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Recently a rigorous mathematical theory has been developed for spa-
tial games with weak selection, i.e., when the payoff differences be-
tween strategies are small. The key to the analysis is that when
space and time are suitably rescaled the spatial model converges
to the solution of a partial differential equation (PDE). This approach
can be used to analyze all 2×2 games, but there are a number of 3×3
games for which the behavior of the limiting PDE is not known. In
this paper we give rules for determining the behavior of a large class
of 3 × 3 games and check their validity using simulation. In words,
the effect of space is equivalent to making changes in the payoff ma-
trix, and once this is done, the behavior of the spatial game can be
predicted from the behavior the replicator equation for the modified
game. We say predicted here because in some cases the behavior of
the spatial game is different from that of the replicator equation for
transformed game. For example, if a rock-paper-scissors game has a
replicator equation that spirals out to the boundary, space stabilizes
the system and produces an equilibrium.

voter model perturbation | reaction-diffusion equation | rock-paper-
scissors

Evolutionary games are often studied assuming that the
population is homogeneously mixing, i.e., each individ-

ual interacts equally with all the others. In this case, the
frequencies of strategies evolve according to the replicator
equation. See e.g., Hofbauer and Sigmund’s book [1]. If ui is
the frequency of players using strategy i then

dui

dt
= ui(Fi − F̄ ) [1]

where Fi =
∑

j
Gi,juj is the fitness of strategy i, Gi,j is

the payoff for playing strategy i against an opponent who
plays strategy j, and F̄ =

∑
i
uiFi is the average fitness.

The homogeneous mixing assumption is not satisfied for the
evolutionary games that arise in ecology or modeling solid
cancer tumors, so it is important to understand how spatial
structure changes the outcome of games. The goal of this
paper is to facilitate applications of spatial evolutionary games
by giving rules to determine the limiting behavior of a large
class of 3× 3 games.

Our spatial games will take place on the three-dimensional
integer lattice Z3. The theory, see [2, 3] has been developed
under the assumption that the interactions between an indi-
vidual and its neighbors are given by an irreducible probability
kernel p(x) on Z3 with p(0) = 0, that is finite range, symmetric
p(x) = p(−x), and has covariance matrix σ2I. Here we will
restrict our attention to the nearest neighbor case in which
p(x) = 1/6 for x = (1, 0, 0), (−1, 0, 0), . . . (0, 0,−1).

To describe the dynamics we let ξt(x) be the strategy used
by the individual at x at time t and let

ψt(x) =
∑

y

G(ξt(x), ξt(y))p(y − x)

be the fitness of x at time t. In Birth-Death dynamics, site
x gives birth at rate ψt(x) and sends its offspring to replace

the individual at y with probability p(y − x). In Death-Birth
dynamics, the individual at x dies at rate 1, and is replaced
by a copy of the one at y with probability proportional to
p(y − x)ψt(y). The theory developed in [3] can be applied to
both cases. However, to save space we will only consider the
birth-death case.

To motivate our study of evolutionary games we introduce
two examples that will be used to illustrate the theory that
has been developed.

A public goods game in pancreatic cancer. In this sys-
tem, see [4], some cells (type 2’s) produce insulin-like growth
factor-II, while other cells (type 1’s) free-ride on the growth
factors produced by other cells. Since the 1’s do not have to
spend metabolic energy producing the growth factor they have
a higher growth rate. This leads to the following very simple
2× 2 game.

1 2
1 0 λ
2 1 1

[2]

In words, 2’s give birth at rate 1, independent of what is around
them, while 1’s give birth at rate equal to λ times the fraction
of neighbors that are of type 1. If λ > 1 there is a mixed
strategy equilibrium for the game ρ2 = 1/λ, ρ1 = 1 − 1/λ,
which is the limit of the solution to the replicator equation
when 0 < u1 < 1.

Multiple Myeloma. Normal bone remodeling is a conse-
quence of a dynamic balance between osteoclast (OC) medi-
ated bone resorption and bone formation due to osteoblast
(OB) activity. Multiple myeloma (MM) cells disrupt this
balance in two ways.

(i) MM cells produce a variety of cytokines that stimulate the
growth of the OC population.
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(ii) Secretion of DKK1 by MM cells inhibits OB activity.

