Joint Moments of Characteristic Polynomials of Random Unitary Matrices

Jon Keating

Mathematical Institute
University of Oxford

keating@maths.ox.ac.uk

May 15, 2021
This talk is dedicated to Elizabeth’s memory
Let A be an $N \times N$ unitary matrix. Denote the eigenvalues of A by $e^{i\theta_n}$, $1 \leq n \leq N$, and the characteristic polynomial of A on the unit circle in the complex plane by

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}) = \prod_{n}(1 - e^{i\theta_n-i\theta}).$$
Let A be an $N \times N$ unitary matrix. Denote the eigenvalues of A by $e^{i\theta_n}$, $1 \leq n \leq N$, and the characteristic polynomial of A on the unit circle in the complex plane by

$$P_N(A, \theta) = \det(I - Ae^{-i\theta}) = \prod_{n}(1 - e^{i\theta_n - i\theta}).$$

Moments:

$$M_N(\beta) = \mathbb{E}_{A \in U(N)} |P_N(A, \theta)|^{2\beta}$$

$$= \frac{1}{(2\pi)^N N!} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \prod_{n=1}^{N} |1 - e^{i(\theta_n - \theta)}|^{2\beta}$$

$$\times \prod_{1 \leq j < k \leq N} |e^{i\theta_j} - e^{i\theta_k}|^2 d\theta_1 \cdots d\theta_N$$
For $\text{Re}\beta > -1/2$

$$M_N(\beta) = \prod_{j=1}^{N} \frac{\Gamma(j) \Gamma(j + 2\beta)}{\Gamma(j + \beta)^2} = \frac{G(1 + \beta)^2 G(N + 1) G(N + 1 + 2\beta)}{G(1 + 2\beta) G(N + 1 + \beta)^2}$$

where $G(s)$ is the Barnes G-function, which satisfies $G(s + 1) = \Gamma(s) G(s)$ (JPK & NC Snaith 2000).
For $\operatorname{Re} \beta > -1/2$

$$M_N(\beta) = \prod_{j=1}^{N} \frac{\Gamma(j)\Gamma(j + 2\beta)}{\Gamma(j + \beta)^2} = \frac{G(1 + \beta)^2G(N + 1)G(N + 1 + 2\beta)}{G(1 + 2\beta)G(N + 1 + \beta)^2}$$

where $G(s)$ is the Barnes G-function, which satisfies $G(s + 1) = \Gamma(s)G(s)$ (JPK & NC Snaith 2000).

As $N \rightarrow \infty$,

$$M_N(\beta) \sim \frac{G(1 + \beta)^2}{G(1 + 2\beta)}N^{\beta^2}$$
For $\text{Re}\beta > -1/2$

$$M_N(\beta) = \prod_{j=1}^{N} \frac{\Gamma(j)\Gamma(j + 2\beta)}{\Gamma(j + \beta)^2} = \frac{G(1 + \beta)^2 G(N + 1) G(N + 1 + 2\beta)}{G(1 + 2\beta) G(N + 1 + \beta)^2}$$

where $G(s)$ is the Barnes G-function, which satisfies $G(s + 1) = \Gamma(s)G(s)$ (JPK & NC Snaith 2000).

As $N \to \infty$,

$$M_N(\beta) \sim \frac{G(1 + \beta)^2}{G(1 + 2\beta)} N^{\beta^2}$$

and for $k \in \mathbb{N}$

$$M_N(k) \sim \left(\prod_{m=0}^{k-1} \frac{m!}{(m + k)!} \right) N^{k^2}$$
combinatorial interpretation: for $\beta = k \in \mathbb{N}$, as $N \to \infty$

$$M_N(k) \sim \frac{g_k}{k^2!} N^{k^2}$$

where g_k is the number of ways of filling a $k \times k$ array with the integers $1, 2, \ldots, k^2$ in such a way that the numbers increase along each row and down each column (i.e. the number of $k \times k$ Young tableaux).
combinatorial interpretation: for $\beta = k \in \mathbb{N}$, as $N \to \infty$

$$M_N(k) \sim \frac{g_k}{k^2!} N^{k^2}$$

where g_k is the number of ways of filling a $k \times k$ array with the integers $1, 2, \ldots, k^2$ in such a way that the numbers increase along each row and down each column (i.e. the number of $k \times k$ Young tableaux).

