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Preface

Between the first undergraduate course in probability and the first graduate
course that uses measure theory, there are a number of courses that teach
Stochastic Processes to students with many different interests and with varying
degrees of mathematical sophistication. To allow readers (and instructors) to
choose their own level of detail, many of the proofs begin with a nonrigorous
answer to the question “Why is this true?” followed by a Proof that fills in
the missing details. As it is possible to drive a car without knowing about the
working of the internal combustion engine, it is also possible to apply the theory
of Markov chains without knowing the details of the proofs. It is my personal
philosophy that probability theory was developed to solve problems, so most of
our effort will be spent on analyzing examples. Readers who want to master the
subject will have to do more than a few of the twenty dozen carefully chosen
exercises.

This book began as notes I typed in the spring of 1997 as I was teaching
ORIE 361 at Cornell for the second time. In Spring 2009, the mathematics
department there introduced its own version of this course, MATH 474. This
started me on the task of preparing the second edition. The plan was to have
this finished in Spring 2010 after the second time I taught the course, but when
May rolled around completing the book lost out to getting ready to move to
Durham after 25 years in Ithaca. In the Fall of 2011, I taught Duke’s version
of the course, Math 216, to 20 undergrads and 12 graduate students and over
the Christmas break the second edition was completed.

The second edition differs substantially from the first, though curiously the
length and the number of problems has remained roughly constant. Throughout
the book there are many new examples and problems, with solutions that use
the TI-83 to eliminate the tedious details of solving linear equations by hand.
My students tell me I should just use MATLAB and maybe I will for the next
edition.

The Markov chains chapter has been reorganized. The chapter on Poisson
processes has moved up from third to second, and is now followed by a treatment
of the closely related topic of renewal theory. Continuous time Markov chains
remain fourth, with a new section on exit distributions and hitting times, and
reduced coverage of queueing networks. Martingales, a difficult subject for
students at this level, now comes fifth, in order to set the stage for their use in
a new sixth chapter on mathematical finance. The treatment of finance expands
the two sections of the previous treatment to include American options and the
the capital asset pricing model. Brownian motion makes a cameo appearance
in the discussion of the Black-Scholes theorem, but in contrast to the previous
edition, is not discussed in detail.

As usual the second edition has profited from people who have told me about
typos over the last dozen years. If you find new ones, email: rtd@math.duke.edu.

Rick Durrett
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Chapter 1

Markov Chains

1.1 Definitions and Examples

The importance of Markov chains comes from two facts: (i) there are a large
number of physical, biological, economic, and social phenomena that can be
modeled in this way, and (ii) there is a well-developed theory that allows us to
do computations. We begin with a famous example, then describe the property
that is the defining feature of Markov chains

Example 1.1. Gambler’s ruin. Consider a gambling game in which on any
turn you win $1 with probability p = 0.4 or lose $1 with probability 1−p = 0.6.
Suppose further that you adopt the rule that you quit playing if your fortune
reaches $N . Of course, if your fortune reaches $0 the casino makes you stop.

Let Xn be the amount of money you have after n plays. Your fortune, Xn

has the “Markov property.” In words, this means that given the current state,
Xn, any other information about the past is irrelevant for predicting the next
state Xn+1. To check this for the gambler’s ruin chain, we note that if you are
still playing at time n, i.e., your fortune Xn = i with 0 < i < N , then for any
possible history of your wealth in−1, in−2, . . . i1, i0

P (Xn+1 = i + 1|Xn = i,Xn−1 = in−1, . . . X0 = i0) = 0.4

since to increase your wealth by one unit you have to win your next bet. Here
we have used P (B|A) for the conditional probability of the event B given that
A occurs. Recall that this is defined by

P (B|A) =
P (B ∩A)

P (A)

If you need help with this notion, see section A.1 of the appendix.
Turning now to the formal definition, we say that Xn is a discrete time

Markov chain with transition matrix p(i, j) if for any j, i, in−1, . . . i0

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = p(i, j) (1.1)

Here and in what follows, boldface indicates a word or phrase that is being
defined or explained.

Equation (1.1) explains what we mean when we say that “given the current
state Xn, any other information about the past is irrelevant for predicting

1



2 CHAPTER 1. MARKOV CHAINS

Xn+1.” In formulating (1.1) we have restricted our attention to the temporally
homogeneous case in which the transition probability

p(i, j) = P (Xn+1 = j|Xn = i)

does not depend on the time n.
Intuitively, the transition probability gives the rules of the game. It is

the basic information needed to describe a Markov chain. In the case of the
gambler’s ruin chain, the transition probability has

p(i, i + 1) = 0.4, p(i, i− 1) = 0.6, if 0 < i < N

p(0, 0) = 1 p(N,N) = 1

When N = 5 the matrix is
0 1 2 3 4 5

0 1.0 0 0 0 0 0
1 0.6 0 0.4 0 0 0
2 0 0.6 0 0.4 0 0
3 0 0 0.6 0 0.4 0
4 0 0 0 0.6 0 0.4
5 0 0 0 0 0 1.0

or the chain by be represented pictorially as

.6 .6 .6 .6
→ → → →0 1 2 3 4 5← ← ← ←

.4 .4 .4 .4
→
1

←
1

Example 1.2. Ehrenfest chain. This chain originated in physics as a model
for two cubical volumes of air connected by a small hole. In the mathematical
version, we have two “urns,” i.e., two of the exalted trash cans of probability
theory, in which there are a total of N balls. We pick one of the N balls at
random and move it to the other urn.

Let Xn be the number of balls in the “left” urn after the nth draw. It should
be clear that Xn has the Markov property; i.e., if we want to guess the state
at time n + 1, then the current number of balls in the left urn Xn, is the only
relevant information from the observed sequence of states Xn, Xn−1, . . . X1, X0.
To check this we note that

P (Xn+1 = i + 1|Xn = i,Xn−1 = in−1, . . . X0 = i0) = (N − i)/N

since to increase the number we have to pick one of the N − i balls in the other
urn. The number can also decrease by 1 with probability i/N . In symbols, we
have computed that the transition probability is given by

p(i, i + 1) = (N − i)/N, p(i, i− 1) = i/N for 0 ≤ i ≤ N

with p(i, j) = 0 otherwise. When N = 4, for example, the matrix is

0 1 2 3 4

0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 2/4 0 2/4 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0
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In the first two examples we began with a verbal description and then wrote
down the transition probabilities. However, one more commonly describes a
Markov chain by writing down a transition probability p(i, j) with

(i) p(i, j) ≥ 0, since they are probabilities.

(ii)
∑

j p(i, j) = 1, since when Xn = i, Xn+1 will be in some state j.

The equation in (ii) is read “sum p(i, j) over all possible values of j.” In words
the last two conditions say: the entries of the matrix are nonnegative and each
ROW of the matrix sums to 1.

Any matrix with properties (i) and (ii) gives rise to a Markov chain, Xn.
To construct the chain we can think of playing a board game. When we are in
state i, we roll a die (or generate a random number on a computer) to pick the
next state, going to j with probability p(i, j).

Example 1.3. Weather chain. Let Xn be the weather on day n in Ithaca,
NY, which we assume is either: 1 = rainy, or 2 = sunny. Even though the
weather is not exactly a Markov chain, we can propose a Markov chain model
for the weather by writing down a transition probability

1 2
1 .6 .4
2 .2 .8

The table says, for example, the probability a rainy day (state 1) is followed by
a sunny day (state 2) is p(1, 2) = 0.4. A typical question of interest is:

Q. What is the long-run fraction of days that are sunny?

Example 1.4. Social mobility. Let Xn be a family’s social class in the nth
generation, which we assume is either 1 = lower, 2 = middle, or 3 = upper. In
our simple version of sociology, changes of status are a Markov chain with the
following transition probability

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

Q. Do the fractions of people in the three classes approach a limit?

Example 1.5. Brand preference. Suppose there are three types of laundry
detergent, 1, 2, and 3, and let Xn be the brand chosen on the nth purchase.
Customers who try these brands are satisfied and choose the same thing again
with probabilities 0.8, 0.6, and 0.4 respectively. When they change they pick
one of the other two brands at random. The transition probability is

1 2 3
1 .8 .1 .1
2 .2 .6 .2
3 .3 .3 .4

Q. Do the market shares of the three product stabilize?
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Example 1.6. Inventory chain. We will consider the consequences of using
an s, S inventory control policy. That is, when the stock on hand at the end
of the day falls to s or below, we order enough to bring it back up to S. For
simplicity, we suppose happens at the beginning of the next day. Let Xn be
the amount of stock on hand at the end of day n and Dn+1 be the demand on
day n + 1. Introducing notation for the positive part of a real number,

x+ = max{x, 0} =

{
x if x > 0
0 if x ≤ 0

then we can write the chain in general as

Xn+1 =

{
(Xn −Dn+1)+ if Xn > s

(S −Dn+1)+ if Xn ≤ s

In words, if Xn > s we order nothing and begin the day with Xn units. If the
demand Dn+1 ≤ Xn we end the day with Xn+1 = Xn −Dn+1. If the demand
Dn+1 > Xn we end the day with Xn+1 = 0. If Xn ≤ s then we begin the day
with S units, and the reasoning is the same as in the previous case.

Suppose now that an electronics store sells a video game system and uses
an inventory policy with s = 1, S = 5. That is, if at the end of the day, the
number of units they have on hand is 1 or 0, they order enough new units so
their total on hand at the beginning of the next day is 5. If we assume that

for k = 0 1 2 3
P (Dn+1 = k) .3 .4 .2 .1

then we have the following transition matrix:

0 1 2 3 4 5
0 0 0 .1 .2 .4 .3
1 0 0 .1 .2 .4 .3
2 .3 .4 .3 0 0 0
3 .1 .2 .4 .3 0 0
4 0 .1 .2 .4 .3 0
5 0 0 .1 .2 .4 .3

To explain the entries, we note that when Xn ≥ 3 then Xn −Dn+1 ≥ 0. When
Xn+1 = 2 this is almost true but p(2, 0) = P (Dn+1 = 2 or 3). When Xn = 1 or
0 we start the day with 5 units so the end result is the same as when Xn = 5.

In this context we might be interested in:

Q. Suppose we make $12 profit on each unit sold but it costs $2 a day to store
items. What is the long-run profit per day of this inventory policy? How do we
choose s and S to maximize profit?

Example 1.7. Repair chain. A machine has three critical parts that are
subject to failure, but can function as long as two of these parts are working.
When two are broken, they are replaced and the machine is back to working
order the next day. To formulate a Markov chain model we declare its state
space to be the parts that are broken {0, 1, 2, 3, 12, 13, 23}. If we assume that
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parts 1, 2, and 3 fail with probabilities .01, .02, and .04, but no two parts fail
on the same day, then we arrive at the following transition matrix:

0 1 2 3 12 13 23
0 .93 .01 .02 .04 0 0 0
1 0 .94 0 0 .02 .04 0
2 0 0 .95 0 .01 0 .04
3 0 0 0 .97 0 .01 .02
12 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0
23 1 0 0 0 0 0 0

If we own a machine like this, then it is natural to ask about the long-run cost
per day to operate it. For example, we might ask:

Q. If we are going to operate the machine for 1800 days (about 5 years), then
how many parts of types 1, 2, and 3 will we use?

Example 1.8. Branching processes. These processes arose from Francis
Galton’s statistical investigation of the extinction of family names. Consider a
population in which each individual in the nth generation independently gives
birth, producing k children (who are members of generation n+1) with proba-
bility pk. In Galton’s application only male children count since only they carry
on the family name.

To define the Markov chain, note that the number of individuals in genera-
tion n, Xn, can be any nonnegative integer, so the state space is {0, 1, 2, . . .}. If
we let Y1, Y2, . . . be independent random variables with P (Ym = k) = pk, then
we can write the transition probability as

p(i, j) = P (Y1 + · · ·+ Yi = j) for i > 0 and j ≥ 0

When there are no living members of the population, no new ones can be born,
so p(0, 0) = 1.

Galton’s question, originally posed in the Educational Times of 1873, is

Q. What is the probability that the line of a man becomes extinct?, i.e., the
branching process becomes absorbed at 0?

Reverend Henry William Watson replied with a solution. Together, they then
wrote an 1874 paper entitled On the probability of extinction of families. For
this reason, these chains are often called Galton-Watson processes.

Example 1.9. Wright–Fisher model. Thinking of a population of N/2
diploid individuals who have two copies of each of their chromosomes, or of N
haploid individuals who have one copy, we consider a fixed population of N
genes that can be one of two types: A or a. In the simplest version of this
model the population at time n + 1 is obtained by drawing with replacement
from the population at time n. In this case, if we let Xn be the number of A
alleles at time n, then Xn is a Markov chain with transition probability

p(i, j) =
(

N

j

)(
i

N

)j (
1− i

N

)N−j

since the right-hand side is the binomial distribution for N independent trials
with success probability i/N .
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In this model the states x = 0 and N that correspond to fixation of the
population in the all a or all A states are absorbing states, that is, p(x, x) = 1.
So it is natural to ask:

Q1. Starting from i of the A alleles and N − i of the a alleles, what is the
probability that the population fixates in the all A state?

To make this simple model more realistic we can introduce the possibility
of mutations: an A that is drawn ends up being an a in the next generation
with probability u, while an a that is drawn ends up being an A in the next
generation with probability v. In this case the probability an A is produced by
a given draw is

ρi =
i

N
(1− u) +

N − i

N
v

but the transition probability still has the binomial form

p(i, j) =
(

N

j

)
(ρi)j(1− ρi)N−j

If u and v are both positive, then 0 and N are no longer absorbing states,
so we ask:

Q2. Does the genetic composition settle down to an equilibrium distribution as
time t→∞?

As the next example shows it is easy to extend the notion of a Markov chain
to cover situations in which the future evolution is independent of the past when
we know the last two states.

Example 1.10. Two-stage Markov chains. In a Markov chain the distri-
bution of Xn+1 only depends on Xn. This can easily be generalized to case
in which the distribution of Xn+1 only depends on (Xn, Xn−1). For a con-
crete example consider a basketball player who makes a shot with the following
probabilities:

1/2 if he has missed the last two times
2/3 if he has hit one of his last two shots
3/4 if he has hit both of his last two shots

To formulate a Markov chain to model his shooting, we let the states of the
process be the outcomes of his last two shots: {HH, HM,MH,MM} where M
is short for miss and H for hit. The transition probability is

HH HM MH MM
HH 3/4 1/4 0 0
HM 0 0 2/3 1/3
MH 2/3 1/3 0 0
MM 0 0 1/2 1/2

To explain suppose the state is HM , i.e., Xn−1 = H and Xn = M . In this case
the next outcome will be H with probability 2/3. When this occurs the next
state will be (Xn, Xn+1) = (M,H) with probability 2/3. If he misses an event
of probability 1/3, (Xn, Xn+1) = (M,M).

The Hot Hand is a phenomenon known to most people who play or watch
basketball. After making a couple of shots, players are thought to “get into
a groove” so that subsequent successes are more likely. Purvis Short of the
Golden State Warriors describes this more poetically as
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“You’re in a world all your own. It’s hard to describe. But the
basket seems to be so wide. No matter what you do, you know the
ball is going to go in.”

Unfortunately for basketball players, data collected by Gliovich, Vallone and
Taversky (1985) shows that this is a misconception. The next table gives data
for the conditional probability of hitting a shot after missing the last three, miss-
ing the last two, . . . hitting the last three, for nine players of the Philadelphia
76ers: Darryl Dawkins (403), Maurice Cheeks (339), Steve Mix (351), Bobby
Jones (433), Clint Richardson (248), Julius Erving (884), Andrew Toney (451),
Caldwell Jones (272), and Lionel Hollins (419). The numbers in parentheses
are the number of shots for each player.

P (H|3M) P (H|2M) P (H|1M) P (H|1H) P (H|2H) P (H|3H)
.88 .73 .71 .57 .58 .51
.77 .60 .60 .55 .54 .59
.70 .56 .52 .51 .48 .36
.61 .58 .58 .53 .47 .53
.52 .51 .51 .53 .52 .48
.50 .47 .56 .49 .50 .48
.50 .48 .47 .45 .43 .27
.52 .53 .51 .43 .40 .34
.50 .49 .46 .46 .46 .32

In fact, the data supports the opposite assertion: after missing a player will hit
more frequently.

1.2 Multistep Transition Probabilities

The transition probability p(i, j) = P (Xn+1 = j|Xn = i) gives the probability
of going from i to j in one step. Our goal in this section is to compute the
probability of going from i to j in m > 1 steps:

pm(i, j) = P (Xn+m = j|Xn = i)

As the notation may already suggest, pm will turn out to the be the mth power
of the transition matrix, see Theorem 1.1.

To warm up, we recall the transition probability of the social mobility chain:

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

and consider the following concrete question:

Q1. Your parents were middle class (state 2). What is the probability that you
are in the upper class (state 3) but your children are lower class (state 1)?

Solution. Intuitively, the Markov property implies that starting from state 2
the probability of jumping to 3 and then to 1 is given by

p(2, 3)p(3, 1)
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To get this conclusion from the definitions, we note that using the definition of
conditional probability,

P (X2 = 1, X1 = 3|X0 = 2) =
P (X2 = 1, X1 = 3, X0 = 2)

P (X0 = 2)

=
P (X2 = 1, X1 = 3, X0 = 2)

P (X1 = 3, X0 = 2)
· P (X1 = 3, X0 = 2)

P (X0 = 2)
= P (X2 = 1|X1 = 3, X0 = 2) · P (X1 = 3|X0 = 2)

By the Markov property (1.1) the last expression is

P (X2 = 1|X1 = 3) · P (X1 = 3|X0 = 2) = p(2, 3)p(3, 1)

Moving on to the real question:

Q2. What is the probability your children are lower class (1) given your parents
were middle class (2)?

Solution. To do this we simply have to consider the three possible states for
your class and use the solution of the previous problem.

P (X2 = 1|X0 = 2) =
3∑

k=1

P (X2 = 1, X1 = k|X0 = 2) =
3∑

k=1

p(2, k)p(k, 1)

= (.3)(.7) + (.5)(.3) + (.2)(.2) = .21 + .15 + .04 = .21

There is nothing special here about the states 2 and 1 here. By the same
reasoning,

P (X2 = j|X0 = i) =
3∑

k=1

p(i, k) p(k, j)

The right-hand side of the last equation gives the (i, j)th entry of the matrix p
is multiplied by itself.

To explain this, we note that to compute p2(2, 1) we multiplied the entries
of the second row by those in the first column: . . .

.3 .5 .2
. . .

.7 . .
.3 . .
.2 . .

 =

 . . .
.40 . .
. . .


If we wanted p2(1, 3) we would multiply the first row by the third column:.7 .2 .1

. . .

. . .

. . .1
. . .2
. . .4

 =

. . .15
. . .
. . .


When all of the computations are done we have.7 .2 .1

.3 .5 .2

.2 .4 .4

.7 .2 .1
.3 .5 .2
.2 .4 .4

 =

.57 .28 .15
.40 .39 .21
.34 .40 .26


All of this becomes much easier if we use a scientific calculator like the T1-

83. Using 2nd-MATRIX we can access a screen with NAMES, MATH, EDIT
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at the top. Selecting EDIT we can enter the matrix into the computer as say
[A]. The selecting the NAMES we can enter [A]∧ 2 on the computation line to
get A2. If we use this procedure to compute A20 we get a matrix with three
rows that agree in the first six decimal places with

.468085 .340425 .191489

Later we will see that as n→∞, pn converges to a matrix with all three rows
equal to (22/47, 16/47, 9/47).

To explain our interest in pm we will now prove:

Theorem 1.1. The m step transition probability P (Xn+m = j|Xn = i) is the
mth power of the transition matrix p.

The key ingredient in proving this is the Chapman–Kolmogorov equa-
tion

pm+n(i, j) =
∑

k

pm(i, k) pn(k, j) (1.2)

Once this is proved, Theorem 1.1 follows, since taking n = 1 in (1.2), we see
that

pm+1(i, j) =
∑

k

pm(i, k) p(k, j)

That is, the m+1 step transition probability is the m step transition probability
times p. Theorem 1.1 now follows.

Why is (1.2) true? To go from i to j in m + n steps, we have to go from i to
some state k in m steps and then from k to j in n steps. The Markov property
implies that the two parts of our journey are independent.

•
•
•
•

•
•
•
•

•
•
•
•

   
   

  

```````̀
aaaaaaaa

aaaaaaaa

```````̀

   
   

  

i

j

time 0 m m + n

Proof of (1.2). We do this by combining the solutions of Q1 and Q2. Breaking
things down according to the state at time m,

P (Xm+n = j|X0 = i) =
∑

k

P (Xm+n = j, Xm = k|X0 = i)

Using the definition of conditional probability as in the solution of Q1,

P (Xm+n = j, Xm = k|X0 = i) =
P (Xm+n = j, Xm = k, X0 = i)

P (X0 = i)

=
P (Xm+n = j, Xm = k, X0 = i)

P (Xm = k, X0 = i)
· P (Xm = k, X0 = i)

P (X0 = i)
= P (Xm+n = j|Xm = k, X0 = i) · P (Xm = k|X0 = i)
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By the Markov property (1.1) the last expression is

= P (Xm+n = j|Xm = k) · P (Xm = k|X0 = i) = pm(i, k)pn(k, j)

and we have proved (1.2).

Having established (1.2), we now return to computations.

Example 1.11. Gambler’s ruin. Suppose for simplicity that N = 4 in
Example 1.1, so that the transition probability is

0 1 2 3 4
0 1.0 0 0 0 0
1 0.6 0 0.4 0 0
2 0 0.6 0 0.4 0
3 0 0 0.6 0 0.4
4 0 0 0 0 1.0

To compute p2 one row at a time we note:

p2(0, 0) = 1 and p2(4, 4) = 1, since these are absorbing states.

p2(1, 3) = (.4)2 = 0.16, since the chain has to go up twice.

p2(1, 1) = (.4)(.6) = 0.24. The chain must go from 1 to 2 to 1.

p2(1, 0) = 0.6. To be at 0 at time 2, the first jump must be to 0.