OC cells produce osteoblast activating factors that stimulate
the growth of MM cells where as MM cells are not effected
by the presence of OB cells. These considerations led Dingli
et al. [5] to the following game matrix. Here, a, b, c, d, e > 0.

OC OB MM
OC 0 a b
OB e 0 −d
MM c 0 0

[3]

There are many other systems to which our methods can be
applied. See e.g., [6] – [10].

1. Review of existing theory

We will study the dynamics of spatial games under the as-
sumption of weak selection, i.e., when the game matrix

Ḡ(i, j) = 1 + wGi,j ,

where 1 is a matrix of all 1’s and w is small. Since multiplying
a game matrix by a constant or adding a constant to all
the entries in a column does not change the behavior of the
replicator equation, Ḡ and G are equivalent from that point of
view. Mathematical results for spatial games require that we
take a limit in which w → 0. However, simulations will show
that the predictions are accurate in some cases when w = 1/2.

When w = 0 either version of the dynamics reduces to the
voter model, a system in which each site at rate 1 changes its
state to that of a randomly chosen neighbor. The key to our
analysis is that our spatial evolutionary game is a voter model
perturbation in the sense of Cox, Durrett, and Perkins [2]. To
make it easier to compare with [2] and the follow-up paper
[3] that applied the theory to evolutionary games we will let
w = ε2. Here, we will simply state the facts that we will use.
The reader can find the details in [3].

The key to the study of voter model perturbations is a
result that says when we scale space by ε and run time at
rate ε−2 then the spatial model converges to the solution of a
PDE. In order to state the result we need to define the mode
of convergence. Pick a small r > 0 and divide space εZd into
boxes with side εr. Given an x ∈ Rd let Bε(x) be the box that
contains x and let ūε

i (t, x) be the fraction of sites in state i in
Bε(x) at time tε−2. We say that the spatial model converges
to u(t, x), if for any L

sup
x∈[−L,L]d

|ūε
i (t, x)− ui(t, x)| → 0 as ε→ 0.

Theorem 1 Suppose d ≥ 3. Let vi : Rd → [0, 1] be continuous
with

∑
i∈S

vi = 1. If the initial conditions ξε
0 → vi in the

sense described above then ξε
ε−2t converges to the solution of

the system of partial differential equations:

∂

∂t
ui(t, x) = σ2

2 ∆ui(t, x) + φi(u(t, x))

with initial conditions ui(0, x) = vi(x).

The reaction term φi(u) in Theorem 1 is a constant times
the replicator equation for the modified game H = G + A
where

Ai,j = θ(Gi,i +Gi,j −Gj,i −Gj,j).

Note that if we add ck to column k the perturbation matrix
A is not changed.

The idea that the reaction term is the replicator equation
for a modified games is inspired by Ohtsuki and Nowak [11]
who found a similar result for the ODE that arises from the
pair approximation. See Section 5 of [3] for more on this
connection. As in the work of Tarnita et al. [12, 13], θ depends
only on the spatial structure and not on the entries in the
game matrix. In the three-dimensional nearest neighbor case
it is known that θ ≈ 0.5. See Section 4 of [3] for more details.

2. Public goods game

Since the behavior of the replicator equation and of the weak
selection limit for Birth-Death updating are not changed if we
subtract a constant from each column, so we can restrict our
attention to 2× 2 games of the form.

1 2
1 0 b
2 c 0

[4]

Let u denote the frequency of strategy 1. In a homogeneously
mixing population, u evolves according to the replicator equa-
tion Eq. (1):

du

dt
= u{b(1− u)− ub(1− u)− (1− u)cu}

= u(1− u)[b− (b+ c)u] ≡ φR(u) [5]

Note that φR(u) is a cubic with roots at 0 and at 1. If there
is a fixed point in (0, 1) it occurs at ρ = b/(b+ c)

A method for analyzing all 2 × 2 games is described in
Section 6 of [3], so we will only consider the public goods
game and suppose that λ > 1. Subtracting 1 from the second
column the game G becomes

G1 1 2
1 0 b = λ− 1
2 c = 1 0

In the three dimensional nearest neighbor case the transformed
game is given by H:

H1 1 2
1 0 b̄ = (3/2)λ− 2
2 c̄ = 2− λ/2 0

• If λ < 4/3 then b̄ < 0 so strategy 2 domiinates strategy 1,
2� 1, and 2’s take over the system.

