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Characteristic Polynomials of Random Unitary Matrices

Let A be an N × N unitary matrix. Denote the eigenvalues of A by e iθn ,
1 ≤ n ≤ N, and the characteristic polynomial of A on the unit circle in the
complex plane by

PN(A, θ) = det(I − Ae−iθ) =
∏
n

(1− e iθn−iθ).

Moments:

MN(β) = EA∈U(N)|PN(A, θ)|2β

=
1

(2π)NN!

∫ 2π

0
· · ·
∫ 2π

0

N∏
n=1

|1− e i(θn−θ)|2β

×
∏

1≤j<k≤N
|e iθj − e iθk |2dθ1 . . . dθN
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For Reβ > −1/2

MN(β) =
N∏
j=1

Γ(j)Γ(j + 2β)

Γ(j + β)2
=

G (1 + β)2G (N + 1)G (N + 1 + 2β)

G (1 + 2β)G (N + 1 + β)2

where G (s) is the Barnes G -function, which satisfies G (s + 1) = Γ(s)G (s)
(JPK & NC Snaith 2000).

As N →∞,

MN(β) ∼ G (1 + β)2

G (1 + 2β)
Nβ2

and for k ∈ N

MN(k) ∼

(
k−1∏
m=0

m!

(m + k)!

)
Nk2
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combinatorial interpretation: for β = k ∈ N, as N →∞

MN(k) ∼ gk
k2!

Nk2

where gk is the number of ways of filling a k × k array with the integers
1, 2, . . . , k2 in such a way that the numbers increase along each row and
down each column (i.e. the number of k × k Young tableaux).

number theoretic application: moments of the Riemann zeta-function

1

T

∫ T

0
|ζ(1/2 + it)|2βdt

c.f. Hardy & Littlewood 1918, Ingham 1926, Conrey & Ghosh 1991,
Conrey & Gonek 2000, JPK & NC Snaith 2000, . . .
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Joint moments

Set

VN(A, θ) := exp

(
iN

(θ + π)

2
− i

N∑
n=1

θn
2

)
PN(A, θ),

(VN(A, θ) is real-valued for θ ∈ [0, 2π)).
The joint moments of the function VU(θ) and its derivative are

FN(k, h) := EA∈U(N)|VN(A, 0)|2k−2h|V ′N(A, 0)|2h,

where it is assumed that

h > −1

2
and k > h − 1

2
.

These joint moments have been studied by many authors, including
Hughes (2001), Conrey Rubinstein & Snaith (2006), Dehaye (2008, 2010),
Winn (2012), Riedtmann (2018), Basor et al. (2018), Bailey et al. (2019).
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Asymptotics

Conjecture (Hughes 2001)

When N →∞, for k > −1/2 and 0 ≤ h < k + 1/2

FN(k, h) ∼ F (k , h)Nk2+2h

i.e.

F (k , h) := lim
N→∞

FN(k , h)

Nk2+2h

exists and is non-zero for k > −1/2 and 0 ≤ h < k + 1/2
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Hughes (2001) proved the conjectured scaling with N for integer values of
h and k , but was not able to establish a tractable general formula for
F (k , h).

For integer and half-integer values of h and k , FN(k , h) is equal to a sum
over Young Tableaux, but with a complicated summand (Dehaye (2008,
2010), Winn (2012), and Riedtmann (2018)). The analysis of these
formulae in general is a major challenge.

It has so far not been possible to extend these approaches for a given
h ∈ N, to k > h − 1/2, or to non-integer values of h.
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Connection to Painlevé equations

Let L
(α)
n (t) be the generalized Laguerre polynomial

L
(α)
n (t) :=

et

tαn!

dn

dtn

(
tα+ne−t

)
=

n∑
j=0

Γ(n + α + 1)

Γ(j + α + 1)(n − j)!

(−t)j

j!

and define

Kn(ε, y) :=
(−1)n

π

∂n

∂εn

(
ε

ε2 + y2

)
.

Proposition (Winn 2012)

FN(h, k) = lim
ε→0

(−1)
k(k−1)

2 2−2h
∫ ∞
−∞

K2h(ε, y)e−N|y |

× det
[
L
(2k−1)
N+k−1−(i+j)(−2|y |)

]
i ,j=0,...,k−1

dy ,

with N > k − 1.
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Theorem – Basor, Bleher, Buckingham, Grava, Its, Its & Keating 2018

Setting

det
[
L
(2k−1)
N+k−1−(i+j)(−2|y |)