Leaving the cases i = 2, 3 to the reader, we have

p2 =


1.0 0 0 0 0
.6 .24 0 .16 0
.36 0 .48 0 .16
0 .36 0 .24 .4
0 0 0 0 1


Using a calculator one can easily compute

p20 =


1.0 0 0 0 0

.87655 .00032 0 .00022 .12291

.69186 0 .00065 0 .30749

.41842 .00049 0 .00032 .58437
0 0 0 0 1


0 and 4 are absorbing states. Here we see that the probability of avoiding
absorption for 20 steps is 0.00054 from state 3, 0.00065 from state 2, and 0.00081
from state 1. Later we will see that

lim
n→∞

pn =


1.0 0 0 0 0

57/65 0 0 0 8/65
45/65 0 0 0 20/65
27/65 0 0 0 38/65

0 0 0 0 1
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1.3 Classification of States

We begin with some important notation. We are often interested in the behavior
of the chain for a fixed initial state, so we will introduce the shorthand

Px(A) = P (A|X0 = x)

Later we will have to consider expected values for this probability and we will
denote them by Ex.

Let Ty = min{n ≥ 1 : Xn = y} be the time of the first return to y (i.e.,
being there at time 0 doesn’t count), and let

ρyy = Py(Ty <∞)

be the probability Xn returns to y when it starts at y. Note that if we didn’t
exclude n = 0 this probability would always be 1.

Intuitively, the Markov property implies that the probability Xn will return
to y at least twice is ρ2

yy, since after the first return, the chain is at y, and the
probability of a second return following the first is again ρyy.

To show that the reasoning in the last paragraph is valid, we have to intro-
duce a definition and state a theorem. We say that T is a stopping time if
the occurrence (or nonoccurrence) of the event “we stop at time n,” {T = n},
can be determined by looking at the values of the process up to that time:
X0, . . . , Xn. To see that Ty is a stopping time note that

{Ty = n} = {X1 6= y, . . . ,Xn−1 6= y, Xn = y}

and that the right-hand side can be determined from X0, . . . , Xn.
Since stopping at time n depends only on the values X0, . . . , Xn, and in a

Markov chain the distribution of the future only depends on the past through
the current state, it should not be hard to believe that the Markov property
holds at stopping times. This fact can be stated formally as:

Theorem 1.2. Strong Markov property. Suppose T is a stopping time.
Given that T = n and XT = y, any other information about X0, . . . XT is
irrelevant for predicting the future, and XT+k, k ≥ 0 behaves like the Markov
chain with initial state y.

Why is this true? To keep things as simple as possible we will show only that

P (XT+1 = z|XT = y, T = n) = p(y, z)

Let Vn be the set of vectors (x0, . . . , xn) so that if X0 = x0, . . . , Xn = xn,
then T = n and XT = y. Breaking things down according to the values of
X0, . . . , Xn gives

P (XT+1 = z,XT = y, T = n) =
∑

x∈Vn

P (Xn+1 = z,Xn = xn, . . . , X0 = x0)

=
∑

x∈Vn

P (Xn+1 = z|Xn = xn, . . . , X0 = x0)P (Xn = xn, . . . , X0 = x0)

where in the second step we have used the multiplication rule

P (A ∩B) = P (B|A)P (A)
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For any (x0, . . . , xn) ∈ Vn we have T = n and XT = y so xn = y. Using the
Markov property, (1.1), and recalling the definition of Vn shows the above

P (XT+1 = z, T = n, XT = y) = p(y, z)
∑

x∈Vn

P (Xn = xn, . . . , X0 = x0)

= p(y, z)P (T = n, XT = y)

Dividing both sides by P (T = n, XT = y) gives the desired result.
Let T 1

y = Ty and for k ≥ 2 let

T k
y = min{n > T k−1

y : Xn = y} (1.3)

be the time of the kth return to y. The strong Markov property implies
that the conditional probability we will return one more time given that we
have returned k − 1 times is ρyy. This and induction implies that

Py(T k
y <∞) = ρk

yy (1.4)

At this point, there are two possibilities:

(i) ρyy < 1: The probability of returning k times is ρk
yy → 0 as k →∞. Thus,

eventually the Markov chain does not find its way back to y. In this case the
state y is called transient, since after some point it is never visited by the
Markov chain.

(ii) ρyy = 1: The probability of returning k times ρk
yy = 1, so the chain returns

to y infinitely many times. In this case, the state y is called recurrent, it
continually recurs in the Markov chain.

To understand these notions, we turn to our examples, beginning with

Example 1.12. Gambler’s ruin. Consider, for concreteness, the case N = 4.

0 1 2 3 4
0 1 0 0 0 0
1 .6 0 .4 0 0
2 0 .6 0 .4 0
3 0 0 .6 0 .4
4 0 0 0 0 1

We will show that eventually the chain gets stuck in either the bankrupt (0)
or happy winner (4) state. In the terms of our recent definitions, we will show
that states 0 < y < 4 are transient, while the states 0 and 4 are recurrent.

It is easy to check that 0 and 4 are recurrent. Since p(0, 0) = 1, the chain
comes back on the next step with probability one, i.e.,

P0(T0 = 1) = 1

and hence ρ00 = 1. A similar argument shows that 4 is recurrent. In general if
y is an absorbing state, i.e., if p(y, y) = 1, then y is a very strongly recurrent
state – the chain always stays there.

To check the transience of the interior states, 1, 2, 3, we note that starting
from 1, if the chain goes to 0, it will never return to 1, so the probability of
never returning to 1,

P1(T1 =∞) ≥ p(1, 0) = 0.6 > 0



1.3. CLASSIFICATION OF STATES 13

Similarly, starting from 2, the chain can go to 1 and then to 0, so

P2(T2 =∞) ≥ p(2, 1)p(1, 0) = 0.36 > 0

Finally, for starting from 3, we note that the chain can go immediately to 4 and
never return with probability 0.4, so

P3(T3 =∞) ≥ p(3, 4) = 0.4 > 0

In some cases it is easy to identify recurrent states.

Example 1.13. Social mobility. Recall that the transition probability is

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

To begin we note that no matter where Xn is, there is a probability of at least
0.1 of hitting 3 on the next step so

P3(T3 > n) ≤ (0.9)n → 0 as n→∞

i.e., we will return to 3 with probability 1. The last argument applies even more
strongly to states 1 and 2, since the probability of jumping to them on the next
step is always at least 0.2. Thus all three states are recurrent.

The last argument generalizes to the give the following useful fact.

Lemma 1.3. Suppose Px(Ty ≤ k) ≥ α > 0 for all x in the state space S. Then

Px(Ty > nk) ≤ (1− α)n

Generalizing from our experience with the last two examples, we will in-
troduce some general results that will help us identify transient and recurrent
states.

Definition 1.1. We say that x communicates with y and write x → y if
there is a positive probability of reaching y starting from x, that is, the probability

ρxy = Px(Ty <∞) > 0

Note that the last probability includes not only the possibility of jumping from
x to y in one step but also going from x to y after visiting several other states in
between. The following property is simple but useful. Here and in what follows,
lemmas are a means to prove the more important conclusions called theorems.
The two are numbered in the same sequence to make results easier to find.

Lemma 1.4. If x→ y and y → z, then x→ z.

Proof. Since x → y there is an m so that pm(x, y) > 0. Similarly there is
an n so that pn(y, z) > 0. Since pm+n(x, z) ≥ pm(x, y)pn(y, z) it follows that
x→ z.

Theorem 1.5. If ρxy > 0, but ρyx < 1, then x is transient.
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Proof. Let K = min{k : pk(x, y) > 0} be the smallest number of steps we can
take to get from x to y. Since pK(x, y) > 0 there must be a sequence y1, . . . yK−1

so that
p(x, y1)p(y1, y2) · · · p(yK−1, y) > 0

Since K is minimal all the yi 6= y (or there would be a shorter path), and we
have

Px(Tx =∞) ≥ p(x, y1)p(y1, y2) · · · p(yK−1, y)(1− ρyx) > 0

so x is transient.

We will see later that Theorem 1.5 allows us to to identify all the transient
states when the state space is finite. An immediate consequence of Theorem
1.5 is

Lemma 1.6. If x is recurrent and ρxy > 0 then ρyx = 1.

Proof. If ρyx < 1 then Lemma 1.5 would imply x is transient.

To be able to analyze any finite state Markov chain we need some theory.
To motivate the developments consider

Example 1.14. A Seven-state chain. Consider the transition probability:

1 2 3 4 5 6 7
1 .7 0 0 0 .3 0 0
2 .1 .2 .3 .4 0 0 0
3 0 0 .5 .3 .2 0 0
4 0 0 0 .5 0 .5 0
5 .6 0 0 0 .4 0 0
6 0 0 0 0 0 .2 .8
7 0 0 0 1 0 0 0

To identify the states that are recurrent and those that are transient, we begin
by drawing a graph that will contain an arc from i to j if p(i, j) > 0 and i 6= j.
We do not worry about drawing the self-loops corresponding to states with
p(i, i) > 0 since such transitions cannot help the chain get somewhere new.

In the case under consideration the graph is

5 3 7

1 2 4 6

?

6

�

�
?

6

- -

�
�
�� �

��	

6
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�

The state 2 communicates with 1, which does not communicate with it,
so Theorem 1.5 implies that 2 is transient. Likewise 3 communicates with 4,
which doesn’t communicate with it, so 3 is transient. To conclude that all the
remaining states are recurrent we will introduce two definitions and a fact.
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A set A is closed if it is impossible to get out, i.e., if i ∈ A and j 6∈ A
then p(i, j) = 0. In Example 1.14, {1, 5} and {4, 6, 7} are closed sets. Their
union, {1, 4, 5, 6, 7} is also closed. One can add 3 to get another closed set
{1, 3, 4, 5, 6, 7}. Finally, the whole state space {1, 2, 3, 4, 5, 6, 7} is always a
closed set.

Among the closed sets in the last example, some are obviously too big. To
rule them out, we need a definition. A set B is called irreducible if whenever
i, j ∈ B, i communicates with j. The irreducible closed sets in the Example
1.14 are {1, 5} and {4, 6, 7}. The next result explains our interest in irreducible
closed sets.

Theorem 1.7. If C is a finite closed and irreducible set, then all states in C
are recurrent.

Before entering into an explanation of this result, we note that Theorem 1.7
tells us that 1, 5, 4, 6, and 7 are recurrent, completing our study of the Example
1.14 with the results we had claimed earlier.

In fact, the combination of Theorem 1.5 and 1.7 is sufficient to classify the
states in any finite state Markov chain. An algorithm will be explained in the
proof of the following result.

Theorem 1.8. If the state space S is finite, then S can be written as a disjoint
union T∪R1∪· · ·∪Rk, where T is a set of transient states and the Ri, 1 ≤ i ≤ k,
are closed irreducible sets of recurrent states.

Proof. Let T be the set of x for which there is a y so that x → y but y 6→ x.
The states in T are transient by Theorem 1.5. Our next step is to show that
all the remaining states, S − T , are recurrent.

Pick an x ∈ S − T and let Cx = {y : x → y}. Since x 6∈ T it has the
property if x→ y, then y → x. To check that Cx is closed note that if y ∈ Cx

and y → z, then Lemma 1.4 implies x → z so z ∈ Cx. To check irreducibility,
note that if y, z ∈ Cx, then by our first observation y → x and we have x → z
by definition, so Lemma 1.4 implies y → z. Cx is closed and irreducible so all
states in Cx are recurrent. Let R1 = Cx. If S − T − R1 = ∅, we are done. If
not, pick a site w ∈ S − T −R1 and repeat the procedure.

* * * * * * *

The rest of this section is devoted to the proof of Theorem 1.7. To do this,
it is enough to prove the following two results.

Lemma 1.9. If x is recurrent and x→ y, then y is recurrent.

Lemma 1.10. In a finite closed set there has to be at least one recurrent state.

To prove these results we need to introduce a little more theory. Recall the
time of the kth visit to y defined by

T k
y = min{n > T k−1

y : Xn = y}

and ρxy = Px(Ty <∞) the probability we ever visit y at some time n ≥ 1 when
we start from x. Using the strong Markov property as in the proof of (1.4) gives

Px(T k
y <∞) = ρxyρk−1

yy . (1.5)

Let N(y) be the number of visits to y at times n ≥ 1. Using (1.5) we can
compute EN(y).
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Lemma 1.11. ExN(y) = ρxy/(1− ρyy)

Proof. Accept for the moment the fact that for any nonnegative integer valued
random variable X, the expected value of X can be computed by

EX =
∞∑

k=1

P (X ≥ k) (1.6)

We will prove this after we complete the proof of Lemma 1.11. Now the prob-
ability of returning at least k times, {N(y) ≥ k}, is the same as the event that
the kth return occurs, i.e., {T k

y <∞}, so using (1.5) we have

ExN(y) =
∞∑

k=1

P (N(y) ≥ k) = ρxy

∞∑
k=1

ρk−1
yy =

ρxy

1− ρyy

since
∑∞

n=0 θn = 1/(1− θ) whenever |θ| < 1.

Proof of (1.6). Let 1{X≥k} denote the random variable that is 1 if X ≥ k and
0 otherwise. It is easy to see that

X =
∞∑

k=1

1{X≥k}.

Taking expected values and noticing E1{X≥k} = P (X ≥ k) gives

EX =
∞∑

k=1

P (X ≥ k)

Our next step is to compute the expected number of returns to y in a
different way.

Lemma 1.12. ExN(y) =
∑∞

n=1 pn(x, y).

Proof. Let 1{Xn=y} denote the random variable that is 1 if Xn = y, 0 otherwise.
Clearly

N(y) =
∞∑

n=1

1{Xn=y}.

Taking expected values now gives

ExN(y) =
∞∑

n=1

Px(Xn = y)

With the two lemmas established we can now state our next main result.

Theorem 1.13. y is recurrent if and only if

∞∑
n=1

pn(y, y) = EyN(y) =∞

Proof. The first equality is Lemma 1.12. From Lemma 1.11 we see that EyN(y) =
∞ if and only if ρyy = 1, which is the definition of recurrence.
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With this established we can easily complete the proofs of our two lemmas
.

Proof of Lemma 1.9 . Suppose x is recurrent and ρxy > 0. By Lemma 1.6
we must have ρyx > 0. Pick j and ` so that pj(y, x) > 0 and p`(x, y) > 0.
pj+k+`(y, y) is probability of going from y to y in j + k + ` steps while the
product pj(y, x)pk(x, x)p`(x, y) is the probability of doing this and being at x
at times j and j + k. Thus we must have

∞∑
k=0

pj+k+`(y, y) ≥ pj(y, x)

( ∞∑
k=0

pk(x, x)

)
p`(x, y)

If x is recurrent then
∑

k pk(x, x) =∞, so
∑

m pm(y, y) =∞ and Theorem 1.13
implies that y is recurrent.

Proof of Lemma 1.10. If all the states in C are transient then Lemma 1.11
implies that ExN(y) <∞ for all x and y in C. Since C is finite, using Lemma
1.12

∞ >
∑
y∈C

ExN(y) =
∑
y∈C

∞∑
n=1

pn(x, y)

=
∞∑

n=1

∑
y∈C

pn(x, y) =
∞∑

n=1

1 =∞

where in the next to last equality we have used that C is closed. This contra-
diction proves the desired result.

1.4 Stationary Distributions

In the next section we will see that if we impose an additional assumption called
aperiodicity an irreducible finite state Markov chain converges to a stationary
distribution

pn(x, y)→ π(y)

To prepare for that this section introduces stationary distributions and shows
how to compute them. Our first step is to consider

What happens in a Markov chain when the initial state is random?
Breaking things down according to the value of the initial state and using the
definition of conditional probability

P (Xn = j) =
∑

i

P (X0 = i,Xn = j)

=
∑

i

P (X0 = i)P (Xn = j|X0 = i)

If we introduce q(i) = P (X0 = i), then the last equation can be written as

P (Xn = j) =
∑

i

q(i)pn(i, j) (1.7)

In words, we multiply the transition matrix on the left by the vector q of initial
probabilities. If there are k states, then pn(x, y) is a k × k matrix. So to make
the matrix multiplication work out right, we should take q as a 1× k matrix or
a “row vector.”
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Example 1.15. Consider the weather chain (Example 1.3) and suppose that
the initial distribution is q(1) = 0.3 and q(2) = 0.7. In this case(

.3 .7
)(.6 .4

.2 .8

)
=
(
.32 .68

)
since .3(.6) + .7(.2) = .32

.3(.4) + .7(.8) = .68

Example 1.16. Consider the social mobility chain (Example 1.4) and suppose
that the initial distribution: q(1) = .5, q(2) = .2, and q(3) = .3. Multiplying
the vector q by the transition probability gives the vector of probabilities at
time 1. (

.5 .2 .3
).7 .2 .1

.3 .5 .2

.2 .4 .4

 =
(
.47 .32 .21

)
To check the arithmetic note that the three entries on the right-hand side are

.5(.7) + .2(.3) + .3(.2) = .35 + .06 + .06 = .47

.5(.2) + .2(.5) + .3(.4) = .10 + .10 + .12 = .32

.5(.1) + .2(.2) + .3(.4) = .05 + .04 + .12 = .21

If qp = q then q is called a stationary distribution. If the distribution at
time 0 is the same as the distribution at time 1, then by the Markov property
it will be the distribution at all times n ≥ 1.

Stationary distributions have a special importance in the theory of Markov
chains, so we will use a special letter π to denote solutions of the equation

πp = π.

To have a mental picture of what happens to the distribution of probability
when one step of the Markov chain is taken, it is useful to think that we have
q(i) pounds of sand at state i, with the total amount of sand

∑
i q(i) being one

pound. When a step is taken in the Markov chain, a fraction p(i, j) of the sand
at i is moved to j. The distribution of sand when this has been done is

qp =
∑

i

q(i)p(i, j)

If the distribution of sand is not changed by this procedure q is a stationary
distribution.

Example 1.17. Weather chain. To compute the stationary distribution we
want to solve (

π1 π2

)(.6 .4
.2 .8

)
=
(
π1 π2

)
Multiplying gives two equations:

.6π1 + .2π2 = π1

.4π1 + .8π2 = π2

Both equations reduce to .4π1 = .2π2. Since we want π1 + π2 = 1, we must
have .4π1 = .2− .2π1, and hence

π1 =
.2

.2 + .4
=

1
3

π2 =
.4

.2 + .4
=

2
3
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To check this we note that(
1/3 2/3

)(.6 .4
.2 .8

)
=
(

.6
3

+
.4
3

.4
3

+
1.6
3

)

General two state transition probability.

1 2
1 1− a a
2 b 1− b

We have written the chain in this way so the stationary distribution has a simple
formula

π1 =
b

a + b
π2 =

a

a + b
(1.8)

As a first check on this formula we note that in the weather chain a = 0.4 and
b = 0.2 which gives (1/3, 2/3) as we found before. We can prove this works in
general by drawing a picture:

•
1b

a + b
•
2 a

a + b

a
−→
←−
b

In words, the amount of sand that flows from 1 to 2 is the same as the amount
that flows from 2 to 1 so the amount of sand at each site stays constant. To
check algebraically that πp = π:

b

a + b
(1− a) +

a

a + b
b =

b− ba + ab

a + b
=

b

a + b
b

a + b
a +

a

a + b
(1− b) =

ba + a− ab

a + b
=

a

a + b
(1.9)

Formula (1.8) gives the stationary distribution for any two state chain, so
we progress now to the three state case and consider the

Example 1.18. Social Mobility (continuation of 1.4).

1 2 3
1 .7 .2 .1
2 .3 .5 .2
3 .2 .4 .4

The equation πp = π says

(
π1 π2 π3

).7 .2 .1
.3 .5 .2
.2 .4 .4

 =
(
π1 π2 π3

)
which translates into three equations

.7π1 + .3π2 + .2π3 = π1

.2π1 + .5π2 + .4π3 = π2

.1π1 + .2π2 + .4π3 = π3
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Note that the columns of the matrix give the numbers in the rows of the equa-
tions. The third equation is redundant since if we add up the three equations
we get

π1 + π2 + π3 = π1 + π2 + π3

If we replace the third equation by π1 + π2 + π3 = 1 and subtract π1 from each
side of the first equation and π2 from each side of the second equation we get

−.3π1 + .3π2 + .2π3 = 0
.2π1 − .5π2 + .4π3 = 0

π1 + π2 + π3 = 1 (1.10)

At this point we can solve the equations by hand or using a calculator.

By hand. We note that the third equation implies π3 = 1 − π1 − π2 and
substituting this in the first two gives

.2 = .5π1 − .1π2

.4 = .2π1 + .9π2

Multiplying the first equation by .9 and adding .1 times the second gives

2.2 = (0.45 + 0.02)π1 or π1 = 22/47

Multiplying the first equation by .2 and adding −.5 times the second gives

−0.16 = (−.02− 0.45)π2 or π2 = 16/47

Since the three probabilities add up to 1, π3 = 9/47.

Using the TI83 calculator is easier. To begin we write (1.10) in matrix
form as (

π1 π2 π3

)−.2 .1 1
.2 −.4 1
.3 .3 1

 =
(
0 0 1

)
If we let A be the 3×3 matrix in the middle this can be written as πA = (0, 0, 1).
Multiplying on each side by A−1 we see that

π = (0, 0, 1)A−1

which is the third row of A−1. To compute A−1, we enter A into our calculator
(using the MATRX menu and its EDIT submenu), use the MATRIX menu to
put [A] on the computation line, press x−1, and then ENTER. Reading the
third row we find that the stationary distribution is

(0.468085, 0.340425, 0.191489)

Converting the answer to fractions using the first entry in the MATH menu
gives

(22/47, 16/47, 9/47)

Example 1.19. Brand Preference (continuation of 1.5).

1 2 3
1 .8 .1 .1
2 .2 .6 .2
3 .3 .3 .4
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Using the first two equations and the fact that the sum of the π’s is 1

.8π1 + .2π2 + .3π3 = π1

.1π1 + .6π2 + .3π3 = π2

π1 + π2 + π3 = 1

Subtracting π1 from both sides of the first equation and π2 from both sides of
the second, this translates into πA = (0, 0, 1) with

A =

−.2 .1 1
.2 −.4 1
.3 .3 1


Note that here and in the previous example the first two columns of A consist
of the first two columns of the transition probability with 1 subtracted from
the diagonal entries, and the final column is all 1’s. Computing the inverse and
reading the last row gives

(0.545454, 0.272727, 0.181818)

Converting the answer to fractions using the first entry in the MATH menu
gives

(6/11, 3/11, 2/11)

To check this we note that

(
6/11 3/11 2/11

).8 .1 .1
.2 .6 .2
.3 .3 .4


=
(

4.8 + .6 + .6
11

.6 + 1.8 + .6
11

.6 + .6 + .8
11

)
Example 1.20. Basketball (continuation of 1.10). To find the stationary
matrix in this case we can follow the same procedure. A consists of the first
three columns of the transition matrix with 1 subtracted from the diagonal,
and a final column of all 1’s.