number theoretic application: moments of the Riemann zeta-function

$$\frac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2\beta} dt$$

$c.f.$ Hardy & Littlewood 1918, Ingham 1926, Conrey & Ghosh 1991, Conrey & Gonek 2000, JPK & NC Snaith 2000, ...
combinatorial interpretation: for $\beta = k \in \mathbb{N}$, as $N \to \infty$

$$M_N(k) \sim \frac{g_k}{k^2!} N^{k^2}$$

where g_k is the number of ways of filling a $k \times k$ array with the integers $1, 2, \ldots, k^2$ in such a way that the numbers increase along each row and down each column (i.e. the number of $k \times k$ Young tableaux).

number theoretic application: moments of the Riemann zeta-function

$$\frac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2\beta} dt$$

Joint moments

\[V_N(A, \theta) := \exp\left(i N (\theta + \pi) - i N \sum_{n=1}^{N} \theta_n^2 \right) \]

\(V_N(A, \theta) \) is real-valued for \(\theta \in [0, 2\pi) \).

The joint moments of the function \(V_U(\theta) \) and its derivative are

\[F_N(k, h) := \mathbb{E}_{A \in U(N)} |V_N(A, 0)|^{2k - 2h} |V'_N(A, 0)|^{2h} , \]

where it is assumed that \(h > -\frac{1}{2} \) and \(k > h - \frac{1}{2} \).

These joint moments have been studied by many authors, including Hughes (2001), Conrey Rubinstein & Snaith (2006), Dehaye (2008, 2010), Winn (2012), Riedtmann (2018), Basor et al. (2018), Bailey et al. (2019).
Joint moments

Set

\[V_N(A, \theta) := \exp \left(iN \frac{(\theta + \pi)}{2} - i \sum_{n=1}^{N} \frac{\theta_n}{2} \right) P_N(A, \theta), \]

\((V_N(A, \theta) \text{ is real-valued for } \theta \in [0, 2\pi]).\)
Set

\[V_N(A, \theta) := \exp \left(iN\left(\frac{\theta + \pi}{2}\right) - i \sum_{n=1}^{N} \frac{\theta_n}{2} \right) P_N(A, \theta), \]

\((V_N(A, \theta) \text{ is real-valued for } \theta \in [0, 2\pi]) \).

The joint moments of the function \(V_U(\theta) \) and its derivative are

\[F_N(k, h) := \mathbb{E}_{A \in U(N)} |V_N(A, 0)|^{2k-2h} |V_N'(A, 0)|^{2h}, \]

where it is assumed that

\[h > -\frac{1}{2} \quad \text{and} \quad k > h - \frac{1}{2}. \]
Joint moments

Set

\[V_N(A, \theta) := \exp \left(iN \frac{\theta + \pi}{2} - i \sum_{n=1}^{N} \frac{\theta_n}{2} \right) P_N(A, \theta), \]

\((V_N(A, \theta) \) is real-valued for \(\theta \in [0, 2\pi) \)).

The joint moments of the function \(V_U(\theta) \) and its derivative are

\[F_N(k, h) := \mathbb{E}_{A \in U(N)} |V_N(A, 0)|^{2k-2h} |V'_N(A, 0)|^{2h}, \]

where it is assumed that

\[h > -\frac{1}{2} \quad \text{and} \quad k > h - \frac{1}{2}. \]

These joint moments have been studied by many authors, including Hughes (2001), Conrey Rubinstein & Snaith (2006), Dehaye (2008, 2010), Winn (2012), Riedtmann (2018), Basor et al. (2018), Bailey et al. (2019).
Conjecture (Hughes 2001)

When $N \to \infty$, for $k > -1/2$ and $0 \leq h < k + 1/2$

$$F_N(k, h) \sim F(k, h)N^{k^2 + 2h}$$
Conjecture (Hughes 2001)

When $N \to \infty$, for $k > -\frac{1}{2}$ and $0 \leq h < k + \frac{1}{2}$

$$F_N(k, h) \sim F(k, h)N^{k^2+2h}$$

i.e.

$$F(k, h) := \lim_{N \to \infty} \frac{F_N(k, h)}{N^{k^2+2h}}$$

exists and is non-zero for $k > -\frac{1}{2}$ and $0 \leq h < k + \frac{1}{2}$
Hughes (2001) proved the conjectured scaling with N for integer values of h and k, but was not able to establish a tractable general formula for $F(k, h)$.
Hughes (2001) proved the conjectured scaling with N for integer values of h and k, but was not able to establish a tractable general formula for $F(k, h)$.

