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This talk is dedicated to Elizabeth's memory
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Characteristic Polynomials of Random Unitary Matrices

Let A be an N x N unitary matrix. Denote the eigenvalues of A by e/,

1 < n < N, and the characteristic polynomial of A on the unit circle in the
complex plane by

Pn(A,0) = det(l — Ae ) = TJ(1 - 7).
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Characteristic Polynomials of Random Unitary Matrices

Let A be an N x N unitary matrix. Denote the eigenvalues of A by e/,
1 < n < N, and the characteristic polynomial of A on the unit circle in the

complex plane by

Pn(A,0) = det(l — Ae ) = TJ(1 - 7).

Moments:

Mn(B) = Eacuny| Pn(A, 0)12°
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For Reg > —1/2

N

Mn(8) =1

j=1

FGIFG+28)  G(1+B)*G(N+1)G(N +1+283)
rj+s?2 G(1+28)G(N + 1+ B)?

where G(s) is the Barnes G-function, which satisfies G(s + 1) = I'(s)G(s)
(JPK & NC Snaith 2000).
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For Reg > —1/2

TG +28)  G(1+B)2G(N+1)G(N + 1+ 28)
MN(B)_H rGg—+p32 G(1+28)G(N + 1+ )2

Jj=1

where G(s) is the Barnes G-function, which satisfies G(s + 1) = I'(s)G(s)
(JPK & NC Snaith 2000).

As N — oo,
G(1+ B)? N

Mn(B) ~ G(1+28)
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For Reg > —1/2

ﬁ TG +268)  G(AL+B)2G(N+1)G(N +1+2p5)

rg+p?2 G(1+28)G(N+1+p3)?

Mn(B) =

Jj=1

where G(s) is the Barnes G-function, which satisfies G(s + 1) = I'(s)G(s)
(JPK & NC Snaith 2000).

As N — oo, ,
M ~—"N
w(5) G(1+2p)
and for k € N
k—1 )
k
(H m+k >N
m 0
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combinatorial interpretation: for 3 =k € N, as N — oo

2
M (k) ~ %Nk

where gy is the number of ways of filling a k x k array with the integers
1,2,...,k? in such a way that the numbers increase along each row and
down each column (i.e. the number of k x k Young tableaux).
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combinatorial interpretation: for 3 =k € N, as N — oo
8k k2
MM“NEZM

where gy is the number of ways of filling a k x k array with the integers
1,2,...,k? in such a way that the numbers increase along each row and
down each column (i.e. the number of k x k Young tableaux).

number theoretic application: moments of the Riemann zeta-function

;
;A|quzumwm
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combinatorial interpretation: for 3 =k € N, as N — oo
8k k2
MM“NEZM

where gy is the number of ways of filling a k x k array with the integers
1,2,...,k? in such a way that the numbers increase along each row and
down each column (i.e. the number of k x k Young tableaux).

number theoretic application: moments of the Riemann zeta-function

;
;A|quzumwm

c.f. Hardy & Littlewood 1918, Ingham 1926, Conrey & Ghosh 1991,
Conrey & Gonek 2000, JPK & NC Snaith 2000, ...
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Joint moments

Jon Keating (Oxford) Joint Moments May 15, 2021 6



Set

N
V(A 8) = exp (iN(H;W) -y 92> Pu(A.6),

n=1
(Vn(A,0) is real-valued for 6 € [0, 27)).

Jon Keating (Oxford) Joint Moments May 15, 2021 6 /18



Set

N
. . (9+7T) . 0,,
\/N(/é\7 0) = exp (1[\/2 —1 nE:1 ? PN(A, 9),

(Vn(A,0) is real-valued for 6 € [0, 27)).
The joint moments of the function V() and its derivative are
F(k, h) := Eacuny Va(A, 0) 2"V (A, 0) ",

where it is assumed that

1 1
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Set

V(A 0) = exp (

z:: )PNAQ)

(Vn(A,0) is real-valued for 6 € [0, 27)).
The joint moments of the function V() and its derivative are

F(k, h) := Eacuny Va(A, 0) 2"V (A, 0) ",

where it is assumed that

1 1

These joint moments have been studied by many authors, including
Hughes (2001), Conrey Rubinstein & Snaith (2006), Dehaye (2008, 2010),
Winn (2012), Riedtmann (2018), Basor et al. (2018), Bailey et al. (2019).
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Conjecture (Hughes 2001)

When N — oo, for k > —1/2and 0 < h< k+1/2

Fr(k, h) ~ F(k, hyNK+2h
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Conjecture (Hughes 2001)