−1/4 1/4 0 1
0 −1 2/3 1

2/3 1/3 −1 1
0 0 1/2 1

The answer is given by the fourth row of A−1:

(0.5, 0.1875, 0.1875, 0.125) = (1/2, 3/16, 3/16, 1/8)

Thus the long run fraction of time the player hits a shot is

π(HH) + π(MH) = 0.6875 = 11/36.

At this point we have a procedure for computing stationary distribution but
it is natural to ask: Is the matrix always invertible? Is the π we compute always
≥ 0? We will prove this in Section 1.7 uing probaiblistic methods. Here we will
give an elementary proof based on linear algebra.
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Theorem 1.14. Suppose that the k×k transition matrix p is irreducible. Then
there is a unique solution to πp = π with

∑
x πx = 1 and we have πx > 0 for

all x.

Proof. Let I be the identity matrix. Since the rows of p− I add to 0, the rank
of the matrix is ≤ k − 1 and there is a vector v so that vp = v.

Let q = (I + p)/2 be the lazy chain that stays put with probability 1/2
and otherwise takes a step according to p. Since vp = p we have vq = v. Let
r = qk−1 and note that vr = v. Since p irreducible, for any x 6= y there is a
path from x to y. Since the shortest such path will not visit any state more
than once, we can always get from x to y in k − 1 steps, and it follows that
r(x, y) > 0.

The next step is to prove that all the vx have the same sign. Suppose not.
In this case since r(x, y) > 0 we have

|vy| =

∣∣∣∣∣∑
x

vxr(x, y)

∣∣∣∣∣ <∑
x

|vx|r(x, y)

To check the second inequality note that there are terms of both signs in the
sum so some cancellation will occur. Summing over y and using

∑
y r(x, y) = 1

we have ∑
y

|vy| <
∑

x

|vx|

a contradiction.
Suppose now that all of the vx ≥ 0. Using

vy =
∑

x

vxr(x, y)

we conclude that vy > 0 for all y. This proves the existence of a positive
solution. To prove uniqueness, note that if p−I has rank ≤ k−2 then by linear
algebra there are two perpendicular solutions, v and w, but the last argument
implies that we can choose the sign so that vx, wx > 0 for all x. In this case
the vectors cannot possibly be perpendicular, which is a contradiction.

1.5 Limit Behavior

If y is a transient state, then by Lemma 1.11,
∑∞

n=1 pn(x, y) <∞ for any initial
state x and hence

pn(x, y)→ 0

This means that we can restrict our attention to recurrent states and in view
of the decomposition theorem, Theorem 1.8, to chains that consist of a single
irreducible class of recurrent states. Our first example shows one problem that
can prevent the convergence of pn(x, y).

Example 1.21. Ehrenfest chain (continuation of 1.2). For concreteness,
suppose there are three balls. In this case the transition probability is

0 1 2 3
0 0 3/3 0 0
1 1/3 0 2/3 0
2 0 2/3 0 1/3
3 0 0 3/3 0
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In the second power of p the zero pattern is shifted:

0 1 2 3
0 1/3 0 2/3 0
1 0 7/9 0 2/9
2 2/9 0 7/9 0
3 0 2/3 0 1/3

To see that the zeros will persist, note that if we have an odd number of balls in
the left urn, then no matter whether we add or subtract one the result will be
an even number. Likewise, if the number is even, then it will be odd on the next
one step. This alternation between even and odd means that it is impossible
to be back where we started after an odd number of steps. In symbols, if n is
odd then pn(x, x) = 0 for all x.

To see that the problem in the last example can occur for multiples of any
number N consider:

Example 1.22. Renewal chain. We will explain the name in Section 3.3. For
the moment we will use it to illustrate “pathologies.” Let fk be a distribution
on the positive integers and let p(0, k − 1) = fk. For states i > 0 we let
p(i, i − 1) = 1. In words the chain jumps from 0 to k − 1 with probability fk

and then walks back to 0 one step at a time. If X0 = 0 and the jump is to k−1
then it returns to 0 at time k. If say f5 = f15 = 1/2 then pn(0, 0) = 0 unless n
is a multiple of 5.

The period of a state is the largest number that will divide all the n ≥ 1
for which pn(x, x) > 0. That is, it is the greatest common divisor of Ix = {n ≥
1 : pn(x, x) > 0}. To check that this definition works correctly, we note that
in Example 1.21, {n ≥ 1 : pn(x, x) > 0} = {2, 4, . . .}, so the greatest common
divisor is 2. Similarly, in Example 1.22, {n ≥ 1 : pn(x, x) > 0} = {5, 10, . . .},
so the greatest common divisor is 5. As the next example shows, things aren’t
always so simple.

Example 4.4. Triangle and square. Consider the transition matrix:

−2 −1 0 1 2 3
−2 0 0 1 0 0 0
−1 1 0 0 0 0 0
0 0 0.5 0 0.5 0 0
1 0 0 0 0 1 0
2 0 0 0 0 0 1
3 0 0 1 0 0 0

In words, from 0 we are equally likely to go to 1 or −1. From −1 we go with
probability one to −2 and then back to 0, from 1 we go to 2 then to 3 and back
to 0. The name refers to the fact that 0 → −1 → −2 → 0 is a triangle and
0→ 1→ 2→ 3→ 0 is a square.
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Clearly, p3(0, 0) > 0 and p4(0, 0) > 0 so 3, 4 ∈ I0. To compute I0 the
following is useful:

Lemma 1.15. Ix is closed under addition. That is, if i, j ∈ Ix, then i+ j ∈ Ix.

Proof. If i, j ∈ Ix then pi(x, x) > 0 and pj(x, x) > 0 so

pi+j(x, x) ≥ pi(x, x)pj(x, x) > 0

and hence i + j ∈ Ix.

Using this we see that

I0 = {3, 4, 6, 7, 8, 9, 10, 11, . . .}

Note that in this example once we have three consecutive numbers (e.g., 6,7,8)
in I0 then 6+3, 7+3, 8+3 ∈ I0 and hence I0 will contain all the integers n ≥ 6.

For another unusual example consider the renewal chain (Example 1.22)
with f5 = f12 = 1/2. 5, 12 ∈ I0 so using Lemma 1.15

I0 ={5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32,

34, 35, 36, 37, 39, 40, 41, 42, 43, . . .}

To check this note that 5 gives rise to 10=5+5 and 17=5+12, 10 to 15 and 22,
12 to 17 and 24, etc. Once we have five consecutive numbers in I0, here 39–43,
we have all the rest. The last two examples motivate the following.

Lemma 1.16. If x has period 1, i.e., the greatest common divisor Ix is 1, then
there is a number n0 so that if n ≥ n0, then n ∈ Ix. In words, Ix contains all
of the integers after some value n0.

Proof. We begin by observing that it enough to show that Ix will contain two
consecutive integers: k and k + 1. For then it will contain 2k, 2k + 1, 2k + 2,
and 3k, 3k + 1, 3k + 2, 3k + 3, or in general jk, jk + 1, . . . jk + j. For j ≥ k − 1
these blocks overlap and no integers are left out. In the last example 24, 25 ∈ I0

implies 48, 49, 50 ∈ I0 which implies 72, 73, 74, 75 ∈ I0 and 96, 97, 98, 99, 100 ∈
I0, so we know the result holds for n0 = 96. In fact it actually holds for n0 = 34
but it is not important to get a precise bound.

To show that there are two consecutive integers, we cheat and use a fact
from number theory: if the greatest common divisor of a set Ix is 1 then there
are integers i1, . . . im ∈ Ix and (positive or negative) integer coefficients ci so
that c1i1 + · · · + cmim = 1. Let ai = c+

i and bi = (−ci)+. In words the ai

are the positive coefficients and the bi are −1 times the negative coefficients.
Rearranging the last equation gives

a1i1 + · · ·+ amim = (b1i1 + · · ·+ bmim) + 1

and using Lemma 1.15 we have found our two consecutive integers in Ix.
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While periodicity is a theoretical possibility, it rarely manifests itself in ap-
plications, except occasionally as an odd-even parity problem, e.g., the Ehren-
fest chain. In most cases we will find (or design) our chain to be aperiodic,
i.e., all states have period 1. To be able to verify this property for examples,
we need to discuss some theory.

Lemma 1.17. If p(x, x) > 0, then x has period 1.

Proof. If p(x, x) > 0, then 1 ∈ Ix, so the greatest common divisor is 1.

This is enough to show that all states in the weather chain (Example 1.3),
social mobility (Example 1.4), and brand preference chain (Example 1.5) are
aperiodic. For states with zeros on the diagonal the next result is useful.

Lemma 1.18. If ρxy > 0 and ρyx > 0 then x and y have the same period.

Why is this true? The short answer is that if the two states have different
periods, then by going from x to y, from y to y in the various possible ways,
and then from y to x, we will get a contradiction.

Proof. Suppose that the period of x is c, while the period of y is d < c. Let k
be such that pk(x, y) > 0 and let m be such that pm(y, x) > 0. Since

pk+m(x, x) ≥ pk(x, y)pm(y, x) > 0

we have k + m ∈ Ix. Since x has period c, k + m must be a multiple of c. Now
let ` be any integer with p`(y, y) > 0. Since

pk+`+m(x, x) ≥ pk(x, y)p`(y, y)pm(y, x) > 0

k + ` + m ∈ Ix, and k + ` + m must be a multiple of c. Since k + m is itself a
multiple of c, this means that ` is a multiple of c. Since ` ∈ Iy was arbitrary, we
have shown that c is a divisor of every element of Iy, but d < c is the greatest
common divisor, so we have a contradiction.

Lemma 1.18 easily settles the question for the inventory chain (Example
1.6)

0 1 2 3 4 5
0 0 0 .1 .2 .4 .3
1 0 0 .1 .2 .4 .3
2 .3 .4 .3 0 0 0
3 .1 .2 .4 .3 0 0
4 0 .1 .2 .4 .3 0
5 0 0 .1 .2 .4 .3

Since p(x, x) > 0 for x = 2, 3, 4, 5, Lemma 1.17 implies that these states are
aperiodic. Since this chain is irreducible it follows from Lemma 1.18 that 0 and
1 are aperiodic.

Consider now the basketball chain (Example 1.10):

HH HM MH MM
HH 3/4 1/4 0 0
HM 0 0 2/3 1/3
MH 2/3 1/3 0 0
MM 0 0 1/2 1/2
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Lemma 1.17 implies that HH and MM are aperiodic. Since this chain is
irreducible it follows from Lemma 1.18 that HM and MH are aperiodic.

* * * * * * *

We now come to the main results of the chapter. We first list the assump-
tions. All of these results hold when S is finite or infinite.

• I : p is irreducible

• A : aperiodic, all states have period 1

• R : all states are recurrent

• S : there is a stationary distribution π

Theorem 1.19. Convergence theorem. Suppose I, A, S. Then as n→∞,
pn(x, y)→ π(y).

To state the next result we need a definition. We day that µ(x) ≥ 0 is a
stationary measure if

∑
x µ(x)p(x, y) = µ(y). If S is finite we can normalize

µ to be a stationary distribution.

Theorem 1.20. Suppose I and R. Then there is a stationary measure with
µ(x) > 0 for all x.

The next result describes the “limiting fraction of time we spend in each
state.”

Theorem 1.21. Asymptotic frequency. Suppose I and R. If Nn(y) be the
number of visits to y up to time n, then

Nn(y)
n

→ 1
EyTy

We will see later that we may have EyTy =∞ in which case the limit is 0.
As a corollary we get the following.

Theorem 1.22. If I and S hold, then

π(y) = 1/EyTy

and hence the stationary distribution is unique.

In the next two examples we will be interested in the long run cost associated
with a Markov chain. For this, we will need the following extension of Theorem
1.21. (Take f(x) = 1 if x = y and 0 otherwise to recover the previous result.)

Theorem 1.23. Suppose I, S, and
∑

x |f(x)|π(x) <∞ then

1
n

n∑
m=1

f(Xm)→
∑

x

f(x)π(x)

Note that Theorems 1.21 and 1.23 do not require aperiodicity.
To illustrate the use of Theorem 1.23, we consider
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Example 1.23. Repair chain (continuation of 1.7). A machine has three
critical parts that are subject to failure, but can function as long as two of
these parts are working. When two are broken, they are replaced and the
machine is back to working order the next day. Declaring the state space to
be the parts that are broken {0, 1, 2, 3, 12, 13, 23}, we arrived at the following
transition matrix:

0 1 2 3 12 13 23
0 .93 .01 .02 .04 0 0 0
1 0 .94 0 0 .02 .04 0
2 0 0 .95 0 .01 0 .04
3 0 0 0 .97 0 .01 .02
12 1 0 0 0 0 0 0
13 1 0 0 0 0 0 0
23 1 0 0 0 0 0 0

and we asked: If we are going to operate the machine for 1800 days (about 5
years) then how many parts of types 1, 2, and 3 will we use?

To find the stationary distribution we look at the last row of

−.07 .01 .02 .04 0 0 1
0 −.06 0 0 .02 .04 1
0 0 −.05 0 .01 0 1
0 0 0 −.03 0 .01 1
1 0 0 0 −1 0 1
1 0 0 0 0 −1 1
1 0 0 0 0 0 1



−1

where after converting the results to fractions we have:

π(0) = 3000/8910
π(1) = 500/8910 π(2) = 1200/8910 π(3) = 4000/8910
π(12) = 22/8910 π(13) = 60/8910 π(23) = 128/8910

We use up one part of type 1 on each visit to 12 or to 13, so on the average
we use 82/8910 of a part per day. Over 1800 days we will use an average of
1800 · 82/8910 = 16.56 parts of type 1. Similarly type 2 and type 3 parts are
used at the long run rates of 150/8910 and 188/8910 per day, so over 1800 days
we will use an average of 30.30 parts of type 2 and 37.98 parts of type 3.

Example 1.24. Inventory chain (continuation of 1.6). We have an elec-
tronics store that sells a videogame system, with the ptential for sales of 0, 1,
2, or 3 of these units each day with probabilities .3, .4, .2, and .1. Each night at
the close of business new units can be ordered which will be available when the
store opens in the morning. Suppose that sales produce a profit of $12 but it
costs $2 a day to keep unsold units in the store overnight. Since it is impossible
to sell 4 units in a day, and it costs us to have unsold inventory we should never
have more than 3 units on hand.

Suppose we use a 2,3 inventory policy. That is, we order if there are ≤ 2
units and we order enough stock so that we have 3 units at the beginning of the
next day. In this case we always start the day with 3 units, so the transition
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probability has constant rows

0 1 2 3
0 .1 .2 .4 .3
1 .1 .2 .4 .3
2 .1 .2 .4 .3
3 .1 .2 .4 .3

In this case it is clear that the stationary distribution is π(0) = .1, π(1) = .2,
π(2) = .4, and π(3) = .3. If we end the day with k units then we sold 3−k and
have to keep k over night. Thus our long run sales under this scheme are

.1(36) + .2(24) + .4(12) = 3.6 + 4.8 + 4.8 = 13.2 dollars per day

while the inventory holding costs are

2(.2) + 4(.4) + 6(.3) = .4 + 1.6 + 1.8 = 3.8

for a net profit of 9.4 dollars per day.

Suppose we use a 1,3 inventory policy. In this case the transition probability
is

0 1 2 3
0 .1 .2 .4 .3
1 .1 .2 .4 .3
2 .3 .4 .3 0
3 .1 .2 .4 .3

Solving for the stationary distribution we get

π(0) = 19/110 π(1) = 30/110 π(2) = 40/110 π(3) = 21/110

To compute the profit we make from sales note that if we always had enough
stock then by the calculation in the first case, we would make 13.2 dollars per
day. However, when Xn = 2 and the demand is 3, an event with probability
(4/11) ·0.1 = 0.03636, we lose exactly one of our sales. From this it follows that
in the long run we make a profit of

13.2− (.036)12 = 12.7636 dollars per day

Our inventory holding cost under the new system is

2 · 30
110

+ 4 · 40
110

+ 6 · 21
110

=
60 + 160 + 126

110
= 3.1454

so now our profits are 12.7636− 3.1454 = 9.6128.

Suppose we use a 0,3 inventory policy. In this case the transition probability is

0 1 2 3
0 .1 .2 .4 .3
1 .7 .3 0 0
2 .3 .4 .3 0
3 .1 .2 .4 .3

From the equations for the stationary distribution we get

π(0) = 343/1070 π(1) = 300/1070 π(2) = 280/1070 π(3) = 147/1070
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To compute our profit we note, as in the previous calculation if we always had
enough stock then we would make 13.2 dollars per day. Considering the various
lost sales scenarios shows that in the long run we make sales of

13.2− 12 ·
(

280
1070

0.1 +
300
1070

(0.1 · 2 + 0.2 · 1)
)

= 11.54 dollars per day

Our inventory holding cost until the new scheme is

2 · 300
1070

+ 4 · 280
1070

+ 6 · 147
1070

=
600 + 1120 + 882

1070
=

4720
1472

= 2.43

so the long run profit is 11.54− 2.43 = 9.11 dollars per day.
At this point we have computed

policy 0,3 1,3 2,3
profit per day $9.11 $9.62 $9.40

so the 1,3 inventory policy is optimal.

1.6 Special Examples

1.6.1 Doubly stochastic chains

Definition 1.2. A transition matrix p is said to be doubly stochastic if its
COLUMNS sum to 1, or in symbols

∑
x p(x, y) = 1.

The adjective “doubly” refers to the fact that by its definition a transition prob-
ability matrix has ROWS that sum to 1, i.e.,

∑
y p(x, y) = 1. The stationary

distribution is easy to guess in this case:

Theorem 1.24. If p is a doubly stochastic transition probability for a Markov
chain with N states, then the uniform distribution, π(x) = 1/N for all x, is a
stationary distribution.

Proof. To check this claim we note that if π(x) = 1/N then∑
x

π(x)p(x, y) =
1
N

∑
x

p(x, y) =
1
N

= π(y)

Looking at the second equality we see that conversely, if π(x) = 1/N then p is
doubly stochastic.

Example 1.25. Symmetric reflecting random walk on the line. The
state space is {0, 1, 2 . . . , L}. The chain goes to the right or left at each step
with probability 1/2, subject to the rules that if it tries to go to the left from
0 or to the right from L it stays put. For example, when L = 4 the transition
probability is

0 1 2 3 4
0 0.5 0.5 0 0 0
1 0.5 0 0.5 0 0
2 0 0.5 0 0.5 0
3 0 0 0.5 0 0.5
4 0 0 0 0.5 0.5

It is clear in the example L = 4 that each column adds up to 1. With a little
thought one sees that this is true for any L, so the stationary distribution is
uniform, π(i) = 1/(L + 1).
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Example 1.26. Tiny Board Game. Consider a circular board game with
only six spaces {0, 1, 2, 3, 4, 5}. On each turn we roll a die with 1 on three sides,
2 on two sides, and 3 on one side to decide how far to move. Here we consider
5 to be adjacent to 0, so if we are there and we roll a 2 then the result is
5 + 2 mod 6 = 1, where i + k mod 6 is the remainder when i + k is divided by
6. In this case the transition probability is

0 1 2 3 4 5
0 0 1/3 1/3 1/6 0 0
1 0 0 1/2 1/3 1/6 0
2 0 0 0 1/2 1/3 1/6
3 1/6 0 0 0 1/2 1/3
4 1/3 1/6 0 0 0 1/2
5 1/2 1/3 1/6 0 0 0

It is clear that the columns add to one, so the stationary distribution is uniform.
To check the hypothesis of the convergence theorem, we note that after 3 turns
we will have moved between 3 and 9 spaces so p3(i, j) > 0 for all i and j.

Example 1.27. Mathematician’s Monopoly. The game Monopoly is played
on a game board that has 40 spaces arranged around the outside of a square.
The squares have names like Reading Railroad and Park Place but we will num-
ber the squares 0 (Go), 1 (Baltic Avenue), . . . 39 (Boardwalk). In Monopoly
you roll two dice and move forward a number of spaces equal to the sum. For
the moment, we will ignore things like Go to Jail, Chance, and other squares
that make the game more interesting and formulate the dynamics as following.
Let rk be the probability that the sum of two dice is k (r2 = 1/36, r3 = 2/36,
. . . r7 = 6/36, . . ., r12 = 1/36) and let

p(i, j) = rk if j = i + k mod 40

where i + k mod 40 is the remainder when i + k is divided by 40. To explain
suppose that we are sitting on Park Place i = 37 and roll k = 6. 37 + 6 = 43
but when we divide by 40 the remainder is 3, so p(37, 3) = r6 = 5/36.

This example is larger but has the same structure as the previous example.
Each row has the same entries but shift one unit to the right each time with the
number that goes off the right edge emerging in the 0 column. This structure
implies that each entry in the row appears once in each column and hence the
sum of the entries in the column is 1, and the stationary distribution is uniform.
To check the hypothesis of the convergence theorem note that in four rolls you
can move forward by 8 to 48 squares, so p4(i, j) > 0 for all i and j.

Example 1.28. Real Monopoly has two complications:

• Square 30 is “Go to Jail,” which sends you to square 10. You can buy
your way out of jail but in the results we report below, we assume that
you are cheap. If you roll a double then you get out for free. If you don’t
get doubles in three tries you have to pay.

• There are three Chance squares at 7, 12, and 36 (diamonds on the graph),
and three Community Chest squares at 2, 17, 33 (squares on the graph),
where you draw a card, which can send you to another square.
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Figure 1.1: Stationary distribution for monopoly.

The graph gives the long run frequencies of being in different squares on the
Monopoly board at the end of your turn, as computed by simulation. We have
removed the 9.46% chance of being In Jail to make the probabilities easier to
see. The value reported for square 10 is the 2.14% probability of Just Visiting
Jail, i.e., being brought there by the roll of the dice. Square 30, Go to Jail, has
probability 0 for the obvious reasons. The other three lowest values occur for
Chance squares. Due to the transition from 30 to 10, frequencies for squares near
20 are increased relative to the average of 2.5% while those after 30 or before
10 are decreased. Squares 0 (Go) and 5 (Reading Railroad) are exceptions to
this trend since there are Chance cards that instruct you to go there.