• If λ > 4 then c̄ < 0 so 1� 2 and 1’s take over the system.

• If 4/3 < λ < 4 then ρ = c̄/(b̄+ c̄) ∈ (0, 1) is an attracting
fixed point and there is coexistence in the spatial model.

Note that in contrast to [4] one does not need the growth
rate of 1’s to be a nonlinear function of the fraction of 2’s to
maintain coexistence.

To check the theoretical prediction we turn to simulation.
The table gives the equilibrium frequencies of strategy 1.

λ 4/3 3/2 3 3.5 4
Original game 0.11 0.25 0.75 0.83 0.89

w = 1/2 0.01 0.19 0.79 0.88 0.96
w = 1/10 0.00 0.16 0.82 0.92 0.98

w → 0 limit 0 0.17 0.83 0.93 1
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Fig. 1. Simulation of public goods game G1 with λ = 3. There is very little spatial
structure in equilibrium. Here and in Figures 4, 5, and 7, the picture gives the state of
slice through a 100× 100× 100 grid.

Note that the agreement with the limiting result is very good
when w = 1/10 and good when w = 1/2.

Simulations were done using a standard algorithm for simu-
lating continuous time Markov chains. Details can be found in
a 1994 survey paper by Durrett and Levin [15]. The method
is described in Section S1 of the supporting information.

3. Three strategy games

We will suppose that the game is written in the form.

G =

1 2 3
1 0 α3 β2
2 β3 0 α1
3 α2 β1 0

[6]

The subscripts indicate the strategy that has been left out in
the various 2× 2 subgames.

In the 2 × 2 case there are only four possibilities 1 dom-
inates 2, 2 dominates 1, stable mixed strategy fixed point,
and unstable mixed strategy fixed point. Bomze [14, 16] lists
more than 40 possibilities for the 3 × 3 case. Here, we do
not consider games with unstable edge fixed points and only.
consider generic examples in which the six off-diagonal en-
tries are non-zero and distinct, so we end up with 11 cases
described in Section S2 of the supporting information. In
the next three sections we consider games with "rock-paper
scissors’ relationships between the strategies and two examples
in which the replicator equation has two locally attracting
fixed points (bistability).

4. Rock-paper-scissors

Suppose that the βi > 0 and the αi < 0 in Eq. (6). In this
situation there is an interior fixed point with all coordinates
positive. Theorem 7.7.2 in Hofbauer and Sigmund [1] describes
the asymptotic behavior of the replicator equations for these
games.

Theorem 2 Let ∆ = β1β2β3 + α1α2α3. If ∆ > 0 solutions
converge to the fixed point (stable spiral). If ∆ < 0 their

distance from the boundary tends to 0 (unstable spiral). If
∆ = 0 there is a one-parameter family of periodic orbits.

In [3] the following result is proved which covers some
situations with stable spirals.

Theorem 3 Suppose that the modified three strategy game
H has (i) zeros on the diagonal, (ii) an interior equilibrium
ρ, and that H is almost constant sum: Hij + Hji = γ + ηij

with γ > 0 and maxi,j |ηi,j | < γ/2. Then there is coexistence
and furthermore for any δ > 0 if ε < ε0(δ) and µ is any
stationary distribution concentrating on configurations with
infinitely many 1’s, 2’s and 3’s we have

sup
x

|µ(ξ(x) = i)− ρi| < δ

In words, the equilibrium frequencies are close to those of the
replicator equation for the modified game.

Turning to simulation we first consider the constant sum
game (which is covered by Theorem 3).

G2 1 2 3
1 0 4 −3
2 −1 0 5
3 6 −2 0

H2 1 2 3
1 0 6.5 −7.5
2 −3.5 0 8.5
3 10.5 −5.5 0

Note that H2 is again constant sum. It has ∆ > 0 so the
replicator equation spirals in to the fixed point and Theorem
3 implies there is coexistence in the spatial game with weak
selection.
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Fig. 2. Simulation confirms that in the spatial game 1 + 0.2G2 there is coexistence.