When N — oo, for k > —1/2and 0 < h< k+1/2

Fr(k, h) ~ F(k, hyNK+2h

. Fn(k,h
F(k’h) = Nll—r>noo Nk(2+2h)

exists and is non-zero for k > —1/2and 0 < h < k+1/2
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Hughes (2001) proved the conjectured scaling with N for integer values of
h and k, but was not able to establish a tractable general formula for
F(k, h).
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Hughes (2001) proved the conjectured scaling with N for integer values of
h and k, but was not able to establish a tractable general formula for

F(k, h).
For integer and half-integer values of h and k, Fy(k, h) is equal to a sum
over Young Tableaux, but with a complicated summand (Dehaye (2008,

2010), Winn (2012), and Riedtmann (2018)). The analysis of these
formulae in general is a major challenge.
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Hughes (2001) proved the conjectured scaling with N for integer values of
h and k, but was not able to establish a tractable general formula for
F(k, h).

For integer and half-integer values of h and k, Fy(k, h) is equal to a sum
over Young Tableaux, but with a complicated summand (Dehaye (2008,
2010), Winn (2012), and Riedtmann (2018)). The analysis of these
formulae in general is a major challenge.

It has so far not been possible to extend these approaches for a given
heN, to k> h—1/2, or to non-integer values of h.
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Connection to Painlevé equations

Let Lﬁ,a)(t) be the generalized Laguerre polynomial

(@) - et d" potng—t n+a+1) (_t)j
Lo (t) = tan!dt"< ) ZI’(J+0¢—|—1 Y(n—j ) J!

and define

Kn(e,y) :== (_1)nan< - 2>.

T Oe" \ €2 +y
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Connection to Painlevé equations

Let Lg,a)(t) be the generalized Laguerre polynomial

(@) - et d" potng—t n+a+1) (_t)j
Lo (t) = t“n!dt"( ) ZI’(J+0¢—|—1 Y(n—j ) J!

Kn(e,y) :== (_1)nan< - 2>.

T Oe" \ €2 +y

and define

Proposition (Winn 2012)

LS

FN(h7 k) = ||nb(_ ) 2" 2h/ K2h(€7y)e_N|y‘
e— o

(2k—1)

with N > k — 1.

v
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Theorem — Basor, Bleher, Buckingham, Grava, lIts, Its & Keating 2018
Setting

det [L2ED (o] e 2t

N-+k—1—(i+j)

we have that

ilnHk: o(x) + kx + Nk
dx X

where o(x) is a solution of the o-Painlevé V equation
d?0\? do do\? do ?
29) = o -x242(22) —onZ?
<X dx2> (J e <dx> dx>

do do do
—45 <_N+dx> <—k—N+dX

)

with asymptotics o(x) = —Nk + §x + O(x?) as x — 0.

_ ¢ 4
ij=0, k=1  (2mi)k k[wol,

do
k4 —
>< +dx

)
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Outline of Proof

1. Formulate a Riemann-Hilbert problem for the generalised Laguerre
polynomials and derive a system of related o.d.e.s;
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Outline of Proof

1. Formulate a Riemann-Hilbert problem for the generalised Laguerre
polynomials and derive a system of related o.d.e.s;

2. a series of rational and gauge transformations reduces this system of
o.d.e.s to the Lax pair of Py;
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Outline of Proof

1. Formulate a Riemann-Hilbert problem for the generalised Laguerre
polynomials and derive a system of related o.d.e.s;

2. a series of rational and gauge transformations reduces this system of
o.d.e.s to the Lax pair of Py;

3. identify the Hankel determinant with a particular solution of the
o-form of Py.
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Large-Matrix Limit

Theorem — Basor, Bleher, Buckingham, Grava, Its, Its & Keating 2018
For he N, k > h—1/2, in general

F(h, k) = (—1)’7G(k—+1)2 el [exp/ox (ﬁdsﬂ

)

G(2k + 1) dx2h .

S

where G is the Barnes function and £(x) is a particular solution of the
o-Painlevé Ill equation

(x€")? = —4x(&')> + (4K + 48) (&) + x¢' — ¢,
with the initial conditions
£€0)=0, ¢(0)=0.
c.f. Bailey, Bettin, Blower, Conrey, Prokhorov, Rubinstein & Snaith (2019)

v
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Non-integer joint moments and the Hua-Pickrell Measure
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Non-integer joint moments and the Hua-Pickrell Measure

Let Wy denote the Weyl chamber:

WN:{x:(Xl,Xg,...,XN)G]RN:Xl2X22-~-2XN}.
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Non-integer joint moments and the Hua-Pickrell Measure

Let Wy denote the Weyl chamber:
Wy ={x=(x1,x2,...,xn) eERN :xq>x>--- > xn}-

For N >1 and s > —%, the Hua-Pickrell probability measure zm(,j) on Wy
is
N

1
im(S) &) o) H 1+x N+ts An(x)*dxy - dxy
N j= 1

(s)

where Ap(x) = [[;<;;j<n(X; — %) and ¢y’ is a normalisation constant.
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Let s > —=. Then,