1.6.2 Detailed balance condition

π is said to satisfy the detailed balance condition if

π(x)p(x, y) = π(y)p(y, x) (1.11)

To see that this is a stronger condition than πp = π, we sum over x on each
side to get ∑

x

π(x)p(x, y) = π(y)
∑

x

p(y, x) = π(y)

As in our earlier discussion of stationary distributions, we think of π(x) as
giving the amount of sand at x, and one transition of the chain as sending a
fraction p(x, y) of the sand at x to y. In this case the detailed balance condition
says that the amount of sand going from x to y in one step is exactly balanced
by the amount going back from y to x. In contrast the condition πp = π says
that after all the transfers are made, the amount of sand that ends up at each
site is the same as the amount that starts there.

Many chains do not have stationary distributions that satisfy the detailed
balance condition.
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Example 1.29. Consider
1 2 3

1 .5 .5 0
2 .3 .1 .6
3 .2 .4 .4

There is no stationary distribution with detailed balance since π(1)p(1, 3) = 0
but p(1, 3) > 0 so we would have to have π(3) = 0 and using π(3)p(3, i) =
π(i)p(i, 3) we conclude all the π(i) = 0. This chain is doubly stochastic so
(1/3, 1/3, 1/3) is a stationary distribution.

Example 1.30. Birth and death chains are defined by the property that the
state space is some sequence of integers `, ` + 1, . . . r − 1, r and it is impossible
to jump by more than one:

p(x, y) = 0 when |x− y| > 1

Suppose that the transition probability has

p(x, x + 1) = px for x < r
p(x, x− 1) = qx for x > `
p(x, x) = 1− px − qx for ` ≤ x ≤ r

while the other p(x, y) = 0. If x < r detailed balance between x and x + 1
implies π(x)px = π(x + 1)qx+1, so

π(x + 1) =
px

qx+1
· π(x) (1.12)

Using this with x = ` gives π(` + 1) = π(`)p`/q`+1. Taking x = ` + 1

π(` + 2) =
p`+1

q`+2
· π(` + 1) =

p`+1 · p`

q`+2 · q`+1
· π(`)

Extrapolating from the first two results we see that in general

π(` + i) = π(`) · p`+i−1 · p`+i−2 · · · p`+1 · p`

q`+i · q`+i−1 · · · q`+2 · q`+1

To keep the indexing straight note that: (i) there are i terms in the numerator
and in the denominator, (ii) the indices decrease by 1 each time, (iii) the answer
will not depend on q` (which is 0) or p`+i.

For a concrete example to illustrate the use of this formula consider

Example 1.31. Ehrenfest chain. For concreteness, suppose there are three
balls. In this case the transition probability is

0 1 2 3
0 0 3/3 0 0
1 1/3 0 2/3 0
2 0 2/3 0 1/3
3 0 0 3/3 0

Setting π(0) = c and using (1.12) we have

π(1) = 3c, π(2) = π(1) = 3c π(3) = π(2)/3 = c.
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The sum of the π’s is 8c, so we pick c = 1/8 to get

π(0) = 1/8, π(1) = 3/8, π(2) = 3/8, π(3) = 1/8

Knowing the answer, one can look at the last equation and see that π rep-
resents the distribution of the number of Heads when we flip three coins, then
guess and verify that in general that the binomial distribution with p = 1/2 is
the stationary distribution:

π(x) = 2−n

(
n

x

)
Here m! = 1 · 2 · · · (m− 1) ·m, with 0! = 1, and(

n

x

)
=

n!
x!(n− x)!

is the binomial coefficient which gives the number of ways of choosing x objects
out of a set of n.

To check that our guess satisfies the detailed balance condition, we note that

π(x)p(x, x + 1) = 2−n n!
x!(n− x)!

· n− x

n

= 2−n n!
(x + 1)!(n− x− 1)!

· x + 1
n

= π(x + 1)p(x + 1, x)

However the following proof in words is simpler. Create X0 by flipping coins,
with heads = “in the left urn.” The transition from X0 to X1 is done by
picking a coin at random and then flipping it over. It should be clear that
all 2n outcomes of the coin tosses at time 1 are equally likely, so X1 has the
binomial distribution.

Example 1.32. Three machines, one repairman. Suppose that an office
has three machines that each break with probability .1 each day, but when there
is at least one broken, then with probability 0.5 the repairman can fix one of
them for use the next day. If we ignore the possibility of two machines breaking
on the same day, then the number of working machines can be modeled as a
birth and death chain with the following transition matrix:

0 1 2 3
0 .5 .5 0 0
1 .05 .5 .45 0
2 0 .1 .5 .4
3 0 0 .3 .7

Rows 0 and 3 are easy to see. To explain row 1, we note that the state will
only decrease by 1 if one machine breaks and the repairman fails to repair the
one he is working on, an event of probability (.1)(.5), while the state can only
increase by 1 if he succeeds and there is no new failure, an event of probability
.5(.9). Similar reasoning shows p(2, 1) = (.2)(.5) and p(2, 3) = .5(.8).

To find the stationary distribution we use the recursive formula (1.12) to
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conclude that if π(0) = c then

π(1) = π(0) · p0

q1
= c · 0.5

0.05
= 10c

π(2) = π(1) · p1

q2
= 10c · 0.45

0.1
= 45c

π(3) = π(2) · p2

q3
= 45c · 0.4

0.3
= 60c

The sum of the π’s is 116c, so if we let c = 1/116 then we get

π(3) =
60
116

, π(2) =
45
116

, π(1) =
10
116

, π(0) =
1

116

There are many other Markov chains that are not birth and death chains
but have stationary distributions that satisfy the detailed balance condition. A
large number of possibilities are provided by

Example 1.33. Random walks on graphs. A graph is described by giving
two things: (i) a set of vertices V (which we suppose is a finite set) and (ii) an
adjacency matrix A(u, v), which is 1 if there is an edge connecting u and v and
0 otherwise. By convention we set A(v, v) = 0 for all v ∈ V .
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3 3 3 3

3 3 3 3

3 4 4 5

The degree of a vertex u is equal to the number of neighbors it has. In symbols,

d(u) =
∑

v

A(u, v)

since each neighbor of u contributes 1 to the sum. To help explain the concept,
we have indicated the degrees on our example. We write the degree this way to
make it clear that

(∗) p(u, v) =
A(u, v)
d(u)

defines a transition probability. In words, if Xn = u, we jump to a randomly
chosen neighbor of u at time n + 1.

It is immediate from (∗) that if c is a positive constant then π(u) = cd(u)
satisfies the detailed balance condition:

π(u)p(u, v) = cA(u, v) = cA(v, u) = π(v)p(u, v)

Thus, if we take c = 1/
∑

u d(u), we have a stationary probability distribution.
In the example c = 1/40.
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For a concrete example, consider

Example 1.34. Random walk of a knight on a chess board. A chess
board is an 8 by 8 grid of squares. A knight moves by walking two steps in one
direction and then one step in a perpendicular direction.

×

• •

• •

••

••

By patiently examining all of the possibilities, one sees that the degrees of
the vertices are given by the following table. Lines have been drawn to make
the symmetries more apparent.

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

The sum of the degrees is 4 · 2 + 8 · 3 + 20 · 4 + 16 · 6 + 16 · 8 = 336, so the
stationary probabilities are the degrees divided by 336.

This problem is boring for a rook which has 14 possible moves from any
square and hence a uniform stationary distribution. In exercises at the end of
the chapter, we will consider the other three interesting examples: king, bishop,
and queen.

1.6.3 Reversibility

Let p(i, j) be a transition probability with stationary distribution π(i). Let Xn

be a realization of the Markov chain starting from the stationary distribution,
i.e., P (X0 = i) = π(i). The next result says that if we watch the process Xm,
0 ≤ m ≤ n, backwards, then it is a Markov chain.
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Theorem 1.25. Fix n and let Ym = Xn−m for 0 ≤ m ≤ n. Then Ym is a
Markov chain with transition probability

p̂(i, j) = P (Ym+1 = j|Ym = i) =
π(j)p(j, i)

π(i)
(1.13)

Proof. We need to calculate the conditional probability.

P (Ym+1 = im+1|Ym = im, Ym−1 = im−1 . . . Y0 = i0)

=
P (Xn−(m+1) = im+1, Xn−m = im, Xn−m+1 = im−1 . . . Xn = i0)

P (Xn−m = im, Xn−m+1 = im−1 . . . Xn = i0)

Using the Markov property, we see the numerator is equal to

π(im+1)p(im+1, im)P (Xn−m+1 = im−1, . . . Xn = i0|Xn−m = im)

Similarly the denominator can be written as

π(im)P (Xn−m+1 = im−1, . . . Xn = i0|Xn−m = im)

Dividing the last two formulas and noticing that the conditional probabilities
cancel we have

P (Ym+1 = im+1|Ym = im, . . . Y0 = i0) =
π(im+1)p(im+1, im)

π(im)

This shows Ym is a Markov chain with the indicated transition probability.

The formula for the transition probability in (1.13), which is called the dual
transition probability, may look a little strange, but it is easy to see that it
works; i.e., the p̂(i, j) ≥ 0, and have∑

j

p̂(i, j) =
∑

j

π(j)p(j, i)π(i) =
π(i)
π(i)

= 1

since πp = π. When π satisfies the detailed balance conditions:

π(i)p(i, j) = π(j)p(j, i)

the transition probability for the reversed chain,

p̂(i, j) =
π(j)p(j, i)

π(i)
= p(i, j)

is the same as the original chain. In words, if we make a movie of the Markov
chain Xm, 0 ≤ m ≤ n starting from an initial distribution that satisfies the
detailed balance condition and watch it backwards (i.e., consider Ym = Xn−m

for 0 ≤ m ≤ n), then we see a random process with the same distribution. m.
To help explain the concept,

1.6.4 The Metropolis-Hastings algorithm

Our next topic is a method for generating samples from a distribution π(x). It
is named for two of the authors of the fundamental papers on the topic. One
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written by Nicholas Metropolis and two married couples with last names Rosen-
bluth and Teller (1953) and the other by W.K. Hastings (1970). This a very
useful tool for computing posterior distributons in Bayesian statistics (Tierney
(1994)), reconstructing images (Geman and Geman (1984)), and investigating
complicated models in statistical physics (Hammersley and Handscomb (1964)).
It would take us too far afield to describe these applications, so we will content
ourselves to describe the simple idea that is the key to the method.

We begin with a Markov chain q(x, y) that is the proposed jump distribution.
A move is accepted with probability

r(x, y) = min
{

π(y)q(y, x)
π(x)q(x, y)

, 1
}

so the transition probability

p(x, y) = q(x, y)r(x, y)

To check that π satisfies the detailed balance condition we can suppose that
π(y)q(y, x) > π(x)q(x, y). In this case

π(x)p(x, y) = π(x)q(x, y) · 1

π(y)p(y, x) = π(y)q(y, x)
π(x)q(x, y)
π(y)q(y, x)

= π(x)q(x, y)

To generate one sample from π(x) we run the chain for a long time so that
it reaches equilibrium. To obtain many samples, we output the state at widely
separated times. Of course there is an art of knowing how long is long enough
to wait between outputting the state to have independent realizations. If we
are interested in the expected value of a particular function then (if the chain
is irreducible and the state space is finite) Theorem 1.23 guarantees that

1
n

n∑
m=1

f(Xm)→
∑

x

f(x)π(x)

The Metropolis-Hastings algorithm is often used when space is continuous,
but that requires a more sophisticated Markov chain theory, so we will use
discrete examples to illustrate the method.

Example 1.35. Geometric distribution. Suppose π(x) = θx(1− θ) for x =
0, 1, 2, . . .. To generate the jumps we will use a symmetric random walk q(x, x+
1) = q(x, x − 1) = 1/2. Since q is symmetric r(x, y) = min{1, π(y)/π(x)}. In
this case if x > 0, π(x− 1) > π(x) and π(x + 1)/π(x) = θ so

p(x, x− 1) = 1/2 p(x, x + 1) = θ/2 p(x, x) = (1− θ)/2.

When x = 0, π(−1) = 0 so

p(0,−1) = 0 p(0, 1) = θ/2 p(0, 0) = 1− (θ/2).

To check reversibility we note that if x ≥ 0 then

π(x)p(x, x + 1) = θx(1− θ) · θ
2

= π(x + 1)p(x + 1, x)

Here, as in most applications of the Metropolis-Hastings algorithm the choice
of q is important. If θ is close to 1 then we would want to choose q(x, x + i) =
1/2L + 1 for −L ≤ i ≤ L where L = O(1/(1 − θ)) to make the chain move
around the state space faster while not having too many steps rejected.
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Example 1.36. Binomial distribution. Suppose π(x) is Binomial(N, θ).
In this case we can let q(x, y) = 1/(N + 1) for all 0 ≤ x, y ≤ N . Since
q is symmetric r(x, y) = min{1, π(y)/π(x)}. This is closely related to the
method of rejection sampling, in which one generates independent random
variables Ui uniform on {0, 1, . . . , N} and keep Ui with probability π(Ui)/π∗

where π∗ = max0≤x≤n π(x).

Example 1.37. Two dimensional Ising model. The Metropolis-Hastings
algorithm has its roots in statistical physics. A typical problem is the Ising
model of ferromagnetism. Space is represented by a two dimensional grid Λ =
{−L, . . . L}2. If we made the lattice three dimensional, we could think of the
atoms in an iron bar. In reality each atom has a spin which can point in some
direction, but we simplify by supposing that each spin can be up +1 or down
−1. The state of the systems is a function ξ : Λ → {−1, 1} i.e., a point in the
product space {−1, 1}Λ. We say that points x and y in Λ are neighbors if y is
one of the four points x + (1, 0), x + (−1, 0), x + (0, 1), x + (0,−1). See the
picture:

+ − + + + − −
− − − + + + −
+ − + + − − +
+ + − − y + −
+ − + y x y −
− − − + y + −
+ − + + − − +

Given an interaction parameter β, which is inversely proportional to the tem-
perature, the equilibrium state is

π(x) =
1

Z(β)
exp

(
β
∑

x,y∼x

ξxξy

)

where the sum is over all x, y ∈ Λ with y a neighbor of x, and Z(β) is a constant
that makes the probabilities sum to one. At the boundaries of the square spins
have only three neighbors. There are several options for dealing with this: (i)
we consider the spins outside to be 0, or (ii) we could specify a fixed boundary
condition such as all spins +.

The sum is largest in case (i) when all of the spins agree or in case (ii) when
all spins are +. These configuration minimizes the energy H = −

∑
x,y∼x ηxηy

but there many more configurations one with a random mixture of +’s and −’s.
It turns out that as β increases the system undergoes a phase transition from
a random state with an almost equal number of +’s and −’s to one in which
more than 1/2 of the spins point in the same direction.

Z(β) is difficult to compute so it is fortunate that only the ratio of the
probabilities appears in the Metropolis-Hastings recipe. For the proposed jump
distribution we let q(ξ, ξx) = 1/(2L + 1)2 if the two configurations ξ and ξx

differ only at x. In this case the transition probability is

p(ξ, ξx) = q(ξ, ξx) min
{

π(ξx)
π(ξ)

, 1
}

Note that the ratio π(ξx)/π(ξ) is easy to compute because Z(β) cancels out,
as do all the terms in the sum that do not involve x and its neighbors. Since
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ξx(x) = −ξ(x).
π(ξx)
π(ξ)

= exp

(
−2β

∑
y∼x

ξxξy

)
If x agrees with k of its four neighbors the ratio is exp(−2(4 − 2k)). In words
p(x, y) can be described by saying that we accept the proposed move with
probability 1 if it lowers the energy and with probability π(y)/π(x) if not.

Example 1.38. Simulated annealing. The Metropolis-Hastings algorithm
can also be used to minimize complicated functions. Consider for example the
traveling salesman problem, which is to find the shortest (or least expensive)
route that allows one to visit all of the cities on a list. In this case the state
space will be lists of cities, x and π(x) = exp(−β`(x)) where `(x) is the length
of the tour. The proposal kernel q is chosen to modify the list in some way.
For example, we might move a city to a another place on the list or reverse
the order of a sequence of cities. When β is large the stationary distribution
will concentrate on optimal and near optimal tours. As in the Ising model, β
is thought of as inverse temperature. The name derives from the fact that to
force the chain to better solution we increase β (i.e., reduce the temperature)
as we run the simulation. One must do this slowly or the process will get stuck
in local minima. For more of simulated annealing see Kirkpatrick et al. (1983)

1.7 Proofs of the Main Theorems*

To prepare for the proof of the convergence theorem, Theorem 1.19, we need
the following:

Lemma 1.26. If there is a stationary distribution, then all states y that have
π(y) > 0 are recurrent.

Proof. Lemma 1.12 tells us that ExN(y) =
∑∞

n=1 pn(x, y), so

∑
x

π(x)ExN(y) =
∑

x

π(x)
∞∑

n=1

pn(x, y)

Interchanging the order of summation and then using πpn = π, the above

=
∞∑

n=1

∑
x

π(x)pn(x, y) =
∞∑

n=1

π(y) =∞

since π(y) > 0. Using Lemma 1.11 now gives ExN(y) = ρxy/(1− ρyy), so

∞ =
∑

x

π(x)
ρxy

1− ρyy
≤ 1

1− ρyy

the second inequality following from the facts that ρxy ≤ 1 and π is a probability
measure. This shows that ρyy = 1, i.e., y is recurrent.

With Lemma 1.26 in hand we are ready to tackle the proof of:

Theorem 1.19. Convergence theorem. Suppose p is irreducible, aperiodic,
and has stationary distribution π. Then as n→∞, pn(x, y)→ π(y).
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Proof. Let S be the state space for p. Define a transition probability p̄ on S×S
by

p̄((x1, y1), (x2, y2)) = p(x1, x2)p(y1, y2)

In words, each coordinate moves independently.

Step 1. We will first show that if p is aperiodic and irreducible then p̄ is
irreducible. Since p is irreducible, there are K, L, so that pK(x1, x2) > 0 and
pL(y1, y2) > 0. Since x2 and y2 have period 1, it follows from Lemma 1.16 that
if M is large, then pL+M (x2, x2) > 0 and pK+M (y2, y2) > 0, so

p̄K+L+M ((x1, y1), (x2, y2)) > 0

Step 2. Since the two coordinates are independent π̄(a, b) = π(a)π(b) defines
a stationary distribution for p̄, and Lemma 1.26 implies that all states are
recurrent for p̄. Let (Xn, Yn) denote the chain on S × S, and let T be the first
time that the two coordinates are equal, i.e., T = min{n ≥ 0 : Xn = Yn}. Let
V(x,x) = min{n ≥ 0 : Xn = Yn = x} be the time of the first visit to (x, x).
Since p̄ is irreducible and recurrent, V(x,x) < ∞ with probability one. Since
T ≤ V(x,x) for any x we must have

P (T <∞) = 1. (1.14)

Step 3. By considering the time and place of the first intersection and then
using the Markov property we have

P (Xn = y, T ≤ n) =
n∑

m=1

∑
x

P (T = m,Xm = x,Xn = y)

=
n∑

m=1

∑
x

P (T = m,Xm = x)P (Xn = y|Xm = x)

=
n∑

m=1

∑
x

P (T = m,Ym = x)P (Yn = y|Ym = x)

= P (Yn = y, T ≤ n)

Step 4. To finish up we observe that since the distributions of Xn and Yn

agree on {T ≤ n}

|P (Xn = y)− P (Yn = y)| ≤ P (Xn = y, T > n) + P (Yn = y, T > n)

and summing over y gives∑
y

|P (Xn = y)− P (Yn = y)| ≤ 2P (T > n)

If we let X0 = x and let Y0 have the stationary distribution π, then Yn has
distribution π, and Using (1.14) it follows that∑

y

|pn(x, y)− π(y)| ≤ 2P (T > n)→ 0

proving the convergence theorem.
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Our next topic is the existence of stationary measures

Theorem 1.20. Suppose p is irreducible and recurrent. Let x ∈ S and let
Tx = inf{n ≥ 1 : Xn = x}.

µx(y) =
∞∑

n=0

Px(Xn = y, Tx > n)

defines a stationary measure with 0 < µx(y) <∞ for all y.

Why is this true? This is called the “cycle trick.” µx(y) is the expected
number of visits to y in {0, . . . , Tx − 1}. Multiplying by p moves us forward
one unit in time so µxp(y) is the expected number of visits to y in {1, . . . , Tx}.
Since X(Tx) = X0 = x it follows that µx = µxp.

�
�
�
�
�
�A
A
A
A�
�
�
�
�
�@
@
A
A
A
A
@
@•

•

•

•

•

•

•

•

◦x

y

0 Tx

Figure 1.2: Picture of the cycle trick.

Proof. To formalize this intuition, let p̄n(x, y) = Px(Xn = y, Tx > n) and
interchange sums to get∑

y

µx(y)p(y, z) =
∞∑

n=0

∑
y

p̄n(x, y)p(y, z)

Case 1. Consider the generic case first: z 6= x.∑
y

p̄n(x, y)p(y, z) =
∑

y

Px(Xn = y, Tx > n,Xn+1 = z)

= Px(Tx > n + 1, Xn+1 = z) = p̄n+1(x, z)

Here the second equality holds since the chain must be somewhere at time n,
and the third is just the definition of p̄n+1. Summing from n = 0 to∞, we have

∞∑
n=0

∑
y

p̄n(x, y)p(y, z) =
∞∑

n=0

p̄n+1(x, z) = µx(z)

since p̄0(x, z) = 0.

Case 2. Now suppose that z = x. Reasoning as above we have∑
y

p̄n(x, y)p(y, x) =
∑

y

Px(Xn = y, Tx > n,Xn+1 = x) = Px(Tx = n + 1)
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Summing from n = 0 to ∞ we have
∞∑

n=0

∑
y

p̄n(x, y)p(y, x) =
∞∑

n=0

Px(Tx = n + 1) = 1 = µx(x)

since Px(Tx = 0) = 0.
To check µx(y) <∞, we note that µx(x) = 1 and

1 = µx(x) =
∑

z

µx(z)pn(z, x) ≥ µx(y)pn(y, x)

so if we pick n with pn(y, x) > 0 then we conclude µx(y) <∞.
To prove that µx(y) > 0 we note that this is trivial for y = x the point

used to define the measure. For y 6= x, we borrow an idea from Theorem 1.5.
Let K = min{k : pk(x, y) > 0}. Since pK(x, y) > 0 there must be a sequence
y1, . . . yK−1 so that

p(x, y1)p(y1, y2) · · · p(yK−1, y) > 0

Since K is minimal all the yi 6= y, so Px(XK = y, Tx > K) > 0 and hence
µx(y) > 0.