For integer and half-integer values of h and k, $F_N(k, h)$ is equal to a sum over Young Tableaux, but with a complicated summand (Dehaye (2008, 2010), Winn (2012), and Riedtmann (2018)). The analysis of these formulae in general is a major challenge.
Hughes (2001) proved the conjectured scaling with N for integer values of h and k, but was not able to establish a tractable general formula for $F(k, h)$.

For integer and half-integer values of h and k, $F_N(k, h)$ is equal to a sum over Young Tableaux, but with a complicated summand (Dehaye (2008, 2010), Winn (2012), and Riedtmann (2018)). The analysis of these formulae in general is a major challenge.

It has so far not been possible to extend these approaches for a given $h \in \mathbb{N}$, to $k > h - 1/2$, or to non-integer values of h.
Let $L_n^{(\alpha)}(t)$ be the generalized Laguerre polynomial

$$L_n^{(\alpha)}(t) := \frac{e^t}{t^{\alpha}n!} \frac{d^n}{dt^n} \left(t^{\alpha+n}e^{-t} \right) = \sum_{j=0}^{n} \frac{\Gamma(n + \alpha + 1)}{\Gamma(j + \alpha + 1)(n-j)!} \frac{(-t)^j}{j!}$$

and define

$$K_n(\epsilon, y) := \frac{(-1)^n}{\pi} \frac{\partial^n}{\partial \epsilon^n} \left(\frac{\epsilon}{\epsilon^2 + y^2} \right).$$
Connection to Painlevé equations

Let \(L_n^{(\alpha)}(t) \) be the generalized Laguerre polynomial

\[
L_n^{(\alpha)}(t) := \frac{e^t}{t^{\alpha+n}} \frac{d^n}{dt^n} \left(t^{\alpha+n} e^{-t} \right) = \sum_{j=0}^{n} \frac{\Gamma(n + \alpha + 1)}{\Gamma(j + \alpha + 1)(n - j)!} \frac{(-t)^j}{j!}
\]

and define

\[
K_n(\epsilon, y) := \frac{(-1)^n}{\pi} \frac{\partial^n}{\partial \epsilon^n} \left(\frac{\epsilon}{\epsilon^2 + y^2} \right).
\]

Proposition (Winn 2012)

\[
F_N(h, k) = \lim_{\epsilon \to 0} (-1)^{k(k-1)/2} 2^{-2h} \int_{-\infty}^{\infty} K_{2h}(\epsilon, y) e^{-N|y|} \times \det \left[L_{N+k-1-(i+j)}^{(2k-1)}(-2|y|) \right]_{i,j=0,\ldots,k-1} dy,
\]

with \(N > k - 1 \).
Setting

\[
\det \left[L_{N+k-1-(i+j)}^{(2k-1)}(-2|y|) \right]_{i,j=0,\ldots,k-1} = \frac{e^{-2k|y|}}{(2\pi i)^k} H_k[w_0],
\]

we have that

\[
\frac{d}{dx} \ln H_k = \frac{\sigma(x) + kx + Nk}{x},
\]

where \(\sigma(x)\) is a solution of the \(\sigma\)-Painlevé V equation

\[
\left(x \frac{d^2 \sigma}{dx^2} \right)^2 = \left(\sigma - x \frac{d\sigma}{dx} + 2 \left(\frac{d\sigma}{dx} \right)^2 - 2N \frac{d\sigma}{dx} \right)^2
\]

\[
- 4 \frac{d\sigma}{dx} \left(-N + \frac{d\sigma}{dx} \right) \left(-k - N + \frac{d\sigma}{dx} \right) \left(k + \frac{d\sigma}{dx} \right)
\]

with asymptotics \(\sigma(x) = -Nk + \frac{N}{2} x + O(x^2)\) as \(x \to 0\).
1. Formulate a Riemann-Hilbert problem for the generalised Laguerre polynomials and derive a system of related o.d.e.s;
Outline of Proof

1. Formulate a Riemann-Hilbert problem for the generalised Laguerre polynomials and derive a system of related o.d.e.s;

2. a series of rational and gauge transformations reduces this system of o.d.e.s to the Lax pair of P_V;
1. Formulate a Riemann-Hilbert problem for the generalised Laguerre polynomials and derive a system of related o.d.e.s;

2. a series of rational and gauge transformations reduces this system of o.d.e.s to the Lax pair of \(P_V \);