For our second example we consider a game G3 for which
the modified game H3 has ∆ < 0, and hence the solution to
the replicator equation spirals out to the boundary.

G3 1 2 3
1 0 1 −2
2 −3 0 2
3 3 −2 0

H3 1 2 3
1 0 3 −4.5
2 −5 0 4
3 5.5 −4 0

Figure 3 shows that spatial structure stabilizes the system. The
apparent periodic behavior will disappear when a large enough
system is simulated. For a discussion of this see Section 5 of a
1998 paper by Durrett and Levin [17]. As explained in Section
S3 of the supporting information sufficiently large means that
the side of the cube is much larger than the correlation length.
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Fig. 3. Simulation of unstable rock-paper scissors game 1 + 0.2G2

Fig. 4. Final state in the simulation in Figure 3. Note that there is significant correlation
in contrast to the simulation of the public goods game in Figure 1.

5. Stag Hunt

To prepare for the discussion of bistable 3× 3 games we begin
with a 2× 2 example.

Stag Hare
Stag 4 0
Hare 2 1

To explain the matrix: you can go hunt Stag (a large male
deer) but if you go alone then you have no chance to get one.
If you hunt Hare and the other player hunts Stag you get to
keep all the rabbits. If you hunt Hare and the other player
does also then you split the kill

If we transform so that there are 0’s on the diagonal and
replace the strategy names by numbers, the game becomes G.
The modified game is H.

G 1 2
1 0 −1
2 −2 0

H 1 2
1 0 −0.5
2 −2.5 0

In H, (ρ1, ρ2) = (1/6, 5/6) is an unstable equilibrium. If
u1 > 1/6, the first strategy becomes more attractive and
increases further.

It was shown in Section 6 of [3] that if ρ1 < 1/2 then the
1’s take over the system. This is proved by considering the
limiting PDE for the local density of strategy 1 which is

du

dt
= σ2u′′/2 + φ(u) with φ(u) = u(1− u)[b− (b+ c)u]

where b = −0.5, c = −2.5. When b, c < 0 this equation has a
traveling wave solution that moves with velocity v

u(t, x) = w(x− vt), u(−∞) = 1, u(∞) = 0.

1’s take over if and only if v > 0 which is equivalent to∫ 1
0 φ(x) dx > 0. Since φ is a cubic with zeros at 0 and 1 this

holds if and only if the interior equilibrium ρ = b/(b+c) < 1/2.

Fig. 5. The simulations were started with a strip of one strategy in between two strips
of the opposite type. In the public goods game on the left the interface melts down
and we have coexistence. In the Stag Hunt on the right the interface stays tight. For
an explanation of the relevance of the behavior of interfaces to properties of stochastic
spatial models see the 1999 paper by Molofsky et al [18]

6. Multiple myeloma

The original matrix, which we will call G4 is given in Eq. (3).
The modified game has entries

H4 1 2 3
1 0 A B
2 E 0 −D
3 C F 0

where A = (1 + θ)a− θe . . . D = (1 + θ)d, and F = θd. The
modification of the game does not change the sign of D but it
puts a positive entry F in G3,2. It may also change the signs of
one or two of the other four non-zero entries. Noting thatA < 0
if e > (1+θ)a/θ while E < 0 if e < θa/(1+θ) we see that if one
of these two entries is negative the other one is positive. The
same holds for B and C so there are nine possibilities for the
signs of A,B,C,E and a wide variety of possible behaviors for
the spatial game that are not found in the replicator equation.
In particular it is possible for all three strategies to coexist in
the spatial model but not in the replicator equation. These
possibilities were systematically considered in Section 9.1 of
[3]. Given the dramatic differences between the properties of
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the spatial game and the replicator equation, this casts doubt
on the proposed insights into therapy that emerge from the
analysis of Dingli et al [5]. See the discussion that begins on
page 1134.

Here, our interest in this model is as an example with
bistability. Suppose that A,B,C,E > 0 and DC/BE > F/A,
which holds for the original game entries. Results from [3],
which are described in Section S4 of the supporting information
shows that there are three cases:

Case 1. C/E > 1− F/A. The replicator equation converges
to the 1,3 equilibrium.