Our next step is to prove

Theorem 1.21. Suppose p is irreducible and recurrent. Let Nn(y) be the
number of visits to y at times ≤ n. As n→∞

Nn(y)
n

→ 1
EyTy

Why is this true? Suppose first that we start at y. The times between returns,
t1, t2, . . . are independent and identically distributed so the strong law of large
numbers for nonnegative random variables implies that the time of the kth
return to y, R(k) = min{n ≥ 1 : Nn(y) = k}, has

R(k)
k
→ EyTy ≤ ∞ (1.15)

If we do not start at y then t1 <∞ and t2, t3, . . . are independent and identically
distributed and we again have (1.15). Writing ak ∼ bk when ak/bk → 1 we have
R(k) ∼ kEyTy. Taking k = n/EyTy we see that there are about n/EyTy returns
by time n.

Proof. We have already shown (1.15). To turn this into the desired result, we
note that from the definition of R(k) it follows that R(Nn(y)) ≤ n < R(Nn(y)+
1). Dividing everything by Nn(y) and then multiplying and dividing on the end
by Nn(y) + 1, we have

R(Nn(y))
Nn(y)

≤ n

Nn(y)
<

R(Nn(y) + 1)
Nn(y) + 1

· Nn(y) + 1
Nn(y)

Letting n→∞, we have n/Nn(y) trapped between two things that converge to
EyTy, so

n

Nn(y)
→ EyTy

and we have proved the desired result.
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Theorem 1.22. If p is an irreducible and has stationary distribution π, then

π(y) = 1/EyTy

Proof. Suppose X0 has distribution π. From Theorem 1.21 it follows that

Nn(y)
n

→ 1
EyTy

Taking expected value and using the fact that Nn(y) ≤ n, it can be shown that
this implies

EπNn(y)
n

→ 1
EyTy

but since π is a stationary distribution EπNn(y) = nπ(y).

Theorem 1.23. Suppose p is irreducible, has stationary distribution π, and∑
x |f(x)|π(x) <∞ then

1
n

n∑
m=1

f(Xm)→
∑

x

f(x)π(x)

The key idea here is that by breaking the path at the return times to x we get a
seqeunce of random variables to which we can apply the law of large numbers.

Sketch of proof. Suppose that the chain starts at x. Let T0 = 0 and Tk =
min{n > Tk−1 : Xn = x} be the time of the kth return to x. By the strong
Markov property, the random variables

Yk =
Tk∑

m=Tk−1+1

f(Xm)

are independent and identically distributed. By the cycle trick in the proof of
Theorem 1.20

EYk =
∑

x

µx(y)f(y)

Using the law of large numbers for i.i.d. variables

1
L

TL∑
m=1

f(Xm) =
1
L

L∑
k=1

Yk →
∑

x

µx(y)f(y)

Taking L = Nn(x) = max{k : Tk ≤ n} and ignoring the contribution from the
last incomplete cycle (Nn(x), n]

1
n

n∑
m=1

f(Xm) ≈ Nn(x)
n
· 1
Nn(x)

Nn(x)∑
k=1

Yk

Using Theorem 1.21 and the law of large numbers the above

→ 1
ExTx

∑
y

µx(y)f(y) =
∑

y

π(y)f(y)
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1.8 Exit Distributions

To motivate developments, we begin with an example.

Example 1.39. Two year college. At a local two year college, 60% of fresh-
men become sophomores, 25% remain freshmen, and 15% drop out. 70% of
sophomores graduate and transfer to a four year college, 20% remain sopho-
mores and 10% drop out. What fraction of new students eventually graduate?

We use a Markov chain with state space 1 = freshman, 2 = sophomore, G
= graduate, D = dropout. The transition probability is

1 2 G D
1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
G 0 0 1 0
D 0 0 0 1

Let h(x) be the probability that a student currently in state x eventually grad-
uates. By considering what happens on one step

h(1) = 0.25h(1) + 0.6h(2)
h(2) = 0.2h(2) + 0.7

To solve we note that the second equation implies h(2) = 7/8 and then the first
that

h(1) =
0.6
0.75

· 7
8

= 0.7

Example 1.40. Tennis. In tennis the winner of a game is the first player to
win four points, unless the score is 4− 3, in which case the game must continue
until one player is ahead by two points and wins the game. Suppose that the
server win the point with probability 0.6 and successive points are independent.
What is the probability the server will win the game if the score is tied 3-3? if
she is ahead by one point? Behind by one point?

We formulate the game as a Markov chain in which the state is the difference
of the scores. The state space is 2, 1, 0,−1,−2 with 2 (win for server) and −2
(win for opponent). The transition probability is

2 1 0 -1 -2
2 1 0 0 0 0
1 .6 0 .4 0 0
0 0 .6 0 .4 0

-1 0 0 .6 0 .4
-2 0 0 0 0 1

If we let h(x) be the probability of the server winning when the score is x then

h(x) =
∑

y

p(x, y)h(y)

with h(2) = 1 and h(−2) = 0. This gives us three equations in three unknowns

h(1) = .6 + .4h(0)
h(0) = .6h(1) + .4h(−1)

h(−1) = .6h(0)
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Using the first and third equations in the second we have

h(0) = .6(.6 + .4h(0)) + .4(.6h(0)) = .36 + .48h(0)

so we have h(0) = 0.36/0.52 = 0.6923.
The last computation uses special properties of this example. To introduce

a general approach, we rearrange the equations to get

h(1)− .4h(0) + 0h(−1) = .6
−.6h(1) + h(0)− .4h(−1) = 0

0h(1)− .6h(0) + h(−1) = 0

which can be written in matrix form as 1 −.4 0
−.6 1 −.4
0 −.6 1

 h(1)
h(0)

h(−1)

 =

.6
0
0


Let C = {1, 0,−1} be the nonabsorbing states and let r(x, y) the restriction
of p to x, y ∈ C (i.e., the 3 × 3 matrix inside the black lines in the transition
probability). In this notation then the matrix above is I − r. Solving gives h(1)

h(0)
h(−1)

 = (I − r)−1

.6
0
0

 =

.8769
.6923
.4154


General solution. Suppose that the server wins each point with prob-

ability w. If the game is tied then after two points, the server will have
won with probability w2, lost with probability (1 − w)2, and returned to a
tied game with probability 2w(1 − w), so h(0) = w2 + 2w(1 − w)h(0). Since
1− 2w(1− w) = w2 + (1− w)2, solving gives

h(0) =
w2

w2 + (1− w)2

Figure 1.3 graphs this function.
Having worked two examples, it is time to show that we have computed the

right answer. In some cases we will want to guess and verify the answer. In
those situations it is nice to know that the solution is unique. The next result
proves this.

Theorem 1.27. Consider a Markov chain with finite state space S. Let a and
b be two points in S, and let C = S − {a, b}. Suppose h(a) = 1, h(b) = 0, and
that for x ∈ C we have

h(x) =
∑

y

p(x, y)h(y) (1.16)

If Px(Va ∧ Vb <∞) > 0 for all x ∈ C, then h(x) = Px(Va < Vb).

Proof. Let T = Va ∧ Vb. It follows from Lemma 1.3 that Px(T < ∞) = 1 for
all x ∈ C. (1.16) implies that h(x) = Exh(X1) when x 6= a, b. The Markov
property implies

h(x) = Exh(XT∧n).

We have to stop at time T because the equation is not assumed to be valid for
x = a, b. Since S is finite, Px(T <∞) = 1 for all x ∈ C, h(a) = 1, and h(b) = 0,
it is not hard to prove that Exh(XT∧n)→ Px(Va < Vb) which gives the desired
result.
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Figure 1.3: Probability the server winning a tied game as a function of the
probability of winning a point.

Example 1.41. Matching pennies. Bob, who has 15 pennies, and Charlie,
who has 10 pennies, decide to play a game. They each flip a coin. If the two
coins match, Bob gets the two pennies (for a profit of 1). If the two coins are
different, then Charlie gets the two pennies. They quit when someone has all
of the pennies. What is the probability Bob will win the game?

The answer will turn out to be 15/25, Bob’s fraction of the total supply of
pennies. To explain this, let Xn be the number of pennies Bob has after n
plays. Xn is a fair game, i.e., x = ExX1, or in words the expected number of
pennies Bob has is constant in time. Let

Vy = min{n ≥ 0 : Xn = y}

be the time of the first visit to y. Taking a leap of faith the expected number
he has at the end of the game should be the same as at the beginning so

x = NPx(VN < V0) + 0Px(V0 < Vn)

and solving gives

Px(VN < V0) = x/N for 0 ≤ x ≤ N (1.17)

To prove this note that by considering what happens on the first step

h(x) =
1
2
h(x + 1) +

1
2
h(x− 1)

Multiplying by 2 and rearranging

h(x + 1)− h(x) = h(x)− h(x− 1)

or in words, h has constant slope. Since h(0) = 0 and h(N) = 1 the slope must
be 1/N and we must have h(x) = x/N .

The reasoning in the last example can be used to study Example 1.9.
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Example 1.42. Wright–Fisher model with no mutation. The state space
is S = {0, 1, . . . N} and the transition probability is

p(x, y) =
N

y

( x

N

)y
(

N − x

N

)N−y

The right-hand side is the binomial(N,x/N) distribution, i.e., the number of
successes in N trials when success has probability x/N , so the mean number of
successes is x. From this it follows that if we define h(x) = x/N , then

h(x) =
∑

y

p(x, y)h(y)

Taking a = N and b = 0, we have h(a) = 1 and h(b) = 0. Since Px(Va ∧ Vb <
∞) > 0 for all 0 < x < N , it follows from Lemma 1.27 that

Px(VN < V0) = x/N (1.18)

i.e., the probability of fixation to all A’s is equal to the fraction of the genes
that are A.

Our next topic is non-fair games.

Example 1.43. Gambler’s ruin. Consider a gambling game in which on
any turn you win $1 with probability p 6= 1/2 or lose $1 with probability 1− p.
Suppose further that you will quit playing if your fortune reaches $N . Of course,
if your fortune reaches $0, then the casino makes you stop. Let

h(x) = Px(VN < V0)

be the happy event that our gambler reaches the goal of $N before going
bankrupt when starting with $x. Thanks to our definition of Vx as the mini-
mum of n ≥ 0 with Xn = x we have h(0) = 0, and h(N) = 1. To calculate h(x)
for 0 < x < N , we set q = 1 − p to simplify the formulas, and consider what
happens on the first step to arrive at

h(x) = ph(x + 1) + qh(x− 1) (1.19)

To solve this we rearrange to get p(h(x + 1)− h(x)) = q(h(x)− h(x− 1)) and
conclude

h(x + 1)− h(x) =
q

p
· (h(x)− h(x− 1)) (1.20)

If we set c = h(1)− h(0) then (1.20) implies that for x ≥ 1

h(x)− h(x− 1) = c

(
q

p

)x−1

Summing from x = 1 to N , we have

1 = h(N)− h(0) =
N∑

x=1

h(x)− h(x− 1) = c

N∑
x=1

(
q

p

)x−1

Now for θ 6= 1 the partial sum of the geometric series is

N−1∑
j=0

θj =
1− θN

1− θ
(1.21)
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To check this note that

(1− θ)(1 + θ + · · · θN−1) = (1 + θ + · · · θN−1)

− (θ + θ2 + · · · θN ) = 1− θN

Using (1.21) we see that c = (1 − θ)/(1 − θN ) with θ = q/p. Summing and
using the fact that h(0) = 0, we have

h(x) = h(x)− h(0) = c

x−1∑
i=0

θi = c · 1− θx

1− θ
=

1− θx

1− θN

Recalling the definition of h(x) and rearranging the fraction we have

Px(VN < V0) =
θx − 1
θN − 1

where θ = 1−p
p (1.22)

To see what (1.22) says in a concrete example, we consider:

Example 1.44. Roulette. If we bet $1 on red on a roulette wheel with 18
red, 18 black, and 2 green (0 and 00) holes, we win $1 with probability 18/38 =
0.4737 and lose $1 with probability 20/38. Suppose we bring $50 to the casino
with the hope of reaching $100 before going bankrupt. What is the probability
we will succeed?

Here θ = q/p = 20/18, so (1.22) implies

P50(V100 < V0) =

(
20
18

)50 − 1(
20
18

)100 − 1

Using (20/18)50 = 194, we have

P50(V100 < V0) =
194− 1

(194)2 − 1
=

1
194 + 1

= 0.005128

Now let’s turn things around and look at the game from the viewpoint of the
casino, i.e., p = 20/38. Suppose that the casino starts with the rather modest
capital of x = 100. (1.22) implies that the probability they will reach N before
going bankrupt is

(9/10)100 − 1
(9/10)N − 1

If we let N →∞, (9/10)N → 0 so the answer converges to

1− (9/10)100 = 1− 2.656× 10−5

If we increase the capital to $200 then the failure probability is squared, since to
become bankrupt we must first lose $100 and then lose our second $100. In this
case the failure probability is incredibly small: (2.656×10−5)2 = 7.055×10−10.

From the last analysis we see that if p > 1/2, q/p < 1 and letting N → ∞
in (1.22) gives

Px(V0 =∞) = 1−
(

q

p

)x

and Px(V0 <∞) =
(

q

p

)x

. (1.23)

To see that the form of the last answer makes sense, note that to get from x to
0 we must go x→ x− 1→ x2 . . .→ 1→ 0, so

Px(V0 <∞) = P1(V0 <∞)x.
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1.9 Exit Times

To motivate developments we begin with an example.

Example 1.45. Two year college. In Example 1.39 we introduced a Markov
chain with state space 1 = freshman, 2 = sophomore, G = graduate, D =
dropout, and transition probability

1 2 G D
1 0.25 0.6 0 0.15
2 0 0.2 0.7 0.1
G 0 0 1 0
D 0 0 0 1

On the average how many years does a student take to graduate or drop out?

Let g(x) be the expected time for a student starting in state x. g(G) =
g(D) = 0. By considering what happens on one step

g(1) = 1 + 0.25g(1) + 0.6g(2)
g(2) = 1 + 0.2g(2)

where the 1+ is due to the fact that after the jump has been made one year
has elapsed. To solve for g, we note that the second equation implies g(2) =
1/0.8 = 1.25 and then the first that

g(1) =
1 + 0.6(1.25)

0.75
=

1.75
0.75

= 2.3333

Example 1.46. Tennis. In Example 1.40 we formulated the last portion of
the game as a Markov chain in which the state is the difference of the scores.
The state space was S = {2, 1, 0,−1,−2} with 2 (win for server) and −2 (win
for opponent). The transition probability was

2 1 0 -1 -2
2 1 0 0 0 0
1 .6 0 .4 0 0
0 0 .6 0 .4 0

-1 0 0 .6 0 .4
-2 0 0 0 0 1

Let g(x) be the expected time to complete the game when the current state
is x. By considering what happens on one step

g(x) = 1 +
∑

y

p(x, y)g(y)

Since g(2) = g(−2) = 0, if we let r(x, y) be the restriction of the transition
probability to 1, 0,−1 we have

g(x)−
∑

y

r(x, y)g(y) = 1

Writing 1 for a 3× 1 matrix (i.e., column vector) with all 1’s we can write this
as

(I − r)g = 1
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so g = (I − r)−11.
There is another way to see this. If N(y) is the number of visits to y at

times n ≥ 0, then from (1.12)

ExN(y) =
∞∑

n=0

rn(x, y)

To see that this is (I − r)−1(x, y) note that (I − r)(I + r + r2 + r3 + · · · )

= (I + r + r2 + r3 + · · · )− (r + r2 + r3 + r4 · · · ) = I

If T is the duration of the game then T =
∑

y N(y) so

ExT = (I − r)−11 (1.24)

To solve the problem now we note that

I − r =

 1 −.4 0
−.6 1 −.4
0 −.6 1

 (I − r)−1 =

19/13 10/13 4/13
15/13 25/13 10/13
9/13 15/13 19/13


so E0T = (15 + 25 + 10)/13 = 50/13 = 3.846 points. Here the three terms in
the sum are the expected number of visits to −1, 0, and 1.

Having worked two examples, it is time to show that we have computed the
right answer. In some cases we will want to guess and verify the answer. In
those situations it is nice to know that the solution is unique. The next result
proves this.

Theorem 1.28. Consider a Markov chain with finite state space S. Let A ⊂ S
and VA = inf{n ≥ 0 : Xn ∈ A}. We suppose C = S − A is finite, and that
Px(VA < ∞) > 0 for any x ∈ C. Suppose g(a) = 0 for all a ∈ A, and that for
x ∈ C we have

g(x) = 1 +
∑

y

p(x, y)g(y) (1.25)

Then g(x) = Ex(VA).

Proof. It follows from Lemma 1.3 that ExVA <∞ for all x ∈ C. (1.25) implies
that g(x) = 1 + Exg(X1) when x 6∈ A. The Markov property implies

g(x) = Ex(T ∧ n) + Exg(XT∧nn).

We have to stop at time T because the equation is not valid for x ∈ A. It
follows from the definition of the expected value that Ex(T ∧ n) ↑ ExT . Since
S is finite, Px(T < ∞) = 1 for all x ∈ C, g(a) = 0 for a ∈ A, it is not hard to
see that Exg(XT∧n)→ 0.

Example 1.47. Waiting time for TT. Let TTT be the (random) number
of times we need to flip a coin before we have gotten Tails on two consecutive
tosses. To compute the expected value of TTT we will introduce a Markov chain
with states 0, 1, 2 = the number of Tails we have in a row.
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Since getting a Tails increases the number of Tails we have in a row by 1, but
getting a Heads sets the number of Tails we have in a row to 0, the transition
matrix is

0 1 2
0 1/2 1/2 0
1 1/2 0 1/2
2 0 0 1

Since we are not interested in what happens after we reach 2 we have made 2
an absorbing state. If we let V2 = min{n ≥ 0 : Xn = 2} and g(x) = ExV2 then
one step reasoning gives

g(0) = 1 + .5g(0) + .5g(1)
g(1) = 1 + .5g(0)

Plugging the second equation into the first gives g(0) = 1.5 + .75g(0), so
.25g(0) = 1.5 or g(0) = 6. To do this with the previous approach we note

I − r =
(

1/2 −1/2
−1/2 1

)
(I − r)−1 =

(
4 2
2 2

)
so E0V2 = 6.

Example 1.48. Waiting time for HT. Let THT be the (random) number of
times we need to flip a coin before we have gotten a Heads followed by a Tails.
Consider Xn is Markov chain with transition probability:

HH HT TH TT
HH 1/2 1/2 0 0
HT 0 0 1/2 1/2
TH 1/2 1/2 0 0
TT 0 0 1/2 1/2

If we eliminate the row and the column for HT then

I − r =

 1/2 0 0
−1/2 1 0

0 −1/2 1/2

 (I − r)−11 =

2
2
4


To compute the expected waiting time for our original problem, we note that
after the first two tosses we have each of the four possibilities with probability
1/4 so

ETHT = 2 +
1
4
(0 + 2 + 2 + 4) = 4

Why is ETTT = 6 while ETHT = 4? To explain we begin by noting that
EyTy = 1/π(y) and the stationary distribution assigns probability 1/4 to each
state. One can verify this and check that convergence to equilibrium is rapid
by noting that all the entries of p2 are equal to 1/4. Our identity implies that

EHT THT =
1

π(HT )
= 4

To get from this to what we wanted to calculate, note that if we start with a
H at time −1 and a T at time 0, then we have nothing that will help us in the
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future, so the expected waiting time for a HT when we start with nothing is
the same.

When we consider TT , our identity again gives

ETT TTT =
1

π(TT )
= 4

However, this time if we start with a T at time −1 and a T at time 0, then a
T at time 1 will give us a TT and a return to TT at time 1; while if we get a
H at time 1, then we have wasted 1 turn and we have nothing that can help us
later, so

4 = ETT TTT =
1
2
· 1 +

1
2
· (1 + ETTT )

Solving gives ETTT = 6, so it takes longer to observe TT . The reason for this,
which can be seen in the last equation, is that once we have one TT , we will
get another one with probability 1/2, while occurrences of HT cannot overlap.

In the Exercise 1.59 we will consider waiting times for three coin patterns.
The most interesting of these is ETHTH = ETTHT .

Example 1.49. Duration of fair games. Consider the gambler’s ruin chain
in which p(i, i + 1) = p(i, i − 1) = 1/2. Let τ = min{n : Xn 6∈ (0, N)}. We
claim that

Exτ = x(N − x) (1.26)

To see what formula (1.26) says, consider matching pennies. There N = 25 and
x = 15, so the game will take 15 · 10 = 150 flips on the average. If there are
twice as many coins, N = 50 and x = 30, then the game takes 30 · 20 = 600
flips on the average, or four times as long.

There are two ways to prove this.

Verify the guess. Let g(x) = x(N −x). Clearly, g(0) = g(N) = 0. If 0 < x < N
then by considering what happens on the first step we have

g(x) = 1 +
1
2
g(x + 1) +

1
2
g(x− 1)

If g(x) = x(N − x) then the right-hand side is

= 1 +
1
2
(x + 1)(N − x− 1) +

1
2
(x− 1)(N − x + 1)

= 1 +
1
2
[x(N − x)− x + N − x− 1] +

1
2
[x(N − x) + x− (N − x + 1)]

= 1 + x(N − x)− 1 = x(N − x)

Derive the answer. (1.25) implies that

g(x) = 1 + (1/2)g(x + 1) + (1/2)g(x− 1)

Rearranging gives

g(x + 1)− g(x) = −2 + g(x)− g(x− 1)

Setting g(1)− g(0) = c we have g(2)− g(1) = c− 2, g(3)− g(2) = c− 4 and in
general that

g(k)− g(k − 1) = c− 2(k − 1)
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Using g(0) = 0 and summing we have

0 = g(N) =
N∑

k=1

c− 2(k − 1) = cN − 2 · N(N − 1)
2

since, as one can easily check by induction,
∑m

j=1 j = m(m + 1)/2. Solving
gives c = (N − 1). Summing again, we see that

g(x) =
x∑

k=1

(N − 1)− 2(k − 1) = x(N − 1)− x(x + 1) = x(N − x)

Example 1.50. Duration of nonfair games. Consider the gambler’s ruin
chain in which p(i, i + 1)p and p(i, i − 1) = q, where p 6= q. Let τ = min{n :
Xn 6∈ (0, N)}. We claim that

Exτ =
x

q − p
− N

q − p
· 1− (q/p)x

1− (q/p)N
(1.27)

This time the derivation is somewhat tedious, so we will just verify the guess.
We want to show that g(x) = 1 + pg(x + 1) + qg(x− 1). Plugging the formula
into the right-hand side:

=1 + p
x + 1
q − p

+ q
x− 1
q − p

− N

q − p

[
p · 1− (q/p)x+1

1− (q/p)N
+ q

1− (q/p)x−1

1− (q/p)N

]
=1 +

x

q − p
+

p− q

q − p
− N

q − p

[
p + q − (q/p)x(q + p)

1− (q/p)N

]
which = g(x) since p + q = 1.

