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My last communication

Nov 11, 2020:
Thanks for asking about the workshop, but I don’t think I really
have anything suitable to talk about. The bigger reason,
though, is that I am unfortunately in the middle of a really shitty
health crisis, and it seems fairly likely that I’ll be pretty much out
of commission for a while, so I can’t make any commitments at
the moment. Sorry. :(



A simple question

What random projections of high-dimensional data or
high-dimensional distributions look like ?

1. Exploratory data analysis;

2. Concentration of measure, local theory of Banach spaces;
3. Proof technique in theory of CS;
4. Numerical method for scaling algorithms;
5. Proof technique in compressive sensing and theory of

deep neural networks;
6. Tightest result by Elizabeth – (a) entropy methods and (b)

use geometric ideas/arguments.
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The problem

1) High dimensional data: X is a random vector in Rd with
EX = 0 and E[|X |2] = �2d

2) Random projection: ⇥ = (⇥1, ...,⇥k ) be a d ⇥ k random
projection matrix where

X✓ = (hX ,⇥1i, ..., hX ,⇥k i) = ⇥T X

3) Marginals are Gaussian: for what values of k is following
distance d(X✓, �Z ) small, where Z is the standard Gaussian
random vector in Rk .

4) Answer: pre-Elizabeth k = o(log(d)) ;
Elizabeth k < 2 log d

log(log(d)) .
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Data Science to Math



Tukey and data depth

Data Dn = {x1, ..., xn}, and random projection matrix P

depth(✓, Dn;P ) = 1
n#{i : PTxi � PT ✓}

<latexit sha1_base64="qDNab161FagpDi+fCn6OQO7+hx8="></latexit>

Are there interesting
projection directions ?

<latexit sha1_base64="al2jqUvFXII2rN8fsC6ZDX2Q7mo=">AAACIXicbVA9T8MwEHXKVylfAUYWiwqJqUrKQDcKLIxFoh9SE1WOc2lNHSeyHaSq6l9h4a+wMIBQN8SfwW0zQMtJ9j29e2ffvSDlTGnH+bIKa+sbm1vF7dLO7t7+gX141FJJJik0acIT2QmIAs4ENDXTHDqpBBIHHNrB8HZWbz+BVCwRD3qUgh+TvmARo0QbqmfXriVgPQBzM6FNUpqJPva8ksdECELjVCaPQGdqHDK5QApf9eyyU3HmgVeBm4MyyqPRs6demNAsNm9STpTquk6q/TGRmlEOk5KXKUgJHZI+dA0UJAblj+cbTvCZYUIcJdIcM9Oc/d0xJrFSozgwypjogVquzcj/at1MRzV/zESaaRB08VGUcawTPLMrX5mPDCBUMjMrpgMiCTVeqZIxwV1eeRW0qhX3olK9r5brN7kdRXSCTtE5ctElqqM71EBNRNEzekXv6MN6sd6sT2u6kBasvOcY/Qnr+wea3KPJ</latexit>



Random projections and Exploratory Data Analysis
(EDA)

1) Implementing data depth: Donoho, Huber, Friedman,
Kruskal, Stuetzle, Fisherkeller, Diaconis

2) Projection pursuit: Donoho, Huber, Friedman, Kruskal,
Stuetzle, Fisherkeller, Diaconis

3) WHP no interesting directions: Diaconis & Freedman,
Sudakov
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An asymptotic result

Theorem (Diaconis and Freedman)
Let x1, ..., xn 2 Rd and that n(⌫) and d(⌫) goto infinity as
⌫ ! 1. There is a �2 > 0 such that for all " > 0

1
n

���
n

j  n :
���|xj |2 � �2

d

��� > "d
o��� ⌫!1�! 0

1
n2

���j , k  n :
��hxj , xk i

�� > "d
 �� ⌫!1�! 0.

Let ✓ 2 Sd�1 be distributed uniformly on the sphere, and
µ✓
⌫ = 1

n

P
i
�h✓,xi i. As µ✓

⌫ tends to N(0,�2) weakly in probability.
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A quantitative result

Bounded-Lipschitz distance

dBL(P,Q) = sup
f

����
Z

dP �
Z

fdQ

���� , f : Rk ! [�1, 1], one Lipschitz.

Theorem (Elizabeth)
For projection pursuit most k -dimensional projections of n data
points in Rd are close to Gaussian, when n and d are large and
k = c

p
log(d).

Stein’s method of exchangeable pairs.



A quantitative result

Bounded-Lipschitz distance

dBL(P,Q) = sup
f

����
Z

dP �
Z

fdQ

���� , f : Rk ! [�1, 1], one Lipschitz.

Theorem (Elizabeth)
For projection pursuit most k -dimensional projections of n data
points in Rd are close to Gaussian, when n and d are large and
k = c

p
log(d).

Stein’s method of exchangeable pairs.