3. identify the Hankel determinant with a particular solution of the \(\sigma \)-form of \(P_V \).
For \(h \in \mathbb{N}, k > h - 1/2 \), in general

\[
F(h, k) = (-1)^h \frac{G(k + 1)^2}{G(2k + 1)} \frac{d^{2h}}{dx^{2h}} \left[\exp \int_0^x \left(\frac{\xi(s)}{s} \right) ds \right] \bigg|_{x=0},
\]

where \(G \) is the Barnes function and \(\xi(x) \) is a particular solution of the \(\sigma \)-Painlevé III equation

\[
(x\xi'')^2 = -4x(\xi')^3 + (4k^2 + 4\xi)(\xi')^2 + x\xi' - \xi,
\]

with the initial conditions

\[
\xi(0) = 0, \quad \xi'(0) = 0.
\]
Let W_N denote the Weyl chamber:

$$W_N = \{ x = (x_1, x_2, \ldots, x_N) \in \mathbb{R}^N : x_1 \geq x_2 \geq \cdots \geq x_N \}.$$

For $N \geq 1$ and $s > -\frac{1}{2}$, the Hua-Pickrell probability measure $M_N(s)$ on W_N is

$$M_N(s)(dx_1 \cdots dx_N) = \frac{1}{c_N(s)} N! \prod_{j=1}^N (1 + x_j^2)^{N+s} \Delta_N(x) \, dx_1 \cdots dx_N,$$

where $\Delta_N(x) = \prod_{1 \leq i < j \leq N} (x_j - x_i)$ and $c_N(s)$ is a normalisation constant.
Let \mathbb{W}_N denote the Weyl chamber:

$$\mathbb{W}_N = \{x = (x_1, x_2, \ldots, x_N) \in \mathbb{R}^N : x_1 \geq x_2 \geq \cdots \geq x_N\}.$$
Let \mathbb{W}_N denote the Weyl chamber:

$$\mathbb{W}_N = \{ \mathbf{x} = (x_1, x_2, \ldots, x_N) \in \mathbb{R}^N : x_1 \geq x_2 \geq \cdots \geq x_N \}.$$

For $N \geq 1$ and $s > -\frac{1}{2}$, the Hua-Pickrell probability measure $\mathcal{M}_N^{(s)}$ on \mathbb{W}_N is

$$\mathcal{M}_N^{(s)}(d\mathbf{x}) = \frac{1}{c_N^{(s)}} \prod_{j=1}^{N} \frac{1}{(1 + x_j^2)^{N+s}} \Delta_N(\mathbf{x})^2 d\mathbf{x} = \cdots d\mathbf{x}_N$$

where $\Delta_N(\mathbf{x}) = \prod_{1 \leq i < j \leq N} (x_j - x_i)$ and $c_N^{(s)}$ is a normalisation constant.
Let $s > -\frac{1}{2}$. Then,

$$\frac{1}{N} \sum_{i=1}^{N} x_i^{(N)} \xrightarrow{d} X(s), \quad \text{as } N \to \infty,$$

where $(x_1^{(N)}, \ldots, x_N^{(N)})$ has law $M_N^{(s)}$ and $X(s)$ is a random variable that plays an important role in the work of Pickrell (1991), Vershik (1994), Olshanski & Vershik (1996), Borodin & Olshanski (2001), Qiu (2017), ..., classifying the ergodic measures for the action of the infinite dimensional unitary group on the space of infinite Hermitian matrices.
Theorem Let $s > -\frac{1}{2}$ and $0 \leq h < s + \frac{1}{2}$. Then,

$$\lim_{N \to \infty} \frac{1}{Ns^2 + 2h} F_N(s, h) \overset{\text{def}}{=} F(s, h) = F(s, 0)2^{-2h}\mathbb{E} \left[|X(s)|^{2h} \right]$$

with the limit $F(s, h)$ satisfying $0 < F(s, h) < \infty$. The function $F(s, 0)$ is given by

$$F(s, 0) = \frac{G(s + 1)^2}{G(2s + 1)},$$

where G is the Barnes G-function.
The first key ingredient is a representation of $F_N(s, h)$ in terms of $F_N(s, 0)$ and the moments $\mathbb{E} \left[\left| \sum_{i=1}^{N} \frac{x_{i}^{(N)}}{N} \right|^{2h} \right]$, where $(x_{1}^{(N)}, \ldots, x_{N}^{(N)})$ have the same distribution as the non-increasing eigenvalues of a random Hermitian matrix with law $M^{(s)}_{N}$.
The first key ingredient is a representation of $F_N(s, h)$ in terms of $F_N(s, 0)$ and the moments $\mathbb{E} \left[\left| \sum_{i=1}^{N} x_i^{(N)}/N \right|^{2h} \right]$, where $(x_1^{(N)}, \ldots, x_N^{(N)})$ have the same distribution as the non-increasing eigenvalues of a random Hermitian matrix with law $\mathcal{M}_N^{(s)}$.