To see what this says note that if p < q then q/p > 1 so

N

1− (q/p)N
→ 0 and g(x) =

x

q − p
(1.28)

To see this is reasonable note that our expected value on one play is p − q, so
we lose an average of q− p per play, and it should take an average of x/(q− p)
to lose x dollars.

When p > q, (q/p)N → 0, so doing some algebra

g(x) ≈ N − x

p− q
[1− (q/p)x] +

x

p− q
(q/p)x

Using (1.23) we see that the probability of not hitting 0 is 1 − (q/p)x. In
this case, since our expected winnings per play is p − q, it should take about
(N −x)/(p− q) plays to get to N . The second term represents the contribution
to the expected value from paths that end at 0, but it is hard to explain why
the term has exactly this form.

1.10 Infinite State Spaces*

In this section we consider chains with an infinite state space. The major new
complication is that recurrence is not enough to guarantee the existence of a
stationary distribution.
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Example 1.51. Reflecting random walk. Imagine a particle that moves on
{0, 1, 2, . . .} according to the following rules. It takes a step to the right with
probability p. It attempts to take a step to the left with probability 1− p, but
if it is at 0 and tries to jump to the left, it stays at 0, since there is no −1 to
jump to. In symbols,

p(i, i + 1) = p when i ≥ 0
p(i, i− 1) = 1− p when i ≥ 1

p(0, 0) = 1− p

This is a birth and death chain, so we can solve for the stationary distribution
using the detailed balance equations:

pπ(i) = (1− p)π(i + 1) when i ≥ 0

Rewriting this as π(i + 1) = π(i) · p/(1− p) and setting π(0) = c, we have

π(i) = c

(
p

1− p

)i

(1.29)

There are now three cases to consider:

p < 1/2: p/(1− p) < 1. π(i) decreases exponentially fast, so
∑

i π(i) <∞, and
we can pick c to make π a stationary distribution. To find the value of c to
make π a probability distribution we recall

∞∑
i=0

θi = 1/(1− θ) when θ < 1.

Taking θ = p/(1− p) and hence 1− θ = (1− 2p)/(1− p), we see that the sum
of the π(i) defined in (∗) is c(1− p)/(1− 2p), so

π(i) =
1− 2p

1− p
·
(

p

1− p

)i

= (1− θ)θi (1.30)

To confirm that we have succeeded in making the π(i) add up to 1, note that
if we are flipping a coin with a probability θ of Heads, then the probability of
getting i Heads before we get our first Tails is given by π(i).

The reflecting random walk is clearly irreducible. To check that it is aperi-
odic note that p(0, 0) > 0 implies 0 has period 1, and then Lemma 1.18 implies
that all states have period 1. Using the convergence theorem, Theorem 1.19,
now we see that

I. When p < 1/2, P (Xn = j)→ π(j), the stationary distribution in (1.30).

Using Theorem 1.22 now,

E0T0 =
1

π(0)
=

1
1− θ

=
1− p

1− 2p
(1.31)

It should not be surprising that the system stabilizes when p < 1/2. In
this case movements to the left have a higher probability than to the right, so
there is a drift back toward 0. On the other hand if steps to the right are more
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frequent than those to the left, then the chain will drift to the right and wander
off to ∞.

II. When p > 1/2 all states are transient.

(1.23) implies that if x > 0, Px(T0 <∞) = ((1− p)/p)x.

To figure out what happens in the borderline case p = 1/2, we use results
from Sections 1.8 and 1.9. Recall we have defined Vy = min{n ≥ 0 : Xn = y}
and (1.17) tells us that if x > 0

Px(VN < V0) = x/N

If we keep x fixed and let N →∞, then Px(VN < V0)→ 0 and hence

Px(V0 <∞) = 1

In words, for any starting point x, the random walk will return to 0 with proba-
bility 1. To compute the mean return time, we note that if τN = min{n : Xn 6∈
(0, N)}, then we have τN ≤ V0 and by (1.26) we have E1τN = N − 1. Letting
N →∞ and combining the last two facts shows E1V0 =∞. Reintroducing our
old hitting time T0 = min{n > 0 : Xn = 0} and noting that on our first step
we go to 0 or to 1 with probability 1/2 shows that

E0T0 = (1/2) · 1 + (1/2)E1V0 =∞

Summarizing the last two paragraphs, we have

III. When p = 1/2, P0(T0 <∞) = 1 but E0T0 =∞.

Thus when p = 1/2, 0 is recurrent in the sense we will certainly return, but
it is not recurrent in the following sense:

x is said to be positive recurrent if ExTx <∞.

If a state is recurrent but not positive recurrent, i.e., Px(Tx < ∞) = 1 but
ExTx =∞, then we say that x is null recurrent.

In our new terminology, our results for reflecting random walk say

If p < 1/2, 0 is positive recurrent
If p = 1/2, 0 is null recurrent
If p > 1/2, 0 is transient

In reflecting random walk, null recurrence thus represents the borderline
between recurrence and transience. This is what we think in general when we
hear the term. To see the reason we might be interested in positive recurrence
recall that by Theorem 1.22

π(x) =
1

ExTx

If ExTx =∞, then this gives π(x) = 0. This observation motivates:

Theorem 1.29. For an irreducible chain the following are equivalent:
(i) Some state is positive recurrent.
(ii) There is a stationary distribution π.
(iii) All states are positive recurrent.
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Proof. The stationary measure constructed in Theorem 1.20 has total mass∑
y

µ(y) =
∞∑

n=0

∑
y

Px(Xn = y, Tx > n)

=
∞∑

n=0

Px(Tx > n) = ExTx

so (i) implies (ii). Noting that irreducibility implies π(y) > 0 for all y and then
using π(y) = 1/EyTy shows that (ii) implies (iii). It is trivial that (iii) implies
(i).

Our next example may at first seem to be quite different. In a branching
process 0 is an absorbing state, so by Theorem 1.5 all the other states are
transient. However, as the story unfolds we will see that branching processes
have the same trichotomy as random walks do.

Example 1.52. Branching Processes. Consider a population in which each
individual in the nth generation gives birth to an independent and identically
distributed number of children. The number of individuals at time n, Xn is a
Markov chain with transition probability given in Example 1.8. As announced
there, we are interested in the question:

Q. What is the probability the species avoids extinction?

Here “extinction” means becoming absorbed state at 0. As we will now explain,
whether this is possible or not can be determined by looking at the average
number of offspring of one individual:

µ =
∞∑

k=0

kpk

If there are m individuals at time n − 1, then the mean number at time n is
mµ. More formally the conditional expectation given Xn−1

E(Xn|Xn−1) = µXn−1

Taking expected values of both sides gives EXn = µEXn−1. Iterating gives

EXn = µnEX0 (1.32)

If µ < 1, then EXn → 0 exponentially fast. Using the inequality

EXn ≥ P (Xn ≥ 1)

it follows that P (Xn ≥ 1)→ 0 and we have

I. If µ < 1 then extinction occurs with probability 1.

To treat the cases µ ≥ 1 we will use a one-step calculation. Let ρ be
the probability that this process dies out (i.e., reaches the absorbing state 0)
starting from X0 = 1. If there are k children in the first generation, then in
order for extinction to occur, the family line of each child must die out, an event
of probability ρk, so we can reason that

ρ =
∞∑

k=0

pkρk (1.33)
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Figure 1.4: Generating function for Binomial(3,1/2).

If we let φ(θ) =
∑∞

k=0 pkθk be the generating function of the distribution pk,
then the last equation can be written simply as ρ = φ(ρ).

The equation in (1.33) has a trivial root at ρ = 1 since φ(ρ) =
∑∞

k=0 pkρk =
1. The next result identifies the root that we want:

Lemma 1.30. The extinction probability ρ is the smallest solution of the equa-
tion φ(x) = x with 0 ≤ x ≤ 1.

Proof. Extending the reasoning for (1.33) we see that in order for the process
to hit 0 by time n, all of the processes started by first-generation individuals
must hit 0 by time n− 1, so

P (Xn = 0) =
∞∑

k=0

pkP (Xn−1 = 0)k

From this we see that if ρn = P (Xn = 0) for n ≥ 0, then ρn = φ(ρn−1) for
n ≥ 1.

Since 0 is an absorbing state, ρ0 ≤ ρ1 ≤ ρ2 ≤ . . . and the sequence converges
to a limit ρ∞. Letting n→∞ in ρn = φ(ρn−1) implies that ρ∞ = φ(ρ∞), i.e.,
ρ∞ is a solution of φ(x) = x. To complete the proof now let ρ be the smallest
solution. Clearly ρ0 = 0 ≤ ρ. Using the fact that φ is increasing, it follows that
ρ1 = φ(ρ0) ≤ φ(ρ) = ρ. Repeating the argument we have ρ2 ≤ ρ, ρ3 ≤ ρ and
so on. Taking limits we have ρ∞ ≤ ρ. However, ρ is the smallest solution, so
we must have ρ∞ = ρ.

To see what this says, let us consider a concrete example.

Example 1.53. Binary branching. Suppose p2 = a, p0 = 1 − a, and the
other pk = 0. In this case φ(θ) = aθ2 + 1− a, so φ(x) = x means

0 = ax2 − x + 1− a = (x− 1)(ax− (1− a))
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The roots are 1 and (1− a)/a. If a ≤ 1/2, then the smallest root is 1, while if
a > 1/2 the smallest root is (1− a)/a.

Noting that a ≤ 1/2 corresponds to mean µ ≤ 1 in binary branching moti-
vates the following guess:

II. If µ > 1, then there is positive probability of avoiding extinction.

Proof. In view of Lemma 1.30, we only have to show there is a root < 1. We
begin by discarding a trivial case. If p0 = 0, then φ(0) = 0, 0 is the smallest
root, and there is no probability of dying out. If p0 > 0, then φ(0) = p0 > 0.
Differentiating the definition of φ, we have

φ′(x) =
∞∑

k=1

pk · kxk−1 so φ′(1) =
∞∑

k=1

kpk = µ

If µ > 1 then the slope of φ at x = 1 is larger than 1, so if ε is small, then
φ(1− ε) < 1− ε. Combining this with φ(0) > 0 we see there must be a solution
of φ(x) = x between 0 and 1− ε. See the figure in the proof of (7.6).

Turning to the borderline case:

III. If µ = 1 and we exclude the trivial case p1 = 1, then extinction occurs with
probability 1.

Proof. By Lemma 1.30 we only have to show that there is no root < 1. To do
this we note that if p1 < 1, then for y < 1

φ′(y) =
∞∑

k=1

pk · kxk−1 <

∞∑
k=1

pkk = 1

so if x < 1 then φ(x) = φ(1) −
∫ 1

x
φ′(y) dy > 1 − (1 − x) = x. Thus φ(x) > x

for all x < 1.

Note that in binary branching with a = 1/2, φ(x) = (1 + x2)/2, so if we try
to solve φ(x) = x we get

0 = 1− 2x + x2 = (1− x)2

i.e., a double root at x = 1. In general when µ = 1, the graph of φ is tangent
to the diagonal (x, x) at x = 1. This slows down the convergence of ρn to 1 so
that it no longer occurs exponentially fast.

In more advanced treatments, it is shown that if the offspring distribution
has mean 1 and variance σ2 > 0, then

P1(Xn > 0) ∼ 2
nσ2

This is not easy even for the case of binary branching, so we refer to reader to
Section 1.9 of Athreya and Ney (1972) for a proof. We mention the result here
because it allows us to see that the expected time for the process to die out∑

n P1(T0 > n) = ∞. If we modify the branching process, so that p(0, 1) = 1
then in the modified process

If µ < 1, 0 is positive recurrent
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If µ = 1, 0 is null recurrent
If µ > 1, 0 is transient

Our final example gives an application of branching processes to queueing
theory.

Example 1.54. M/G/1 queue. We will not be able to explain the name
of this example until we consider Poisson processes in Chapter 2. However,
imagine a queue of people waiting to use an automated teller machine. Let
Xn denote the number of people in line at the moment of the departure of the
nth customer. To model this as a Markov chain we let ak be the probability
that k customers arrive during one service time and write down the transition
probability

p(0, k) = ak and p(i, i− 1 + k) = ak for k ≥ 0

with p(i, j) = 0 otherwise.

To explain this, note that if there is a queue, it is reduced by 1 by the
departure of a customer, but k new customers will come with probability k. On
the other hand if there is no queue, we must first wait for a customer to come
and the queue that remains at her departure is the number of customers that
arrived during her service time. The pattern becomes clear if we write out a
few rows and columns of the matrix:

0 1 2 3 4 5 . . .
0 a0 a1 a2 a3 a4 a5

1 a0 a1 a2 a3 a4 a5

2 0 a0 a1 a2 a3 a4

3 0 0 a0 a1 a2 a3

4 0 0 0 a0 a1 a2

If we regard the customers that arrive during a person’s service time to be
her children, then this queueing process gives rise to a branching process. From
the results above for branching processes we see that if we denote the mean
number of children by µ =

∑
k kak, then

If µ < 1, 0 is positive recurrent
If µ = 1, 0 is null recurrent
If µ > 1, 0 is transient

To bring out the parallels between the three examples, note that when µ > 1 or
p > 1/2 the process drifts away from 0 and is transient. When µ < 1 or p < 1/2
the process drifts toward 0 and is positive recurrent. When µ = 1 or p = 1/2,
there is no drift. The process eventually hits 0 but not in finite expected time,
so 0 is null recurrent.

1.11 Chapter Summary

A Markov chain with transition probability p is defined by the property that
given the present state the rest of the past is irrelevant for predicting the future:

P (Xn+1 = y|Xn = x,Xn−1 = xn−1, . . . , X0 = x0) = p(x, y)
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The m step transition probability

pm(i, j) = P (Xn+m = y|Xn = x)

is the mth power of the matrix p.

Recurrence and transience

The first thing we need to determine about a Markov chain is which states
are recurrent and which are transient. To do this we let Ty = min{n ≥ 1 :
Xn = y} and let

ρxy = Px(Ty <∞)

When x 6= y this is the probability Xn ever visits y starting at x. When x = y
this is the probability Xn returns to y when it starts at y. We restrict to times
n ≥ 1 in the definition of Ty so that we can say: y is recurrent if ρyy = 1 and
transient if ρyy < 1.

Transient states in a finite state space can all be identified using

Theorem 1.5. If ρxy > 0, but ρyx < 1, then x is transient.

Once the transient states are removed we can use

Theorem 1.7. If C is a finite closed and irreducible set, then all states in C
are recurrent.

Here A is closed if x ∈ A and y 6∈ A implies p(x, y) = 0, and B is irreducible if
x, y ∈ B implies ρxy > 0.

The keys to the proof of Theorem 1.7 are: (i) If x is recurrent and ρxy > 0
then y is recurrent, and (ii) In a finite closed set there has to be at least one
recurrent state. To prove these results, it was useful to know that if N(y) is
the number of visits to y at times n ≥ 1 then

∞∑
n=1

pn(x, y) = ExN(y) =
ρxy

1− ρyy

so y is recurrent if and only if EyN(y) =∞.

Theorems 1.5 and 1.7 allow us to decompose the state space and simplify
the study of Markov chains.

Theorem 1.8. If the state space S is finite, then S can be written as a disjoint
union T∪R1∪· · ·∪Rk, where T is a set of transient states and the Ri, 1 ≤ i ≤ k,
are closed irreducible sets of recurrent states.

Stationary distributions

A stationary measure is a nonnegative solution of µp = µ A stationary
distribution is a nonnegative solution of πp = π normalized so that the entries
sum to 1. The first question is: do these things exist?

Theorem 1.20. Suppose p is irreducible and recurrent. Let x ∈ S and let
Tx = inf{n ≥ 1 : Xn = x}.

µx(y) =
∞∑

n=0

Px(Xn = y, Tx > n)

defines a stationary measure with 0 < µx(y) <∞ for all y.
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If the state space S is finite and irreducible there is a unique stationary distribu-
tion. More generally if ExTx <∞, i.e., x is positive recurrent then µx(y)/ExTx

is a stationary distribution. Since µx(x) = 1 we see that

π(x) =
1

ExTx

If there are k states then the stationary distribution π can be computed by
the following procedure. Form a matrix A by taking the first k − 1 columns of
p−I and adding a final column of 1’s. The equations πp = π and π1+· · ·πk = 1
are equivalent to

πA =
(
0 . . . 0 1

)
so we have

π =
(
0 . . . 0 1

)
A−1

or π is the bottom row of A−1.
In two situations, the stationary distribution is easy to compute. (i) If

the chain is doubly stochastic, i.e.,
∑

x p(x, y) = 1, and has k states, then the
stationary distribution is uniform π(x) = 1/k. (ii) π is a stationary distribution
if the detailed balance condition holds

π(x)p(x, y) = π(y)p(y, x)

Birth and death chains, defined by the condition that p(x, y) = 0 if |x− y| > 1
always have stationary distributions with this property. If the state space is
`, ` + 1, . . . r then π can be found by setting π(`) = c, solving for π(x) for
` < x ≤ r, and then choosing c to make the probabilities sum to 1.

Convergence theorems

Transient states y have pn(x, y) → 0, so to investigate the convergence of
pn(x, y) it is enough, by the decomposition theorem, to suppose the chain is
irreducible and all states are recurrent. The period of a state is the greatest
common divisor of Ix = {n ≥ 1 : pn(x, x) > 0}. If the period is 1, x is said to
be aperiodic. A simple sufficient condition to be aperiodic is that p(x, x) > 0.
To compute the period it is useful to note that if ρxy > 0 and ρyx > 0 then x
and y have the same period. In particular all of the states in an irreducible set
have the same period.

The three main results about the asymptotic behavior of Markov chains are:

Theorem 1.19. Suppose p is irreducible, aperiodic, and has a stationary dis-
tribution π. Then as n→∞, pn(x, y)→ π(y).

Theorem 1.21. Suppose p is irreducible and recurrent. If Nn(y) be the number
of visits to y up to time n, then

Nn(y)
n

→ 1
EyTy

Theorem 1.23. Suppose p is irreducible, has stationary distribution π, and∑
x |f(x)|π(x) <∞ then

1
n

n∑
m=1

f(Xm)→
∑

x

f(x)π(x)
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Chains with absorbing states

In this case there are two interesting questions. Where does the chain get
absorbed? How long does it take? Let Vy = min{n ≥ 0 : Xn = y} be the time
of the first visit to y, i.e., now being there at time 0 counts.

Theorem 1.27. Consider a Markov chain with finite state space S. Let a and
b be two points in S, and let C = S − {a, b}. Suppose h(a) = 1, h(b) = 0, and
that for x ∈ C we have

h(x) =
∑

y

p(x, y)h(y)

If ρxa + ρxb > 0 for all x ∈ C, then h(x) = Px(Va < Vb).

Let r(x, y) be the part of the matrix p(x, y) with x, y ∈ C. Since h(a) = 1 and
h(b) = 0, the equation for h can be written for x ∈ C as

h(x) = r(x, a) +
∑

y

r(x, y)h(y)

so if we let v be the column vector with entries r(x, a) then the last equation
says (I − r)h = v and

h = (I − r)−1v.

Theorem 1.28. Consider a Markov chain with finite state space S. Let A ⊂ S
and VA = inf{n ≥ 0 : Xn ∈ A}. Suppose g(a) = 0 for all a ∈ A, and that for
x ∈ C = S −A we have

g(x) = 1 +
∑

y

p(x, y)g(y)

If Px(VA <∞) > 0 for all x ∈ C, then g(x) = Ex(VA).

Since g(x) = 0 for x ∈ A the equation for g can be written for x ∈ C as

g(x) = 1 +
∑

y

r(x, y)g(y)

so if we let ~1 be a column vector consisting of all 1’s then the last equation says
(I − r)g = ~1 and

g = (I − r)−1~1.

Since (I − r)−1 = I + r + r2 + . . ., for x, y 6∈ A, (I − r)−1(x, y) is the expected
number of visits to y starting from x.

1.12 Exercises

Understanding the definitions

1.1. A fair coin is tossed repeatedly with results Y0, Y1, Y2, . . . that are 0 or 1
with probability 1/2 each. For n ≥ 1 let Xn = Yn + Yn−1 be the number of 1’s
in the (n− 1)th and nth tosses. Is Xn a Markov chain?
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1.2. Five white balls and five black balls are distributed in two urns in such a
way that each urn contains five balls. At each step we draw one ball from each
urn and exchange them. Let Xn be the number of white balls in the left urn at
time n. Compute the transition probability for Xn.

1.3. We repeated roll two four sided dice with numbers 1, 2, 3, and 4 on them.
Let Yk be the sum on the kth roll, Sn = Y1 + · · ·+ Yn be the total of the first
n rolls, and Xn = Sn (mod 6). Find the transition probability for Xn.

1.4. The 1990 census showed that 36% of the households in the District of
Columbia were homeowners while the remainder were renters. During the next
decade 6% of the homeowners became renters and 12% of the renters became
homeowners. What percentage were homeowners in 2000? in 2010?

1.5. Consider a gambler’s ruin chain with N = 4. That is, if 1 ≤ i ≤ 3,
p(i, i + 1) = 0.4, and p(i, i − 1) = 0.6, but the endpoints are absorbing states:
p(0, 0) = 1 and p(4, 4) = 1 Compute p3(1, 4) and p3(1, 0).