A quantitative result

Bounded-Lipschitz distance

dBL(P,Q) = sup
f

����
Z

dP �
Z

fdQ

���� , f : Rk ! [�1, 1], one Lipschitz.

Theorem (Elizabeth)
For projection pursuit most k -dimensional projections of n data
points in Rd are close to Gaussian, when n and d are large and
k = c

p
log(d).

Stein’s method of exchangeable pairs.



Dvoretzky’s theorem

A conjecture by Grothendieck: Given a symmetric convex body
in Euclidean space of sufficiently high dimensionality, the body
will have nearly spherical sections.



Dvoretzky’s theorem

Theorem (Dvoretzky)
For every d 2 N and " > 0 the following holds. Let | · | be the
Euclidean norm on Rd , and let k · k be an arbitrary norm. Then
there exists a subspace X ⇢ Rd with dim(X ) � c(") log d , and a
number A > 0 so that for every x 2 X

A|x |  kxk  (1 + ")A|x |.

Here, c(") > 0 is a constant that depends only on ".



A central limit theorem for convex sets

Theorem (Klartag)
Let X be a random vector in Rn with an isotropic log-concave
density. There are decreasing sequences "n and �n for which
there exists a subset ⇥ ⇢ Sn�1 with �n�1(⇥) � 1 � �n such that
for all ✓ 2 ⇥

dTV (hX , ✓i, Z ) < "n, Z ⇠ N(0, 1).

Also
"n  C

log log n + 2
log n + 1

, �n  exp(�cn.99).



Random subspaces

The Stiefel manifold is the set

Md ,k =
n
(✓1, ..., ✓k ) : ✓j 2 Rd , h✓i , ✓ji = �ij

o
.

Md ,k has a rotation-invariant Haar probability measure.



A measure-theoretic Dvoretzky theorem

Theorem (Elizabeth)
Let X be a random vector in Rn satisfying
EX = 0, E|X |2 = �2d , and sup⇠2Sd�1 Eh⇠, X i2  L
E

��|X |2��2 � d
��  L dp

log(d)
.

For ✓ 2 Md ,k set X✓ as the projection of X onto the span of ✓.
Fix � 2 (0, 2) and let k = � log(d)

log(log(d)) . Then there is a c > 0
depending on �, L, L0 such that for " = 2

[log(d)]c , there is a subset

I ✓ Md ,k with P[Ic]  Ce�c0d"2 , such that for all ✓ 2 I

dBL(X✓, �Z )  C0".



A measure-theoretic Dvoretzky theorem

Theorem (Elizabeth)
Let X be a random vector in Rn satisfying
EX = 0, E|X |2 = �2d , and sup⇠2Sd�1 Eh⇠, X i2  L
E

��|X |2��2 � d
��  L dp

log(d)
.

For ✓ 2 Md ,k set X✓ as the projection of X onto the span of ✓.
Fix � 2 (0, 2) and let k = � log(d)

log(log(d)) . Then there is a c > 0
depending on �, L, L0 such that for " = 2

[log(d)]c , there is a subset

I ✓ Md ,k with P[Ic]  Ce�c0d"2 , such that for all ✓ 2 I

dBL(X✓, �Z )  C0".



Analogy

I Given Rd add structure:

1. Dvoretzky theorem: the norm

2. Meckes theorem: the distribution

I There is a natural invariant

1. Dvoretzky theorem: Euclidean norm

2. Meckes theorem: Gaussian distribution
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Math back to Data Science



Compressed sensing

1) A signal X 2 Rd

2) A linear measurement device ⇥ which is d ⇥ k matrix

3) An observation

Z = ⇥T X + ", " ⇠ N(0,�2

k )

The question: How many measurements k and what conditions

on the noise do we need to recover X ?

1. Linear regression in statistics

2. Multivariate channel in communication systems

3. Signal acquisition in compressed sensing
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Algorithms for inference

Not linear algebra /

Approximate message-passing (AMP) algorithm

1. Initialize x0 = 0

2. Update

xt+1 = ⌘(⇥T "t + xt),

"t = z �⇥T xt +
1

�
"t�1(⌘0(⇥T "t�1 + xt�1)).
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Typical phase diagram

quality of data (SNR)

number of
observations

Easy

Hard
Impossible

17 / 49



Algorithms for approximate inference

Variational Inference

I Expectation consistent framework Opper & Winther 2004

Approximate message passing (AMP) with precise analysis via
state evolution formalism

I AMP Donoho et al. 2009, Bayati & Montanari 2011

I GAMP Rangan, 2011

I S-AMP Çakmak, Winther, Fleury, 2014

I O-AMP Ma & Ping 2016

I VAMP Rangan, Schniter, Fletcher, 2016

I GVAMP Schniter, Rangan, Fletcher 2016

14 / 49



Long history of related work

Over thirty years of work.