1
NZX’(N) N X(s), as N — oo,
i=1

where (x(lN), . (N)) has law Ms\f) and X(s) is a random variable that
plays an important role in the work of Pickrell (1991), Vershik (1994),
Olshanski & Vershik (1996), Borodin & Olshanski (2001), Qiu (2017), ...,
classifying the ergodic measures for the action of the infinite dimensional
unitary group on the space of infinite Hermitian matrices.
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Connection to joint moments [Assiotis, Keating & Warren

(2020)]

Theorem Let s > —% and 0< h<s+ % Then,

. 1 def _
Jim e Fu(s. h) % F(s, h) = F(s,00272"E [|X(s) "]

with the limit F(s, h) satisfying 0 < F(s, h) < co. The function F(s,0) is
given by

G(s +1)?

Fs.0 = Gost 1y

where G is the Barnes G-function.
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Outline of Proof

The first key ingredient is a representation of Fy(s, h) in terms of Fy(s,0)

NV
and the moments E || Y11, “

‘2h] , where (ng), e ,XSVN)) have the same

distribution as the non-increasing eigenvalues of a random Hermitian
matrix with law 9)1(,\7)
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Outline of Proof

The first key ingredient is a representation of Fy(s, h) in terms of Fy(s,0)
(V)
and the moments E [| SV e ‘2h] , where (ng), e ,XSVN)) have the same

distribution as the non-increasing eigenvalues of a random Hermitian
matrix with law 9)2(,\7).

To prove convergence of the moments:

N (V)
2 n

i=1

E

2h
] —E [|X(s)|2h} , as N — oo,

one needs to prove uniform integrability or, as we do, show uniform
boundedness for some higher moment.
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Outline of Proof

The first key ingredient is a representation of Fy(s, h) in terms of Fy(s,0)

(V)
and the moments E [| SV e ‘2h] , where (ng), e ,XSVN)) have the same

distribution as the non-increasing eigenvalues of a random Hermitian

)

matrix with law 9)2(,\7 .

To prove convergence of the moments:

N (V)
2 n

i=1

E

2h
] —E [|X(s)|2h} , as N — oo,

one needs to prove uniform integrability or, as we do, show uniform
boundedness for some higher moment.

The averages that we want to control uniformly in N do not converge if
we bring the absolute values inside, and it is essential that a cancellation
due to symmetry around the origin of the points is taken into account.
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(N)
The second key step is to observe that Z,N:l X’N is simply the trace of the

associated matrix.
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(N)
The second key step is to observe that Z,N:l X’N is simply the trace of the
associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell
measures zm(s), for all N > 1 the diagonal elements of the random

matrices in question turn out to be exchangeable, identically distributed
random variables with the Pearson IV distribution.
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(N)
The second key step is to observe that Z,N:l X’}V is simply the trace of the
associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell
measures im(s), for all N > 1 the diagonal elements of the random
matrices in question turn out to be exchangeable, identically distributed
random variables with the Pearson IV distribution.

In particular, they do not grow with N as the eigenvalues (ng), e ,XSVN))
do.
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The second key step is to observe that Z,N:l X’}V is simply the trace of the

associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell
measures im(s), for all N > 1 the diagonal elements of the random
matrices in question turn out to be exchangeable, identically distributed
random variables with the Pearson IV distribution.

In particular, they do not grow with N as the eigenvalues (ng), e ,XSVN))

do.

This leads directly to a proof of uniform boundedness of the moments
when s > 0.
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(N)
The second key step is to observe that Z,N:l X’}V is simply the trace of the
associated matrix.

Due to the remarkable property of consistency of the Hua-Pickrell
measures im(s), for all N > 1 the diagonal elements of the random
matrices in question turn out to be exchangeable, identically distributed
random variables with the Pearson IV distribution.

In particular, they do not grow with N as the eigenvalues (ng), e ,XSVN))
do.

This leads directly to a proof of uniform boundedness of the moments
when s > 0.

Extending this to the range —% < s < 0 takes more work.
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@ Generalization to the other classical compact groups?
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@ Extension to higher derivatives?
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@ Generalization to the other classical compact groups?
@ Extension to higher derivatives?

@ Applications to number theory?
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Generalization to the other classical compact groups?
Extension to higher derivatives?
Applications to number theory?

Extension to other random matrix ensembles?
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Generalization to the other classical compact groups?
Extension to higher derivatives?
Applications to number theory?

Extension to other random matrix ensembles?

Probabilistic interpretation and connections?
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