1.6. A taxicab driver moves between the airport A and two hotels B and C
according to the following rules. If he is at the airport, he will be at one of
the two hotels next with equal probability. If at a hotel then he returns to the
airport with probability 3/4 and goes to the other hotel with probability 1/4.
(a) Find the transition matrix for the chain. (b) Suppose the driver begins
at the airport at time 0. Find the probability for each of his three possible
locations at time 2 and the probability he is at hotel B at time 3.

1.7. Suppose that the probability it rains today is 0.3 if neither of the last two
days was rainy, but 0.6 if at least one of the last two days was rainy. Let the
weather on day n, Wn, be R for rain, or S for sun. Wn is not a Markov chain,
but the weather for the last two days Xn = (Wn−1,Wn) is a Markov chain
with four states {RR,RS, SR, SS}. (a) Compute its transition probability. (b)
Compute the two-step transition probability. (c) What is the probability it will
rain on Wednesday given that it did not rain on Sunday or Monday.

1.8. Consider the following transition matrices. Identify the transient and
recurrent states, and the irreducible closed sets in the Markov chains. Give
reasons for your answers.

(a) 1 2 3 4 5
1 .4 .3 .3 0 0
2 0 .5 0 .5 0
3 .5 0 .5 0 0
4 0 .5 0 .5 0
5 0 .3 0 .3 .4

(b) 1 2 3 4 5 6
1 .1 0 0 .4 .5 0
2 .1 .2 .2 0 .5 0
3 0 .1 .3 0 0 .6
4 .1 0 0 .9 0 0
5 0 0 0 .4 0 .6
6 0 0 0 0 .5 .5

(c) 1 2 3 4 5
1 0 0 0 0 1
2 0 .2 0 .8 0
3 .1 .2 .3 .4 0
4 0 .6 0 .4 0
5 .3 0 0 0 .7

(d) 1 2 3 4 5 6
1 .8 0 0 .2 0 0
2 0 .5 0 0 .5 0
3 0 0 .3 .4 .3 0
4 .1 0 0 .9 0 0
5 0 .2 0 0 .8 0
6 .7 0 0 .3 0 0
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1.9. Find the stationary distributions for the Markov chains with transition
matrices:

(a) 1 2 3
1 .5 .4 .1
2 .2 .5 .3
3 .1 .3 .6

(b) 1 2 3
1 .5 .4 .1
2 .3 .4 .3
3 .2 .2 .6

(c) 1 2 3
1 .6 .4 0
2 .2 .4 .2
3 0 .2 .8

1.10. Find the stationary distributions for the Markov chains on {1, 2, 3, 4}
with transition matrices:

(a)


.7 0 .3 0
.6 0 .4 0
0 .5 0 .5
0 .4 0 .6

 (b)


.7 .3 0 0
.2 .5 .3 0
.0 .3 .6 .1
0 0 .2 .8

 (c)


.7 0 .3 0
.2 .5 .3 0
.1 .2 .4 .3
0 .4 0 .6


(c) The matrix is doubly stochastic so π(i) = 1/4, i = 1, 2, 3, 4.

1.11. Find the stationary distributions for the chains in exercises (a) 1.2, (b)
1.3, and (c) 1.7.

1.12. (a) Find the stationary distribution for the transition probability

1 2 3 4
1 0 2/3 0 1/3
2 1/3 0 2/3 0
3 0 1/6 0 5/6
4 2/5 0 3/5 0

and show that it does not satisfy the detailed balance condition (1.11).
(b) Consider

1 2 3 4
1 0 a 0 1− a
2 1− b 0 b 0
3 0 1− c 0 c
4 d 0 1− d 0

and show that there is a stationary distribution satisfying (1.11) if

0 < abcd = (1− a)(1− b)(1− c)(1− d).

1.13. Consider the Markov chain with transition matrix:

1 2 3 4
1 0 0 0.1 0.9
2 0 0 0.6 0.4
3 0.8 0.2 0 0
4 0.4 0.6 0 0

(a) Compute p2. (b) Find the stationary distributions of p and all of the
stationary distributions of p2. (c) Find the limit of p2n(x, x) as n→∞.

1.14. Do the following Markov chains converge to equilibrium?

(a) 1 2 3 4
1 0 0 1 0
2 0 0 .5 .5
3 .3 .7 0 0
4 1 0 0 0

(b) 1 2 3 4
1 0 1 .0 0
2 0 0 0 1
3 1 0 0 0
4 1/3 0 2/3 0
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(c) 1 2 3 4 5 6
1 0 .5 .5 0 0 0
2 0 0 0 1 0 0
3 0 0 0 .4 0 .6
4 1 0 0 0 0 0
5 0 1 0 0 0 0
6 .2 0 0 0 .8 0

1.15. Find limn→∞ pn(i, j) for

p =

1 2 3 4 5
1 1 0 0 0 0
2 0 2/3 0 1/3 0
3 1/8 1/4 5/8 0 0
4 0 1/6 0 5/6 0
5 1/3 0 1/3 0 1/3

You are supposed to do this and the next problem by solving equations. How-
ever you can check your answers by using your calculator to find FRAC(p100).

1.16. If we rearrange the matrix for the seven state chain in Example 1.14 we
get

2 3 1 5 4 6 7
2 .2 .3 .1 0 .4 0 0
3 0 .5 0 .2 .3 0 0
1 0 0 .7 .3 0 0 0
5 0 0 .6 .4 0 0 0
4 0 0 0 0 .5 .5 0
6 0 0 0 0 0 .2 .8
7 0 0 0 0 1 0 0

Find limn→∞ pn(i, j).

Two state Markov chains

1.17. Market research suggests that in a five year period 8% of people with
cable television will get rid of it, and 26% of those without it will sign up for it.
Compare the predictions of the Markov chain model with the following data on
the fraction of people with cable TV: 56.4% in 1990, 63.4% in 1995, and 68.0%
in 2000. What is the long run fraction of people with cable TV?

1.18. A sociology professor postulates that in each decade 8% of women in the
work force leave it and 20% of the women not in it begin to work. Compare the
predictions of his model with the following data on the percentage of women
working: 43.3% in 1970, 51.5% in 1980, 57.5% in 1990, and 59.8% in 2000. In
the long run what fraction of women will be working?

1.19. A rapid transit system has just started operating. In the first month of
operation, it was found that 25% of commuters are using the system while 75%
are travelling by automobile. Suppose that each month 10% of transit users go
back to using their cars, while 30% of automobile users switch to the transit
system. (a) Compute the three step transition probaiblity p3. (b) What will
be the fractions using rapid transit in the fourth month? (c) In the long run?
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1.20. A regional health study indicates that from one year to the next, 75%
percent of smokers will continue to smoke while 25% will quit. 8% of those
who stopped smoking will resume smoking while 92% will not. If 70% of the
population were smokers in 1995, what fraction will be smokers in 1998? in
2005? in the long run?

1.21. Three of every four trucks on the road are followed by a car, while only
one of every five cars is followed by a truck. What fraction of vehicles on the
road are trucks?

1.22. In a test paper the questions are arranged so that 3/4’s of the time a True
answer is followed by a True, while 2/3’s of the time a False answer is followed
by a False. You are confronted with a 100 question test paper. Approximately
what fraction of the answers will be True.

1.23. In unprofitable times corporations sometimes suspend dividend pay-
ments. Suppose that after a dividend has been paid the next one will be paid
with probability 0.9, while after a dividend is suspended the next one will be
suspended with probability 0.6. In the long run what is the fraction of dividends
that will be paid?

1.24. Census results reveal that in the United States 80% of the daughters
of working women work and that 30% of the daughters of nonworking women
work. (a) Write the transition probability for this model. (b) In the long run
what fraction of women will be working?

1.25. When a basketball player makes a shot then he tries a harder shot the
next time and hits (H) with probability 0.4, misses (M) with probability 0.6.
When he misses he is more conservative the next time and hits (H) with proba-
bility 0.7, misses (M) with probability 0.3. (a) Write the transition probability
for the two state Markov chain with state space {H,M}. (b) Find the long-run
fraction of time he hits a shot.

1.26. Folk wisdom holds that in Ithaca in the summer it rains 1/3 of the time,
but a rainy day is followed by a second one with probability 1/2. Suppose that
Ithaca weather is a Markov chain. What is its transition probability?

Chains with three or more states

1.27. (a) Suppose brands A and B have consumer loyalties of .7 and .8, meaning
that a customer who buys A one week will with probability .7 buy it again the
next week, or try the other brand with .3. What is the limiting market share for
each of these products? (b) Suppose now there is a third brand with loyalty .9,
and that a consumer who changes brands picks one of the other two at random.
What is the new limiting market share for these three products?

1.28. A midwestern university has three types of health plans: a health main-
tenance organization (HMO), a preferred provider organization (PPO), and a
traditional fee for service plan (FFS). Experience dictates that people change
plans according to the following transition matrix

HMO PPO FFS
HMO .85 .1 .05
PPO .2 .7 .1
FFS .1 .3 .6
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In 2000, the percentages for the three plans were HMO:30%, PPO:25%, and
FFS:45%. (a) What will be the percentages for the three plans in 2001? (b)
What is the long run fraction choosing each of the three plans?

1.29. Bob eats lunch at the campus food court every week day. He either eats
Chinese food, Quesadila, or Salad. His transition matrix is

C Q S
C .15 .6 .25
Q .4 .1 .5
S .1 .3 .6

He had Chinese food on Monday. (a) What are the probabilities for his three
meal choices on Friday (four days later). (b) What are the long run frequencies
for his three choices?

1.30. The liberal town of Ithaca has a “free bikes for the people program.”
You can pick up bikes at the library (L), the coffee shop (C) or the cooperative
grocery store (G). The director of the program has determined that bikes move
around accroding to the following Markov chain

L C G
L .5 .2 .3
C .4 .5 .1
G .25 .25 .5

On Sunday there are an equal number of bikes at each place. (a) What fraction
of the bikes are at the three locations on Tuesday? (b) on the next Sunday?
(c) In the long run what fraction are at the three locations?

1.31. A plant species has red, pink, or white flowers according to the genotypes
RR, RW, and WW, respectively. If each of these genotypes is crossed with a
pink (RW ) plant then the offspring fractions are

RR RW WW
RR .5 .5 0
RW .25 .5 .25
WW 0 .5 .5

What is the long run fraction of plants of the three types?

1.32. The weather in a certain town is classified as rainy, cloudy, or sunny and
changes according to the following transition probability is

R C S
R 1/2 1/4 1/4
C 1/4 1/2 1/4
S 1/2 1/2 0

In the long run what proportion of days in this town are rainy? cloudy? sunny?

1.33. A sociologist studying living patterns in a certain region determines that
the pattern of movement between urban (U), suburban (S), and rural areas (R)
is given by the following transition matrix.

U S R
U .86 .08 .06
S .05 .88 .07
R .03 .05 .92
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In the long run what fraction of the population will live in the three areas?

1.34. In a large metropolitan area, commuters either drive alone (A), carpool
(C), or take public transportation (T). A study showed that transportation
changes according to the following matrix:

A C T
A .8 .15 .05
C .05 .9 .05
S .05 .1 .85

In the long run what fraction of commuters will use the three types of trans-
portation?

1.35. (a) Three telephone companies A, B, and C compete for customers. Each
year customers switch between companies according the followinng transition
probability

A B C
A .75 .05 .20
B .15 .65 .20
C .05 .1 .85

What is the limiting market share for each of these companies?

1.36. A professor has two light bulbs in his garage. When both are burned
out, they are replaced, and the next day starts with two working light bulbs.
Suppose that when both are working, one of the two will go out with probability
.02 (each has probability .01 and we ignore the possibility of losing two on the
same day). However, when only one is there, it will burn out with probability
.05. (i) What is the long-run fraction of time that there is exactly one bulb
working? (ii) What is the expected time between light bulb replacements?

1.37. An individual has three umbrellas, some at her office, and some at home.
If she is leaving home in the morning (or leaving work at night) and it is raining,
she will take an umbrella, if one is there. Otherwise, she gets wet. Assume that
independent of the past, it rains on each trip with probability 0.2. To formulate
a Markov chain, let Xn be the number of umbrellas at her current location. (a)
Find the transition probability for this Markov chain. (b) Calculate the limiting
fraction of time she gets wet.

1.38. Let Xn be the number of days since David last shaved, calculated at
7:30AM when he is trying to decide if he wants to shave today. Suppose that
Xn is a Markov chain with transition matrix

1 2 3 4
1 1/2 1/2 0 0
2 2/3 0 1/3 0
3 3/4 0 0 1/4
4 1 0 0 0

In words, if he last shaved k days ago, he will not shave with probability
1/(k+1). However, when he has not shaved for 4 days his mother orders him to
shave, and he does so with probability 1. (a) What is the long-run fraction of
time David shaves? (b) Does the stationary distribution for this chain satisfy
the detailed balance condition?
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1.39. In a particular county voters declare themselves as members of the Re-
publican, Democrat, or Green party. No voters change directly from the Re-
publican to Green party or vice versa. Other transitions occur according to the
following matrix:

R D G
R .85 .15 0
D .05 .85 .10
G 0 .05 .95

In the long run what fraction of voters will belong to the three parties?

1.40. An auto insurance company classifies its customers in three categories:
poor, satisfactory and excellent. No one moves from poor to excellent or from
excellent to poor in one year.

P S E
P .6 .4 0
S .1 .6 .3
E 0 .2 .8

What is the limiting fraction of drivers in each of these categories?

1.41. Reflecting random walk on the line. Consider the points 1, 2, 3, 4 to be
marked on a straight line. Let Xn be a Markov chain that moves to the right
with probability 2/3 and to the left with probability 1/3, but subject this time
to the rule that if Xn tries to go to the left from 1 or to the right from 4 it
stays put. Find (a) the transition probability for the chain, and (b) the limiting
amount of time the chain spends at each site.

1.42. At the end of a month, a large retail store classifies each of its customer’s
accounts according to current (0), 30–60 days overdue (1), 60–90 days overdue
(2), more than 90 days (3). Their experience indicates that the accounts move
from state to state according to a Markov chain with transition probability
matrix:

0 1 2 3
0 .9 .1 0 0
1 .8 0 .2 0
2 .5 0 0 .5
3 .1 0 0 .9

In the long run what fraction of the accounts are in each category?

1.43. At the beginning of each day, a piece of equipment is inspected to deter-
mine its working condition, which is classified as state 1 = new, 2, 3, or 4 =
broken. We assume the state is a Markov chain with the following transition
matrix:

1 2 3 4
1 .95 .05 0 0
2 0 .9 .1 0
3 0 0 .875 .125

(a) Suppose that a broken machine requires three days to fix. To incorporate
this into the Markov chain we add states 5 and 6 and suppose that p(4, 5) = 1,
p(5, 6) = 1, and p(6, 1) = 1. Find the fraction of time that the machine is
working. (b) Suppose now that we have the option of performing preventative
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maintenance when the machine is in state 3, and that this maintenance takes one
day and returns the machine to state 1. This changes the transition probability
to

1 2 3
1 .95 .05 0
2 0 .9 .1
3 1 0 0

Find the fraction of time the machine is working under this new policy.

1.44. Landscape dynamics. To make a crude model of a forest we might intro-
duce states 0 = grass, 1 = bushes, 2 = small trees, 3 = large trees, and write
down a transition matrix like the following:

0 1 2 3
0 1/2 1/2 0 0
1 1/24 7/8 1/12 0
2 1/36 0 8/9 1/12
3 1/8 0 0 7/8

The idea behind this matrix is that if left undisturbed a grassy area will see
bushes grow, then small trees, which of course grow into large trees. However,
disturbances such as tree falls or fires can reset the system to state 0. Find the
limiting fraction of land in each of the states.

More Theoretical Exercises

1.45. Consider a general chain with state space S = {1, 2} and write the
transition probability as

1 2
1 1− a a
2 b 1− b

Use the Markov property to show that

P (Xn+1 = 1)− b

a + b
= (1− a− b)

{
P (Xn = 1)− b

a + b

}
and then conclude

P (Xn = 1) =
b

a + b
+ (1− a− b)n

{
P (X0 = 1)− b

a + b

}
This shows that if 0 < a + b < 2, then P (Xn = 1) converges exponentially fast
to its limiting value b/(a + b).

1.46. Bernoulli–Laplace model of diffusion. Consider two urns each of which
contains m balls; b of these 2m balls are black, and the remaining 2m − b are
white. We say that the system is in state i if the first urn contains i black balls
and m− i white balls while the second contains b− i black balls and m− b + i
white balls. Each trial consists of choosing a ball at random from each urn and
exchanging the two. Let Xn be the state of the system after n exchanges have
been made. Xn is a Markov chain. (a) Compute its transition probability. (b)
Verify that the stationary distribution is given by

π(i) =
(

b

i

)(
2m− b

m− i

)/(
2m

m

)
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(c) Can you give a simple intuitive explanation why the formula in (b) gives
the right answer?

1.47. Library chain. On each request the ith of n possible books is the one
chosen with probability pi. To make it quicker to find the book the next time,
the librarian moves the book to the left end of the shelf. Define the state at
any time to be the sequence of books we see as we examine the shelf from left
to right. Since all the books are distinct this list is a permutation of the set
{1, 2, . . . n}, i.e., each number is listed exactly once. Show that

π(i1, . . . , in) = pi1 ·
pi2

1− pi1

· pi3

1− pi1 − pi2

· · · pin

1− pi1 − · · · pin−1

is a stationary distribution.

1.48. Random walk on a clock. Consider the numbers 1, 2, . . . 12 written around
a ring as they usually are on a clock. Consider a Markov chain that at any point
jumps with equal probability to the two adjacent numbers. (a) What is the
expected number of steps that Xn will take to return to its starting position?
(b) What is the probability Xn will visit all the other states before returning
to its starting position?

The next three examples continue Example 1.34. Again we represent our
chessboard as {(i, j) : 1 ≤ i, j ≤ 8}. How do you think that the pieces bishop,
knight, king, queen, and rook rank in their answers to (b)?

1.49. King’s random walk. A king can move one squares horizontally, vertically,
or diagonally. Let Xn be the sequence of squares that results if we pick one of
king’s legal moves at random. Find (a) the stationary distribution and (b) the
expected number of moves to return to corner (1,1) when we start there.

1.50. Bishop’s random walk. A bishop can move any number of squares di-
agonally. Let Xn be the sequence of squares that results if we pick one of
bishop’s legal moves at random. Find (a) the stationary distribution and (b)
the expected number of moves to return to corner (1,1) when we start there.

1.51. Queen’s random walk. A queen can move any number of squares horizon-
tally, vertically, or diagonally. Let Xn be the sequence of squares that results
if we pick one of queen’s legal moves at random. Find (a) the stationary dis-
tribution and (b) the expected number of moves to return to corner (1,1) when
we start there.

1.52. Wright–Fisher model. Consider the chain described in Example 1.7.

p(x, y) =
(

N

y

)
(ρx)y(1− ρx)N−y

where ρx = (1 − u)x/N + v(N − x)/N . (a) Show that if u, v > 0, then
limn→∞ pn(x, y) = π(y), where π is the unique stationary distribution. There is
no known formula for π(y), but you can (b) compute the mean ν =

∑
y yπ(y) =

limn→∞ExXn.

1.53. Ehrenfest chain. Consider the Ehrenfest chain, Example 1.2, with tran-
sition probability p(i, i + 1) = (N − i)/N , and p(i, i− 1) = i/N for 0 ≤ i ≤ N .
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Let µn = ExXn. (a) Show that µn+1 = 1 + (1 − 2/N)µn. (b) Use this and
induction to conclude that

µn =
N

2
+
(

1− 2
N

)n

(x−N/2)

From this we see that the mean µn converges exponentially rapidly to the
equilibrium value of N/2 with the error at time n being (1− 2/N)n(x−N/2).

1.54. Prove that if pij > 0 for all i and j then a necessary and sufficient
condition for the existence of a reversible stationary distribution is

pijpjkpki = pikpkjpji for all i, j, k

Hint: fix i and take πj = cpij/pji.

Exit distributions and times

1.55. The Markov chain associated with a manufacturing process may be de-
scribed as follows: A part to be manufactured will begin the process by entering
step 1. After step 1, 20% of the parts must be reworked, i.e., returned to step
1, 10% of the parts are thrown away, and 70% proceed to step 2. After step 2,
5% of the parts must be returned to the step 1, 10% to step 2, 5% are scrapped,
and 80% emerge to be sold for a profit. (a) Formulate a four-state Markov chain
with states 1, 2, 3, and 4 where 3 = a part that was scrapped and 4 = a part
that was sold for a profit. (b) Compute the probability a part is scrapped in
the production process.

1.56. A bank classifies loans as paid in full (F), in good standing (G), in arrears
(A), or as a bad debt (B). Loans move between the categories according to the
following transition probability:

F G A B
F 1 0 0 0
G .1 .8 .1 0
A .1 .4 .4 .1
B 0 0 0 1

What fraction of loans in good standing are eventually paid in full? What is
the answr for those in arrears?

1.57. A warehouse has a capacity to hold four items. If the warehouse is neither
full nor empty, the number of items in the warehouse changes whenever a new
item is produced or an item is sold. Suppose that (no matter when we look)
the probability that the next event is “a new item is produced” is 2/3 and that
the new event is a “sale” is 1/3. If there is currently one item in the warehouse,
what is the probability that the warehouse will become full before it becomes
empty.

1.58. Six children (Dick, Helen, Joni, Mark, Sam, and Tony) play catch. If
Dick has the ball he is equally likely to throw it to Helen, Mark, Sam, and
Tony. If Helen has the ball she is equally likely to throw it to Dick, Joni, Sam,
and Tony. If Sam has the ball he is equally likely to throw it to Dick, Helen,
Mark, and Tony. If either Joni or Tony gets the ball, they keep throwing it to
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each other. If Mark gets the ball he runs away with it. (a) Find the transition
probability and classify the states of the chain. (b) Suppose Dick has the ball
at the beginning of the game. What is the probability Mark will end up with
it?

1.59. Use the second solution in Example 1.48 to compute the expected waiting
times for the patterns HHH, HHT , HTT , and HTH. Which pattern has the
longest waiting time? Which ones achieve the minimum value of 8?