I Replica method Parisi, 1980

I Free probability theory Voiculescu, 1990

Wireless communication systems

I Gaussian case (free probability) Tse, 1999, Tulino & Verdú, 2004

I Binary case (replica method) Kabashima 2003, Tanaka 2004,

Tulino & Verdú, 2004

Replica method and compressed sensing

I Guo et al. 2008, Korada & Macris 2010, R. & Gastpar 2012, Wu &

Verdu 2012, Krzakala et al. 2012, Donoho et al. 2013, Tulino et

al. 2013, Huleihel & Merhav 2016
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Very recent progress

Rigorous proofs of replica formulas

I Linear model, IID Gaussian matrix R & Pfister. 2016

I Another proof via spatial coupling Barbier, Dia, Macris,

Krzakala 2016

I GLM, IID Gaussian matrix Barbier, Krzakala, Macris, Miolane,

Zdeborová. 2017

Focus on multilayer models

I ML-AMP Manoel, Krzakala, Mézard, Zdeborová 2017

I ML-VAMP Fletcher & Rangan 2017
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Compressed sensing and concentration of measure

Reeves and Pfister 2016: The replica prediction is correct for

i.i.d. Gaussian measurement matrices provided that the signal

distribution, PX , has bounded fourth moment and satisfies a

certain ‘single-crossing’ property.

A basic challenge in the proof – control the measure of

non-Gaussianness of the conditional distribution of the new

measurement.

Conditional Central Limit Theorems for Gaussian Projections.

Reeves 2016: Adaptation and refinement of results very similar

to “measure-theoretic Dvoretzky theorem".

Elizabeth – “We long suspected concentration of measure and

compressed sensing were somehow linked, these papers make

the connection clear."
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Projections and topology



Projections and isometries

Lemma (Johnson-Lindenstrauss)
Fix 0 < " < 1 and {x1, ..., xn} 2 Rd . If k � c

"2 log n then there

exists a linear map ⇥ : Rd ! Rk such that for all i 6= j

(1 � ")kxi � xjk  k⇥(xi)�⇥(xj)k  (1 + ")kxi � xjk.

An example: Random projections ⇥ij

iid⇠ N(0, 1) preserve
isometries.



Projections and homology

Given X = {x1, ..., xn} 2 Rd construct

S(X , ⌧) =
n[

i=1

B(xi , ⌧), S(X✓, ⌧
0) =

n[

i=1

B(⇥T
xi , ⌧

0),

with ⇥ 2 Md ,k for what k and ranges of ⌧ 0, ⌧ does the following
hold (in an interesting way)

H⇤(S(X , ⌧)) ⇠= H⇤(S(X⇥, ⌧
0)).

Do random projections:
1) Preserve homology ?
2) How is this different than preserving isometries ?
3) What do random projections do to critical points ?
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Projections and genetics



Inference of population structure

A classic problem in biology and genetics is to study population
structure.
(1) Does genetic variation in populations follow geography ?

(2) Can we infer population histories from genetic variation ?
(3) When we associate genetic loci (locations) to disease we

need to correct for population structure.
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Genetic data

For each individual we have two letters from {A,C,T ,G} at
each polymorphic (SNP) site which is coded as an integer
{0, 1, 2}

Ci =

0

BBBBBB@

AC

...
GG

...
TT

1

CCCCCCA
=)

0

BBBBBB@

1
...
0
...
2

1

CCCCCCA
2 R500,000,

C = [C1, ....,Cm].



Genetic data

For each individual we have two letters from {A,C,T ,G} at
each polymorphic (SNP) site which is coded as an integer
{0, 1, 2}

Ci =

0

BBBBBB@

AC

...
GG

...
TT

1

CCCCCCA
=)

0

BBBBBB@

1
...
0
...
2

1

CCCCCCA
2 R500,000,

C = [C1, ....,Cm].



Genetic data encodes population history
From Novembre et al 2008 (Nature)



Popular method

Eigenstrat: Patterson et al 2006 (PLoS Genetics)
Combines principal components analysis and Tracy-Widom
theory to infer population structure.

(1) Mij =
Cij�µ̂jq
µ̂

j

2 (1�
µ̂

j

2 )
8i , j .

(2) X = 1
n
MM 0

(3) Order �1, ....,�m and test for significant eigenvalues using
TW statistics

(4) Compute

n
0 =

(m + 1) (
P

i
�i)

2

�
(m � 1)

P
i
�2

i

�
� (

P
i
�i)

2 .
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The challenge

Large datasets are being collected (UK Biobank)
n � 500, 000 and m � 500, 000.

Can we extend Eigenstrat to this data to be run on a standard
desktop on the order of minutes?

Yes: use random projections and the power method:
Fast Principal-Component Analysis Reveals Convergent
Evolution of ADH1B in Europe and East Asia, American
Journal of Human Genetics, 2016.
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