Case 2. 1−F/A > C/E > 1−DC/BE. There is an interior
fixed point that is a saddle point, and the replicator equation
exhibits bistability.

Case 3. 1 −DC/BE > C/E. The replicator equation con-
verges to the 1,2 equilibrium.

Simulation of Case 2. We take a = e = 2, d = 1, and
vary b = c. The perturbed game is very simple in this case:
A = E = a = e, B = C = b = c, D = 1.5, F = 0.5. Since
B = C = c the condition for case 2 is

1− 0.5
2 >

c

2 > 1− 1.5
2

or 1.5 > c > 0.5. When c = 1.5 the 1,3 equilibrium wins.
When c = 1 the 1,2 equilibrium wins. When c = 1.25 the
1,2 equilibrium wins, see Figure 6 but takes a long time to
do so, suggesting that this value is near the point where the
winner changes. In principle we could find this tipping point
by showing that the limiting system of PDE has traveling
wave solutions and finding the, parameter value where the ve-
locity changes sign but this seems to be difficult mathematical
problem.
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Fig. 6. Frequencies versus time in a 100 × 100 × 100 simulation of the weak
selection multiple myeloma game 1 + (1/3)G4, with a = e = 2, d = 1, and
b = c = 1.25. Note that the frequencies first get close to the unstable fixed point at
(0.531, 0.306, 0.1633) and then start heading toward the boundary equilibrium.

7. Summary

In this paper we have used simulation and heuristic arguments
to make predictions about the behavior of games that cannot
be analyzed rigorously using the methods of [3]. The main
contribution is to describe a procedure for determining the
behavior of spatial three strategy games with weak selection,

Fig. 7. Picture of final configuration for the simulation in Figure 6. Note that the
blues (1s) are spread throughout the space while the reds (2s) and whites (3s) are
segregated.

when the game matrix G has no unstable edge fixed points.
One first forms the modified game Hij = (1 + θ)Gij − θGj,i,
where θ is a constant that depends on the spatial structure
but not on the entries in the game matrix. θ ≈ 1/2 in the
three dimensional nearest neighbor case. The behavior of the
spatial game with matrix G can then be predicted from that
of the replicator equation for H. We say predicted because in
some cases the behavior is not the same.

For three strategy games without unstable edge fixed points
there are there are four major types:

1. When there are 1,2, or 3 stable edge fixed points and
they can all be invaded there is coexistence in the spatial
evolutionary game when selection is small. This was proved
in [3]

2. As first observed by Durrett and Levin [19], when the
replicator equation is bistable, i.e., the limit depends on the
starting point, the spatial game has a stronger equilibrium
that is the limit for generic initial conditions. In two strategy
games, the victorious strategy is determined by the direction of
movement of the traveling wave solution of the PDE. For three
strategy games we do not know how to prove the existence of
such traveling waves or compute their speeds, but simulations
show that the same result holds.

3. In the case of rock-paper-scissors games, there is coexistence
when the replicator equation converges to the interior fixed.
This was proved in [3] when the game is “almost constant sum.”
It is somewhat surprising that when the replicator equation
trajectories that spiral out to the boundary, space exerts a
stabilizing effect and the three strategies coexist. This has
also been found recently by Ryser and Murgas [10].

4. Last, and least interesting is the situation in which the
replicator equation converges to a boundary fixed point. Sim-
ulations show (see Section S5 of the supporting information)
that the same behavior occurs in the spatial evolutionary
game.

Work remains to be done on three strategy games with
unstable boundary fixed points, however the work presented
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here can be used to analyze all of the games in all the papers
we have cited except for one example in [10]. In many cases
the behavior of the spatial game differs from that of the
replicator equation, so it is important to consider the impact
of spatial structure in order to obtain correct conclusions. The
results we have presented here are derived in the limit that
the selection w → 0, but simulations show that in many cases
the conclusions are accurate when w = 0.1 or event 0.25.

References
1. Hofbauer J, Sigmund, K (1998) Evolutionary Games and Population Dynamics.

Cambridge U. Press
2. Cox T, Durrett R, Perkins E (2011) Voter model perturbations and reaction diffusion equations.

Astérisque, Volume 340. Also available at arXiv:1103.1676
3. Durrett R (2014) Spatial evolutionary games with small selection coefficients. Electronic J.

