration of measure

Reeves and Pfister 2016: The replica prediction is correct for i.i.d. Gaussian measurement matrices provided that the signal distribution, P_{X}, has bounded fourth moment and satisfies a certain 'single-crossing' property.

A basic challenge in the proof - control the measure of non-Gaussianness of the conditional distribution of the new measurement.

Conditional Central Limit Theorems for Gaussian Projections. Reeves 2016: Adaptation and refinement of results very similar to "measure-theoretic Dvoretzky theorem".

Elizabeth - "We long suspected concentration of measure and compressed sensing were somehow linked, these papers make the connection clear."

Projections and topology

Projections and isometries

Lemma (Johnson-Lindenstrauss)

Fix $0<\varepsilon<1$ and $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$. If $k \geq \frac{c}{\varepsilon^{2}} \log n$ then there exists a linear map $\Theta: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ such that for all $i \neq j$

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\| \leq\left\|\Theta\left(x_{i}\right)-\Theta\left(x_{j}\right)\right\| \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\| .
$$

An example: Random projections $\Theta_{i j} \stackrel{i i d}{\sim} N(0,1)$ preserve isometries.

Projections and homology

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$ construct

$$
S(X, \tau)=\bigcup_{i=1}^{n} B\left(x_{i}, \tau\right), \quad S\left(X_{\theta}, \tau^{\prime}\right)=\bigcup_{i=1}^{n} B\left(\Theta^{\top} x_{i}, \tau^{\prime}\right),
$$

Projections and homology

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$ construct

$$
S(X, \tau)=\bigcup_{i=1}^{n} B\left(x_{i}, \tau\right), \quad S\left(X_{\theta}, \tau^{\prime}\right)=\bigcup_{i=1}^{n} B\left(\Theta^{\top} x_{i}, \tau^{\prime}\right),
$$

with $\Theta \in \mathcal{M}_{d, k}$ for what k and ranges of τ^{\prime}, τ does the following hold (in an interesting way)

$$
H_{*}(S(X, \tau)) \cong H_{*}\left(S\left(X_{\Theta}, \tau^{\prime}\right)\right) .
$$

Projections and homology

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$ construct

$$
S(X, \tau)=\bigcup_{i=1}^{n} B\left(x_{i}, \tau\right), \quad S\left(X_{\theta}, \tau^{\prime}\right)=\bigcup_{i=1}^{n} B\left(\Theta^{T} x_{i}, \tau^{\prime}\right)
$$

with $\Theta \in \mathcal{M}_{d, k}$ for what k and ranges of τ^{\prime}, τ does the following hold (in an interesting way)

$$
H_{*}(S(X, \tau)) \cong H_{*}\left(S\left(X_{\Theta}, \tau^{\prime}\right)\right)
$$

Do random projections:

1) Preserve homology?
2) How is this different than preserving isometries ?
3) What do random projections do to critical points ?

Projections and genetics

Inference of population structure

A classic problem in biology and genetics is to study population structure.
(1) Does genetic variation in populations follow geography?

Inference of population structure

A classic problem in biology and genetics is to study population structure.
(1) Does genetic variation in populations follow geography ?
(2) Can we infer population histories from genetic variation ?

Inference of population structure

A classic problem in biology and genetics is to study population structure.
(1) Does genetic variation in populations follow geography?
(2) Can we infer population histories from genetic variation ?
(3) When we associate genetic loci (locations) to disease we need to correct for population structure.

Genetic data

For each individual we have two letters from $\{A, C, T, G\}$ at each polymorphic (SNP) site which is coded as an integer $\{0,1,2\}$

$$
C_{i}=\left(\begin{array}{c}
A C \\
\vdots \\
G G \\
\vdots \\
T T
\end{array}\right) \Longrightarrow\left(\begin{array}{c}
1 \\
\vdots \\
0 \\
\vdots \\
2
\end{array}\right) \in \mathbb{R}^{500,000},
$$

Genetic data

For each individual we have two letters from $\{A, C, T, G\}$ at each polymorphic (SNP) site which is coded as an integer $\{0,1,2\}$

$$
C_{i}=\left(\begin{array}{c}
A C \\
\vdots \\
G G \\
\vdots \\
T T
\end{array}\right) \Longrightarrow\left(\begin{array}{c}
1 \\
\vdots \\
0 \\
\vdots \\
2
\end{array}\right) \in \mathbb{R}^{500,000},
$$

$$
C=\left[C_{1}, \ldots, C_{m}\right] .
$$

Genetic data encodes population history

From Novembre et al 2008 (Nature)

Popular method

Eigenstrat: Patterson et al 2006 (PLoS Genetics) Combines principal components analysis and Tracy-Widom theory to infer population structure.

Popular method

Eigenstrat: Patterson et al 2006 (PLoS Genetics) Combines principal components analysis and Tracy-Widom theory to infer population structure.
(1) $M_{i j}=\frac{C_{i j}-\hat{\mu}_{j}}{\sqrt{\frac{\hat{\mu}_{j}}{2}\left(1-\frac{\hat{\mu}_{j}}{2}\right)}} \quad \forall i, j$.

Popular method

Eigenstrat: Patterson et al 2006 (PLoS Genetics) Combines principal components analysis and Tracy-Widom theory to infer population structure.
(1) $M_{i j}=\frac{C_{i j}-\hat{\mu}_{j}}{\sqrt{\frac{\hat{\mu}_{j}}{2}\left(1-\frac{\hat{\mu}_{j}}{2}\right)}} \quad \forall i, j$.
(2) $X=\frac{1}{n} M M^{\prime}$

Popular method

Eigenstrat: Patterson et al 2006 (PLoS Genetics) Combines principal components analysis and Tracy-Widom theory to infer population structure.
(1) $M_{i j}=\frac{C_{i j}-\hat{\mu}_{j}}{\sqrt{\frac{\hat{\mu}_{j}}{2}\left(1-\frac{\hat{\mu}_{j}}{2}\right)}} \quad \forall i, j$.
(2) $X=\frac{1}{n} M M^{\prime}$
(3) Order $\lambda_{1}, \ldots, \lambda_{m}$ and test for significant eigenvalues using TW statistics

Popular method

Eigenstrat: Patterson et al 2006 (PLoS Genetics)
Combines principal components analysis and Tracy-Widom theory to infer population structure.
(1) $M_{i j}=\frac{C_{i j}-\hat{\mu}_{j}}{\sqrt{\frac{\hat{\mu}_{j}}{2}\left(1-\frac{\hat{\mu}_{j}}{2}\right)}} \quad \forall i, j$.
(2) $X=\frac{1}{n} M M^{\prime}$
(3) Order $\lambda_{1}, \ldots, \lambda_{m}$ and test for significant eigenvalues using TW statistics
(4) Compute

$$
n^{\prime}=\frac{(m+1)\left(\sum_{i} \lambda_{i}\right)^{2}}{\left((m-1) \sum_{i} \lambda_{i}^{2}\right)-\left(\sum_{i} \lambda_{i}\right)^{2}}
$$

The challenge

Large datasets are being collected (UK Biobank)
$n \geq 500,000$ and $m \geq 500,000$.

The challenge

Large datasets are being collected (UK Biobank)
$n \geq 500,000$ and $m \geq 500,000$.
Can we extend Eigenstrat to this data to be run on a standard desktop on the order of minutes?

The challenge

Large datasets are being collected (UK Biobank)
$n \geq 500,000$ and $m \geq 500,000$.
Can we extend Eigenstrat to this data to be run on a standard desktop on the order of minutes?

Yes: use random projections and the power method: Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia, American Journal of Human Genetics, 2016.