To prove convergence of the moments:

$$\mathbb{E} \left[\left| \sum_{i=1}^{N} x_i^{(N)}/N \right|^{2h} \right] \rightarrow \mathbb{E} \left[|X(s)|^{2h} \right], \quad \text{as } N \rightarrow \infty,$$

one needs to prove uniform integrability or, as we do, show uniform boundedness for some higher moment.
The first key ingredient is a representation of $F_N(s, h)$ in terms of $F_N(s, 0)$ and the moments $\mathbb{E} \left[\left| \sum_{i=1}^{N} \frac{x_i^{(N)}}{N} \right|^{2h} \right]$, where $(x_1^{(N)}, \ldots, x_N^{(N)})$ have the same distribution as the non-increasing eigenvalues of a random Hermitian matrix with law $\mathcal{M}_N^{(s)}$.

To prove convergence of the moments:

$$\mathbb{E} \left[\left| \sum_{i=1}^{N} \frac{x_i^{(N)}}{N} \right|^{2h} \right] \rightarrow \mathbb{E} \left[|X(s)|^{2h} \right], \text{ as } N \rightarrow \infty,$$

one needs to prove uniform integrability or, as we do, show uniform boundedness for some higher moment.

The averages that we want to control uniformly in N do not converge if we bring the absolute values inside, and it is essential that a cancellation due to symmetry around the origin of the points is taken into account.
The second key step is to observe that \(\sum_{i=1}^{N} \frac{x_i^{(N)}}{N} \) is simply the trace of the associated matrix.
The second key step is to observe that \(\sum_{i=1}^{N} \frac{x_i^{(N)}}{N} \) is simply the trace of the associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell measures \(M_N^{(s)} \), for all \(N \geq 1 \) the diagonal elements of the random matrices in question turn out to be exchangeable, identically distributed random variables with the Pearson IV distribution.
The second key step is to observe that $\sum_{i=1}^{N} x_i^{(N)} / N$ is simply the trace of the associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell measures $M_N^{(s)}$, for all $N \geq 1$ the diagonal elements of the random matrices in question turn out to be exchangeable, identically distributed random variables with the Pearson IV distribution.

In particular, they do not grow with N as the eigenvalues $(x_1^{(N)}, \ldots, x_N^{(N)})$ do.
The second key step is to observe that $\sum_{i=1}^{N} \frac{x_i^{(N)}}{N}$ is simply the trace of the associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell measures $\mathcal{M}_N^{(s)}$, for all $N \geq 1$ the diagonal elements of the random matrices in question turn out to be exchangeable, identically distributed random variables with the Pearson IV distribution.

In particular, they do not grow with N as the eigenvalues $(x_1^{(N)}, \ldots, x_N^{(N)})$ do.

This leads directly to a proof of uniform boundedness of the moments when $s > 0$.
The second key step is to observe that $\sum_{i=1}^{N} \frac{x_i^{(N)}}{N}$ is simply the trace of the associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell measures $\mathcal{M}_N^{(s)}$, for all $N \geq 1$ the diagonal elements of the random matrices in question turn out to be exchangeable, identically distributed random variables with the Pearson IV distribution.

In particular, they do not grow with N as the eigenvalues $(x_1^{(N)}, \ldots, x_N^{(N)})$ do.

This leads directly to a proof of uniform boundedness of the moments when $s > 0$.

Extending this to the range $-\frac{1}{2} < s \leq 0$ takes more work.
Questions

- Generalization to the other classical compact groups?
Questions

- Generalization to the other classical compact groups?
- Extension to higher derivatives?
Questions

- Generalization to the other classical compact groups?
- Extension to higher derivatives?
- Applications to number theory?
Questions

- Generalization to the other classical compact groups?
- Extension to higher derivatives?
- Applications to number theory?
- Extension to other random matrix ensembles?
Questions

- Generalization to the other classical compact groups?
- Extension to higher derivatives?
- Applications to number theory?
- Extension to other random matrix ensembles?
- Probabilistic interpretation and connections?