Probability. volume 19 (2014), paper 121
4. Archetti M, Ferraro DA, Christofori G (2015) Heterogeneity for IGF-II production maintained

by public goods dynamics in neuroendocrine pancreatic cancer. Proc. Natl. Acad. Sci.
112, 1833–1838

5. Dingli D, Chalub FACC, Santos FC, van Segbroeck S, Pacheco JM (2009) Cancer phenotype
as the outcome of an evolutionary game between normal and malignant cells. British J.
Cancer. 101, 1130–1136

6. Tomlinson IPM, Bodmer WF (1997) Modeling the consequences of interactions between tu-
mor cells. British J. Cancer. 78, 157–160

7. Basanta D, Simon M, Hatzikirou H, Deutsch, A (2008) Evolutionary game theory elucidates
the role of glycolysis in glioma progression and invasion. Cell Proliferation. 41, 980–987

8. Basanta D, Scott JG, Fishman MN, Ayala G, Hayward SW, Anderson ARA (2012) Inves-
tigating prostate cancer tumor-stroma interactions: clinical and biological insights from an
evolutionary game. British J. Cancer. 106, 174–181

9. Swierniak A, Krzeslak M (2013) Application of evolutionary games to modeling carcinogene-
sis. Math. Biosciences and Engineering. 10, 873–911

10. Ryser R, Murgas KA (2016) Bone remodeling as a spatial evolutionary game.
arXiv:1609.0062

11. Ohtsuki H, Nowak MA (2006) Evolutionary games on graphs. J. Theoretical Biology.
243, 86–97

12. Tarnita CE, Ohtsuki H, Antal T, Feng F, Nowak MA (2009) Strategy selection in structured
populations. J. Theoretical Biology 259, 570–581

13. Tarnita CE, Wage N, Nowak MA (2011) Multiple strategies in structured populations. Proc.
Natl. Acad. Sci. 108, 2334–2337

14. Bomze IM (1983) Lotka-Volterra equation and replicator dynamics. Biological Cybernet-
ics. 48, 201–211

15. Durrett R, Levin SA (1994) Stohastic spatial models: a user’s guide to ecological applica-
tions.Phil. Trans. R. Soc. London 343, 329–350

16. Bomze IM (1983) Lotka-Volterra equation and replicator dynamics: new issues in the classifi-
cation. Biological Cybernetics. 72, 447–453

17. Durrett R, Levin SA (1998) Spatial aspects of interspecific competition. Theor. Pop. Biol.
53, 30–43

18. Molofsky J et al (1998) Local frequency dependence and global coexistence. Theor. Pop.
Biol. 55, 270–282

19. Durrett R, Levin SA (1994) The importance of being discrete (and spatial). Theor. Pop.
Biol. 46, 363–394

ACKNOWLEDGMENTS. R.D has been partially supported by
NSF grants DMS 1505215 from the probability program and DMS
16164838 from mathematical biology. M.N. would like to thank the
Research in Computational Science program at NCSSM for giving
her this opportunity.

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Nanda et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


Supporting Information

S1. Simulation algorithm

The algorithm is a variant of a technique called
uniformization, which can reduce a continuous time
Markov chain to discrete time. To expalin the
Markov chain fact, let q(i, j) is the rate for jumps
from i to j, λi =

∑
j 6=i q(i, j), and Λ = maxi λi. If

the chain is in state i at the nth step of the simu-
lation, then Xn+1 = j with probability q(i, j)/Λ if
j 6= i and Xn+1 = i with probability 1− λi/Λ. Since
some transitions do not result in state changes this is
inefficient, but this has the advantage that the times
between jumps are exponential with rate Λ, so there
is no need to create the exponential random variables.
If n is large then the elapsed time after n simulation
steps Tn ∼ n/Λ, where an ∼ bn means an/bn → 1.

The simulation method adapts easily to interact-
ing particle systems and to evolutionary games in
particular. Let cij(x, ξ) be the rate at which site x
changes from i to j when the configuration is ξ, let
λi(x, ξ) =

∑
j 6=i cij(x, ξ) and let Λ = maxi,x λi(x, ξ).