]
i ,j=0,··· ,k−1

=
e−2k|y |

(2πi)k
Hk [w0],

we have that
d

dx
lnHk =

σ(x) + kx + Nk

x
,

where σ(x) is a solution of the σ-Painlevé V equation

(
x
d2σ

dx2

)2

=

(
σ − x

dσ

dx
+ 2

(
dσ

dx

)2

− 2N
dσ

dx

)2

− 4
dσ

dx

(
−N +

dσ

dx

)(
−k − N +

dσ

dx

)(
k +

dσ

dx

)
with asymptotics σ(x) = −Nk + N

2 x +O(x2) as x → 0.
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Outline of Proof

1. Formulate a Riemann-Hilbert problem for the generalised Laguerre
polynomials and derive a system of related o.d.e.s;

2. a series of rational and gauge transformations reduces this system of
o.d.e.s to the Lax pair of PV;

3. identify the Hankel determinant with a particular solution of the
σ-form of PV.
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Large-Matrix Limit

Theorem – Basor, Bleher, Buckingham, Grava, Its, Its & Keating 2018

For h ∈ N, k > h − 1/2, in general

F (h, k) = (−1)h
G (k + 1)2

G (2k + 1)

d2h

dx2h

[
exp

∫ x

0

(
ξ(s)

s
ds

)] ∣∣∣∣∣
x=0

,

where G is the Barnes function and ξ(x) is a particular solution of the
σ-Painlevé III equation

(xξ′′)2 = −4x(ξ′)3 +
(
4k2 + 4ξ

)
(ξ′)2 + xξ′ − ξ,

with the initial conditions

ξ(0) = 0 , ξ′(0) = 0.

c.f. Bailey, Bettin, Blower, Conrey, Prokhorov, Rubinstein & Snaith (2019)
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Non-integer joint moments and the Hua-Pickrell Measure

Let WN denote the Weyl chamber:

WN = {x = (x1, x2, . . . , xN) ∈ RN : x1 ≥ x2 ≥ · · · ≥ xN}.

For N ≥ 1 and s > −1
2 , the Hua-Pickrell probability measure M

(s)
N on WN

is

M
(s)
N (dx) =

1

c
(s)
N

N∏
j=1

1

(1 + x2j )N+s
∆N(x)2dx1 · · · dxN

where ∆N(x) =
∏

1≤i<j≤N(xj − xi ) and c
(s)
N is a normalisation constant.
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Let s > −1
2 . Then,

1

N

N∑
i=1

x
(N)
i

d−→ X(s), as N →∞,

where (x
(N)
1 , . . . , x

(N)
N ) has law M

(s)
N and X(s) is a random variable that

plays an important role in the work of Pickrell (1991), Vershik (1994),
Olshanski & Vershik (1996), Borodin & Olshanski (2001), Qiu (2017), . . . ,
classifying the ergodic measures for the action of the infinite dimensional
unitary group on the space of infinite Hermitian matrices.
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Connection to joint moments [Assiotis, Keating & Warren
(2020)]

Theorem Let s > −1
2 and 0 ≤ h < s + 1

2 . Then,

lim
N→∞

1

Ns2+2h
FN(s, h)

def
= F (s, h) = F (s, 0)2−2hE

[
|X(s)|2h

]
with the limit F (s, h) satisfying 0 < F (s, h) <∞. The function F (s, 0) is
given by

F (s, 0) =
G (s + 1)2

G (2s + 1)
,

where G is the Barnes G-function.

Jon Keating (Oxford) Joint Moments May 15, 2021 15 / 18



Outline of Proof

The first key ingredient is a representation of FN(s, h) in terms of FN(s, 0)

and the moments E
[∣∣∑N

i=1
x
(N)
i
N

∣∣2h], where (x
(N)
1 , . . . , x

(N)
N ) have the same

distribution as the non-increasing eigenvalues of a random Hermitian

matrix with law M
(s)
N .

To prove convergence of the moments:

E

[∣∣∣∣ N∑
i=1

x
(N)
i

N

∣∣∣∣2h
]
−→ E

[
|X(s)|2h

]
, as N →∞,

one needs to prove uniform integrability or, as we do, show uniform
boundedness for some higher moment.

The averages that we want to control uniformly in N do not converge if
we bring the absolute values inside, and it is essential that a cancellation
due to symmetry around the origin of the points is taken into account.
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The second key step is to observe that
∑N

i=1
x
(N)
i
N is simply the trace of the

associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell

measures M
(s)
N , for all N ≥ 1 the diagonal elements of the random

matrices in question turn out to be exchangeable, identically distributed
random variables with the Pearson IV distribution.

In particular, they do not grow with N as the eigenvalues (x
(N)
1 , . . . , x

(N)
N )

do.

This leads directly to a proof of uniform boundedness of the moments
when s > 0.

Extending this to the range −1
2 < s ≤ 0 takes more work.
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Questions

Generalization to the other classical compact groups?

Extension to higher derivatives?

Applications to number theory?

Extension to other random matrix ensembles?

Probabilistic interpretation and connections?
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