On each simulation step we pick a site x at ran-
dom. If it is in state i it changes to j with prob-
ability cij(x, ξ)/Λ and does not change with proba-
bility 1 − λi(x, ξ)/Λ. If there are N sites then the
time until the next site tries to change is a minimum
of N exponential(Λ) random variables, and hence
exponential(NΛ) Thus if n is large the elapsed time
after n simulation steps Tn ∼ n/(NΛ).

S2. Classification of 3 by 3 games

Here we describe the division of generic 3×3 games
without unstable edge fixed points into 11 cases. The
number in the name of each case gives the number of
stable edge fixed points. Cases are further subdivided
according to the number of edge fixed points that can
be invaded, i.e., the freqeuncy of the third strategy
will increase when rare. Whether a fixed point is
invadable or not is indicated by the arrows next to
the fixed points. On the other edges without fixed
points, arrows give the direction of the dominance
relations. Proofs of the statements we make about
the behavior of the replicator equation can be found
in Section 7 of [3].
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In Case 3A, all three edge equilibria can be invaded.
The replicator equation converges to the interior fixed
point and it was shown in [3] that there is coexistence
in the spatial game when selection is weak.
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In case 3B, two of the three edge fixed points can
be invaded. The replicator equation converges to the
equilibrium on the 1, 2 edge, which we call e1,2. It is
impossible to have three stable edge fixed points and
only 1 or 0 of them invadable.
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In case 2A, both edge equilibria can be invaded.
The replicator equation converges to the interior fixed
point and it was shown in [3] that there is coexistence
in the spatial model.
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In case 2B, one edge fixed point can be invaded.
The replicator equation converges to e1,3. There is
no arrow on the 1, 2 edge because it is not important
in which direction it points.
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In case 2C, neither edge fixed point can be invaded, so
there is bistability, i.e., e1,2 and e1,3 are both locally
stable.

Next consider the situation in which there is one
stable fixed point on the boundary. In first two cases
it can be invaded.
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In case 1A, the pure strategy 2 can be invaded.
The replicator equation converges to the interior fixed
point. It was shown in [3] that there is coexistence in
the spatial game when selection is weak.

Case 1B.
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In case 1B, the pure strategy 2 cannot be invaded.
The replicator equation converges to the pure strat-
egy 2.

In the next two cases, there is one boundary fixed
point and it cannot be invaded.

Case 1C.
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In case 1C the interior equilibrium is bistable.

Case 1D.
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In case 1D the replicator equation converges to e1,3

There is no arrow on the 1, 2 edge because the result
does not depend on the direction it points.

Finally we have the situation with no boundary
fixed points. There are 8 possible orientations for the
arrows on the edges. Two lead to rock-paper-scissor
relationships between the strategies.
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Case 0A.
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In the other six combinations, two arrows point to-
ward the same pure strategy equilibrium and that is
the limit in the replicator equation.

Case 0B.
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S3. Correlation length

For concreteness consider the Ising model. Let
Λ(L) = {−L,−L + 1, . . . L}2 and for each ξ : ΛL →
{−1,−1} define

µ(ω) =
1

Z(L)
exp

(
β
∑
x∼y

ξxξy

)

where x ∼ y means x and y are nearest neigh-
bors and Z(L) is a normalizing constant to make p
a probability measure on {−1, 1}Λ(L). It is a well
known fact from statistical mechanics that one can
let L → ∞ to define probability measures on config-
urations ω : Z2 → {−1, 1}. When β < βc there is
only one limit that has exponentially decaying corre-
lations. That is if we let

cov (ξ(x), ξ(y)) = P (ξ(x) = 1, ξ(y) = 1)
− P (ξ(x) = 1)P (ξ(y) = 1)

which is ≥ 0 by the FKG inequality thenas n →∞

1/n log cov (ξ(0, 0), ξ(n, 0)) = −γ(β).

The inverse of this exponential decay rate ξ(β) =
1/γ(β) is the correlation length. Spins that are sepa-
rated by one correlation length have covariance ≈ e−1

and hence have a tendency to be aligned. However, if
we look at the fraction pL of 1 spins in a box of side L
which is much larger than the correlation length then
the variance of pL will be small and this will be close
to its mean 1/2. In the stochastic Ising model, boxes
that are the same size as the correlation length the
feequency of 1’s at time t, pL(t) will show fluctuations
over time due to correlations, but when the length is
much larger than the correlation length pL(t) wil stay
approximately constant over time. This phenomenon
is best understood in the well studied Ising but this
is a general property of stochastic spatial models.

S4. Analysis of the Multiple myeloma game.

Boundary equilibria. To study the properties
of the game we begin with the two strategy games it
contains.

1 vs. 2. (A/(A+E), E/(A+E)) is a mixed strategy
equilibrium. Since A,E > 0 it is attracting (on the
1, 2 edge).

1 vs. 3. (B/(B+C), C/(B+C)) is a mixed strategy
equilibrium. Since B,C > 0, it is attracting (on the
1, 3 edge).

2 vs. 3. 3 dominates 2.

Invadability. The next step is to determine when
the third strategy will increase when rare if the other
two are equilibrium.

In the 1, 2 equilibrium, fitnesses F1 = F2 = AE/(A+
E) while F3 = (CA + FE)/(A + E) so 3 can invade
1,2 (which we write as 3 → 1, 2) if CA + FE > AE
or C/E > 1− F/A.

In the 1, 3 equilibrium, the fitnesses F1 = F3 =
BC/(B+C), while F2 = (EB−DC)/(B+C), so 2 can
invade 1,3 if EB−DC > BC or 1−DC/BE > C/E.

Case 1. C/E > 1 − F/A. 3 → 1, 2 but 2 6→ 1, 3 so
the replicator converges to the 1,3 edge fixed point.

Case 2. 1 − F/A > C/E > 1 − DC/BE 3 6→ 1, 2
but 2 6→ 1, 3 so we have bistability.

Case 3. 1−DC/BE > C/E. 3 6→ 1, 2 but 2 → 1, 3
so the replicator converges to the 1,2 edge fixed point.

S5. Convergence to boundary fixed points

Coexistence has been proved in cases 3A, 2A, 1A.
Rock-paper scissors and bistable cases were consid-
ered in the main paper. Here, will give simulations
for the cases in which there is convergence to a bound-
ary fixed point: 3B, 2B, 1B, 1D, 0B. In each case we

3



give the original game matrix G and the transformed
matrix H. The invadability conditions are as previ-
ously drawn for that case.

G1 1 2 3
1 0 2.5 3.25
2 3.5 0 2.5
3 1.75 1.5 0

H1 1 2 3
1 0 2 4
2 4 0 3
3 1 1 0

1

23

Case 3B

Figure 1: The replicator equation for H1 → (1/3, 2/3, 0). In
the spatial game G1 frequencies → (0.378, 0.622, 0).

G2 1 2 3
1 0 1.25 3.25
2 0.25 0 2.5
3 1.75 1.5 0

H2 1 2 3
1 0 2 4
2 −1 0 3
3 1 1 0

1

23

Case 2B

Figure 2: The replicator equation for H2 → (3/4, 0, 1/4).
In the spatial game 1 + (1/2.25)G2 frequencies →
(0.7506, 0, 0.2494).

G3 1 2 3
1 0 −1 3.25
2 1 0 0.5
3 1.75 −0.5 0

H3 1 2 3
1 0 −2 4
2 2 0 1
3 1 −1 0

G4 1 2 3
1 0 1.25 3.25
2 −0.25 0 0.125
3 2.5 −0.625 0

H4 1 2 3
1 0 2 4
2 −1 0 −2
3 −2 1 0

1

23

Case 1B

Figure 3: The replicator equation for H3 and the frequencies
in the spatial game 1 + (1/3)G1 → (0, 1, 0).

1

23

Case 1D

Figure 4: The replicator equation for H4 → (2/3, 0, 1/3).
In the spatial game 1 + (1/2.625)G4 frequencies →
(0.636, 0, 0.364).

G5 1 2 3
1 0 1.25 3.25
2 −0.25 0 −1.25
3 −0.5 0.25 0

H5 1 2 3
1 0 2 4
2 −1 0 −2
3 2 1 0

1

23

Case 0B

Figure 5: The replicator equation for H5 and the frequencies
in the spatial game 1 + (1/3.25)G1 → (1, 0, 0).
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