1.60. Sucker bet. Consider the following gambling game. Player 1 picks a three
coin pattern (for example HTH) and player 2 picks another (say THH). A coin
is flipped repeatedly and outcomes are recorded until one of the two patterns
appears. Somewhat surprisingly player 2 has a considerable advantage in this
game. No matter what player 1 picks, player 2 can win with probability ≥ 2/3.
Suppose without loss of generality that player 1 picks a pattern that begins
with H:

case Player 1 Player 2 Prob. 2 wins
1 HHH THH 7/8
2 HHT THH 3/4
3 HTH HHT 2/3
4 HTT HHT 2/3

Verify the results in the table. You can do this by solving six equations in six
unknowns but this is not the easiest way.

1.61. At the New York State Fair in Syracuse, Larry encounters a carnival
game where for one dollar he may buy a single coupon allowing him to play a
guessing game. On each play, Larry has an even chance of winning or losing a
coupon. When he runs out of coupons he loses the game. However, if he can
collect three coupons, he wins a surprise. (a) What is the probability Larry will
win the surprise? (b) What is the expected number of plays he needs to win or
lose the game.

1.62. The Megasoft company gives each of its employees the title of program-
mer (P) or project manager (M). In any given year 70% of programmers remain
in that position 20% are promoted to project manager and 10% are fired (state
X). 95% of project managers remain in that position while 5% are fired. How
long on the average does a programmer work before they are fired?

1.63. At a nationwide travel agency, newly hired employees are classified as
beginners (B). Every six months the performance of each agent is reviewed.
Past records indicate that transitions through the ranks to intermediate (I) and
qualified (Q) are according to the following Markov chain, where F indicates
workers that were fired:

B I Q F
B .45 .4 0 .15
I 0 .6 .3 .1
Q 0 0 1 0
F 0 0 0 1

(a) What fraction are eventually promoted? (b) What is the expected time
until a beginner is fired or becomes qualified?
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1.64. At a manufacturing plant, employees are classified as trainee (R), tech-
nician (T) or supervisor (S). Writing Q for an employee who quits we model
their progress through the ranks as a Markov chain with transition probability

R T S Q
R .2 .6 0 .2
T 0 .55 .15 .3
S 0 0 1 0
Q 0 0 0 1

(a) What fraction of recruits eventually make supervisor? (b) What is the
expected time until a trainee auits or becomes supervisor?

1.65. Customers shift between variable rate loans (V), thirty year fixed-rate
loans (30), fifteen year fixed-rate loans (15), or enter the states paid in full (P),
or foreclosed according to the following transition matrix:

V 30 15 P f
V .55 .35 0 .05 .05
30 .15 .54 .25 .05 .01
15 .20 0 .75 .04 .01
P 0 0 0 1 0
F 0 0 0 0 1

(a) For each of the three loan types find (a) the expected time until paid or
foreclosed. (b) the probability the loan is paid.

1.66. Brother–sister mating. In this genetics scheme two individuals (one male
and one female) are retained from each generation and are mated to give the
next. If the individuals involved are diploid and we are interested in a trait with
two alleles, A and a, then each individual has three possible states AA, Aa, aa
or more succinctly 2, 1, 0. If we keep track of the sexes of the two individuals the
chain has nine states, but if we ignore the sex there are just six: 22, 21, 20, 11,
10, and 00. (a) Assuming that reproduction corresponds to picking one letter
at random from each parent, compute the transition probability. (b) 22 and 00
are absorbing states for the chain. Show that the probability of absorption in
22 is equal to the fraction of A’s in the state. (c) Let T = min{n ≥ 0 : Xn =
22 or 00} be the absorption time. Find ExT for all states x.

1.67. Roll a fair die repeatedly and let Y1, Y2, . . . be the resulting numbers.
Let Xn = |{Y1, Y2, . . . , Yn}| be the number of values we have seen in the first n
rolls for n ≥ 1 and set X0 = 0. Xn is a Markov chain. (a) Find its transition
probability. (b) Let T = min{n : Xn = 6} be the number of trials we need to
see all 6 numbers at least once. Find ET .

1.68. Coupon collector’s problem. We are interested now in the time it takes
to collect a set of N baseball cards. Let Tk be the number of cards we have to
buy before we have k that are distinct. Clearly, T1 = 1. A little more thought
reveals that if each time we get a card chosen at random from all N possibilities,
then for k ≥ 1, Tk+1− Tk has a geometric distribution with success probability
(N − k)/N . Use this to show that the mean time to collect a set of N baseball
cards is ≈ N log N , while the variance is ≈ N2

∑∞
k=1 1/k2.
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1.69. Algorthmic efficiency. The simplex method minimizes linear functions by
moving between extreme points of a polyhedral region so that each transition
decreases the objective function. Suppose there are n extreme points and they
are numbered in increasing order of their values. Consider the Markov chain in
which p(1, 1) = 1 and p(i, j) = 1/i− 1 for j < i. In words, when we leave j we
are equally likely to go to any of the extreme points with better value. (a) Use
(1.25) to show that for i > 1

EiT1 = 1 + 1/2 + · · ·+ 1/(i− 1)

(b) Let Ij = 1 if the chain visits j on the way from n to 1. Show that for j < n

P (Ij = 1|Ij+1, . . . In) = 1/j

to get another proof of the result and conclude that I1, . . . In−1 are independent.

Infinite State Space

1.70. General birth and death chains. The state space is {0, 1, 2, . . .} and the
transition probability has

p(x, x + 1) = px

p(x, x− 1) = qx for x > 0
p(x, x) = rx for x ≥ 0

while the other p(x, y) = 0. Let Vy = min{n ≥ 0 : Xn = y} be the time of the
first visit to y and let hN (x) = Px(VN < V0). By considering what happens on
the first step, we can write

hN (x) = pxhN (x + 1) + rxhN (x) + qxhN (x− 1)

Set hN (1) = cN and solve this equation to conclude that 0 is recurrent if and
only if

∑∞
y=1

∏y−1
x=1 qx/px =∞ where by convention

∏0
x=1 = 1.

1.71. To see what the conditions in the last problem say we will now consider
some concrete examples. Let px = 1/2, qx = e−cx−α

/2, rx = 1/2 − qx for
x ≥ 1 and p0 = 1. For large x, qx ≈ (1 − cx−α)/2, but the exponential
formulation keeps the probabilities nonnegative and makes the problem easier
to solve. Show that the chain is recurrent if α > 1 or if α = 1 and c ≤ 1 but is
transient otherwise.

1.72. Consider the Markov chain with state space {0, 1, 2, . . .} and transition
probability

p(m,m + 1) =
1
2

(
1− 1

m + 2

)
for m ≥ 0

p(m,m− 1) =
1
2

(
1 +

1
m + 2

)
for m ≥ 1

and p(0, 0) = 1− p(0, 1) = 3/4. Find the stationary distribution π.

1.73. Consider the Markov chain with state space {1, 2, . . .} and transition
probability

p(m,m + 1) = m/(2m + 2) for m ≥ 1
p(m,m− 1) = 1/2 for m ≥ 2

p(m,m) = 1/(2m + 2) for m ≥ 2

and p(1, 1) = 1− p(1, 2) = 3/4. Show that there is no stationary distribution.
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1.74. Consider the aging chain on {0, 1, 2, . . .} in which for any n ≥ 0 the
individual gets one day older from n to n + 1 with probability pn but dies and
returns to age 0 with probability 1 − pn. Find conditions that guarantee that
(a) 0 is recurrent, (b) positive recurrent. (c) Find the stationary distribution.

1.75. The opposite of the aging chain is the renewal chain with state space
{0, 1, 2, . . .} in which p(i, i− 1) = 1 when i > 0. The only nontrivial part of the
transition probability is p(0, i) = pi. Show that this chain is always recurrent
but is positive recurrent if and only if

∑
n npn <∞.

1.76. Consider a branching process as defined in Example 7.2, in which each
family has exactly three children, but invert Galton and Watson’s original mo-
tivation and ignore male children. In this model a mother will have an average
of 1.5 daughters. Compute the probability that a given woman’s descendents
will die out.

1.77. Consider a branching process as defined in Example 7.2, in which each
family has a number of children that follows a shifted geometric distribution:
pk = p(1 − p)k for k ≥ 0, which counts the number of failures before the first
success when success has probability p. Compute the probability that starting
from one individual the chain will be absorbed at 0.



Chapter 2

Poisson Processes

2.1 Exponential Distribution

To prepare for our discussion of the Poisson process, we need to recall the
definition and some of the basic properties of the exponential distribution. A
random variable T is said to have an exponential distribution with rate
λ, or T = exponential(λ), if

P (T ≤ t) = 1− e−λt for all t ≥ 0 (2.1)

Here we have described the distribution by giving the distribution function
F (t) = P (T ≤ t). We can also write the definition in terms of the density
function fT (t) which is the derivative of the distribution function.

fT (t) =

{
λe−λt for t ≥ 0
0 for t < 0

(2.2)

Integrating by parts with f(t) = t and g′(t) = λe−λt,

ET =
∫

t fT (t) dt =
∫ ∞

0

t · λe−λt dt

= −te−λt
∣∣∞
0

+
∫ ∞

0

e−λt dt = 1/λ (2.3)

Integrating by parts with f(t) = t2 and g′(t) = λe−λt, we see that

ET 2 =
∫

t2 fT (t) dt =
∫ ∞

0

t2 · λe−λt dt

= −t2e−λt
∣∣∞
0

+
∫ ∞

0

2te−λt dt = 2/λ2 (2.4)

by the formula for ET . So the variance

var (T ) = ET 2 − (ET )2 = 1/λ2 (2.5)

While calculus is required to know the exact values of the mean and variance,
it is easy to see how they depend on λ. Let T = exponential(λ), i.e., have an

77
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exponential distribution with rate λ, and let S = exponential(1). To see that
S/λ has the same distribution as T , we use (2.1) to conclude

P (S/λ ≤ t) = P (S ≤ λt) = 1− e−λt = P (T ≤ t)

Recalling that if c is any number then E(cX) = cEX and var (cX) = c2 var (X),
we see that

ET = ES/λ var (T ) = var (S)/λ2

Lack of memory property. It is traditional to formulate this property in
terms of waiting for an unreliable bus driver. In words, “if we’ve been waiting
for t units of time then the probability we must wait s more units of time is the
same as if we haven’t waited at all.” In symbols

P (T > t + s|T > t) = P (T > s) (2.6)

To prove this we recall that if B ⊂ A, then P (B|A) = P (B)/P (A), so

P (T > t + s|T > t) =
P (T > t + s)

P (T > t)
=

e−λ(t+s)

e−λt
= e−λs = P (T > s)

where in the third step we have used the fact ea+b = eaeb.

Exponential races. Let S = exponential(λ) and T = exponential(µ) be
independent. In order for the minimum of S and T to be larger than t, each of
S and T must be larger than t. Using this and independence we have

P (min(S, T ) > t) = P (S > t, T > t) = P (S > t)P (T > t)

= e−λte−µt = e−(λ+µ)t (2.7)

That is, min(S, T ) has an exponential distribution with rate λ + µ. The
last calculation extends easily to a sequence of independent random variables
T1, . . . , Tn where Ti = exponential(λi).

P (min(T1, . . . , Tn) > t) = P (T1 > t, . . . Tn > t)

=
n∏

i=1

P (Ti > t) =
n∏

i=1

e−λit = e−(λ1+···+λn)t (2.8)

That is, the minimum, min(T1, . . . , Tn), of several independent exponentials has
an exponential distribution with rate equal to the sum of the rates λ1 + · · ·λn.

In the last paragraph we have computed the duration of a race between ex-
ponentially distributed random variables. We will now consider: “Who finishes
first?” Going back to the case of two random variables, we break things down
according to the value of S and then using independence with our formulas
(2.1) and (2.2) for the distribution and density functions, to conclude

P (S < T ) =
∫ ∞

0

fS(s)P (T > s) ds

=
∫ ∞

0

λe−λse−µs ds

=
λ

λ + µ

∫ ∞

0

(λ + µ)e−(λ+µ)s ds =
λ

λ + µ
(2.9)
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where on the last line we have used the fact that (λ + µ)e−(λ+µ)s is a density
function and hence must integrate to 1.

From the calculation for two random variables, you should be able to guess
that if T1, . . . , Tn are independent exponentials, then

P (Ti = min(T1, . . . , Tn)) =
λi

λ1 + · · ·+ λn
(2.10)

That is, the probability of i finishing first is proportional to its rate.

Proof. Let S = Ti and U be the minimum of Tj , j 6= i. (2.8) implies that U is
exponential with parameter

µ = (λ1 + · · ·+ λn)− λi

so using the result for two random variables

P (Ti = min(T1, . . . , Tn)) = P (S < U) =
λi

λi + µ
=

λi

λ1 + · · ·+ λn

proves the desired result.

Let I be the (random) index of the Ti that is smallest. In symbols,

P (I = i) =
λi

λ1 + · · ·+ λn

You might think that the Ti’s with larger rates might be more likely to win
early. However,

I and V = min{T1, . . . Tn} are independent. (2.11)

Proof. Let fi,V (t) be the density function for V on the set I = i. In order for i
to be first at time t, Ti = t and the other Tj > t so

fi,V (t) = λie
−λit ·

∏
j 6=i

e−λjt

=
λi

λ1 + · · ·+ λn
· (λ1 + · · ·+ λn)e−(λ1+·+λn)t

= P (I = i) · fV (t)

since V has an exponential(λ1 + · · ·+ λn) distribution.

Our final fact in this section concerns sums of exponentials.

Theorem 2.1. Let τ1, τ2, . . . be independent exponential(λ). The sum Tn =
τ1 + · · · + τn has a gamma(n, λ) distribution. That is, the density function of
Tn is given by

fTn(t) = λe−λt · (λt)n−1

(n− 1)!
for t ≥ 0 (2.12)

and 0 otherwise.
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Proof. The proof is by induction on n. When n = 1, T1 has an exponential(λ)
distribution. Recalling that the 0th power of any positive number is 1, and by
convention we set 0!=1, the formula reduces to

fT1(t) = λe−λt

and we have shown that our formula is correct for n = 1.
To do the induction step, suppose that the formula is true for n. The sum

Tn+1 = Tn + τn+1, so breaking things down according to the value of Tn, and
using the independence of Tn and tn+1, we have

fTn+1(t) =
∫ t

0

fTn(s)ftn+1(t− s) ds

Plugging the formula from (2.12) in for the first term and the exponential
density in for the second and using the fact that eaeb = ea+b with a = −λs and
b = −λ(t− s) gives∫ t

0

λe−λs (λs)n−1

(n− 1)!
· λe−λ(t−s) ds = e−λtλn

∫ t

0

sn−1

(n− 1)!
ds

= λe−λt λ
ntn

n!

which completes the proof.

2.2 Defining the Poisson Process

In this section we will give two definitions of the Poisson process with rate
λ. The first, which will be our official definition, is nice because it allows us to
construct the process easily.

Definition. Let τ1, τ2, . . . be independent exponential(λ) random variables.
Let Tn = τ1 + · · ·+ τn for n ≥ 1, T0 = 0, and define N(s) = max{n : Tn ≤ s}.

We think of the τn as times between arrivals of customers at a bank, so Tn =
τ1 + · · · + τn is the arrival time of the nth customer, and N(s) is the number
of arrivals by time s. To check the last interpretation, consider the following
example:

× × × × ×
0 T1 T2 T3 T4 s T5

τ1 τ2 τ3 τ4
τ5

Figure 2.1: Poisson process definitions.

and note that N(s) = 4 when T4 ≤ s < T5, that is, the 4th customer has arrived
by time s but the 5th has not.

Recall that X has a Poisson distribution with mean λ, or X = Poisson(λ),
for short, if

P (X = n) = e−λ λn

n!
for n = 0, 1, 2, . . .
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To explain why N(s) is called the Poisson process rather than the exponential
process, we will compute the distribution of N(s).

Lemma 2.2. N(s) has a Poisson distribution with mean λs.

Proof. Now N(s) = n if and only if Tn ≤ s < Tn+1; i.e., the nth customer
arrives before time s but the (n+1)th after s. Breaking things down according
to the value of Tn = t and noting that for Tn+1 > s, we must have τn+1 > s− t,
and τn+1 is independent of Tn, it follows that

P (N(s) = n) =
∫ s

0

fTn(t)P (tn+1 > s− t) dt

Plugging in (2.12) now, the last expression is

=
∫ s

0

λe−λt (λt)n−1

(n− 1)!
· e−λ(s−t) dt

=
λn

(n− 1)!
e−λs

∫ s

0

tn−1 dt = e−λs (λs)n

n!

which proves the desired result.

Since this is our first mention of the Poisson distribution, we pause to derive
some of its properties.

Theorem 2.3. For any k ≥ 1

EX(X − 1) · · · (X − k + 1) = λk (2.13)

and hence var (X) = λ

Proof. X(X − 1) · · · (X − k + 1) = 0 if X ≤ k − 1 so

EX(X − 1) · · · (X − k + 1) =
∞∑

j=k

e−λ λj

j!
j(j − 1) · · · (j − k + 1)

= λk
∞∑

j=k

e−λ λj−k

(j − k)!
= λk

since the sum gives the total mass of the Poisson distribution. Using var (X) =
E(X(X − 1)) + EX − (EX)2 we conclude

var (X) = λ2 + λ− (λ)2 = λ

Theorem 2.4. If Xi are independent Poissson(λi) then

X1 + · · ·+ Xk = Poisson(λ1 + · · ·+ λn).

Proof. It suffices to prove the result for k = 2, for then the general result follows
by induction.

P (X1 + X2 = n) =
n∑

m=0

P (X1 = m)P (X2 = n−m)

=
n∑

m=0

e−λ1
(λ1)m

m!
· e−λ2

(λ2)n−m

(n−m)!
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Knowing the answer we want, we can rewrite the last expression as

e−(λ1+λ2)
(λ1 + λ2)n

n!
·

n∑
m=0

(
n

m

)(
λ1

λ1 + λ2

)m(
λ2

λ1 + λ2

)n−m

The sum is 1, since it is the sum of all the probabilities for a binomial(n, p)
distribution with p = λ1/(λ1 + λ2). The term outside the sum is the desired
Poisson probability, so have proved the desired result.

The property of the Poisson process in Lemma 2.2 is the first part of our
second definition. To start to develop the second part we prove a Markov
property:

Lemma 2.5. N(t+s)−N(s), t ≥ 0 is a rate λ Poisson process and independent
of N(r), 0 ≤ r ≤ s.

Why is this true? Suppose for concreteness (and so that we can use Figure
2.2 at the beginning of this section again) that by time s there have been four
arrivals T1, T2, T3, T4 that occurred at times t1, t2, t3, t4. We know that the
waiting time for the fifth arrival must have τ5 > s − t4, but by the lack of
memory property of the exponential distribution (2.6)

P (τ5 > s− t4 + t|τ5 > s− t4) = P (τ5 > t) = e−λt

This shows that the distribution of the first arrival after s is exponential(λ)
and independent of T1, T2, T3, T4. It is clear that τ6, τ7, . . . are independent
of T1, T2, T3, T4, and τ5. This shows that the interarrival times after s are
independent exponential(λ), and hence that N(t+ s)−N(s), t ≥ 0 is a Poisson
process.

From Lemma 2.5 we get easily the following:

Lemma 2.6. N(t) has independent increments: if t0 < t1 < . . . < tn, then

N(t1)−N(t0), N(t2)−N(t1), . . . N(tn)−N(tn−1) are independent

Why is this true? Lemma 2.5 implies that N(tn)−N(tn−1) is independent of
N(r), r ≤ tn−1 and hence of N(tn−1)−N(tn−2), . . . N(t1)−N(t0). The desired
result now follows by induction.

We are now ready for our second definition. It is in terms of the process
{N(s) : s ≥ 0} that counts the number of arrivals in [0, s].

Theorem 2.7. If {N(s), s ≥ 0} is a Poisson process, then
(i) N(0) = 0,
(ii) N(t + s)−N(s) = Poisson(λt), and
(iii) N(t) has independent increments.

Conversely, if (i), (ii), and (iii) hold, then {N(s), s ≥ 0} is a Poisson process.

Why is this true? Clearly, (i) holds. Lemmas 2.2 and 2.6 prove (ii) and (iii).
To start to prove the converse, let Tn be the time of the nth arrival. The first
arrival occurs after time t if and only if there were no arrivals in [0, t]. So using
the formula for the Poisson distribution

P (τ1 > t) = P (N(t) = 0) = e−λt
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This shows that τ1 = T1 is exponential(λ). For τ2 = T2 − T1 we note that

P (τ2 > t|τ1 = s) = P ( no arrival in (s, s + t] |τ1 = s)
= P (N(t + s)−N(s) = 0|N(r) = 0 for r < s,N(s) = 1)

= P (N(t + s)−N(s) = 0) = e−λt

by the independent increments property in (iii), so τ2 is exponential(λ) and in-
dependent of τ1. Repeating this argument we see that τ1, τ2, . . . are independent
exponential(λ).

Up to this point we have been concerned with the mechanics of defining the
Poisson process, so the reader may be wondering:

Why is the Poisson process important for applications?

Our answer is based on the Poisson approximation to the binomial. Suppose
that each of the n students on Duke campus flips coins with probability λ/n of
heads to decide if they will go to the Great Hall (food court) between 12:17 and
12:18 . The probability that exactly k students will go during the one-minute
time interval is given by the binomial(n, λ/n) distribution

n(n− 1) · · · (n− k + 1)
k!

(
λ

n

)k (
1− λ

n

)n−k

(2.14)

Theorem 2.8. If n is large the binomial(n, λ/n) distribution is approximately
Poisson(λ).

Proof. Exchanging the numerators of the first two fractions and breaking the
last term into two, (2.14) becomes

λk

k!
· n(n− 1) · · · (n− k + 1)

nk
·
(

1− λ

n

)n(
1− λ

n

)−k

(2.15)

Considering the four terms separately, we have

(i) λk/k! does not depend on n.

(ii) There are k terms on the top and k terms on the bottom, so we can write
this fraction as

n

n
· n− 1

n
· · · n− k + 1

n

For any j we have (n− j)/n→ 1 as n→∞, so the second term converges to 1
as n→∞.

(iii) Skipping to the last term in (2.15), λ/n→ 0, so 1− λ/n→ 1. The power
−k is fixed so (

1− λ

n

)−k

→ 1−k = 1

(iv) We broke off the last piece to make it easier to invoke one of the famous
facts of calculus:

(1− λ/n)n → e−λ as n→∞.

If you haven’t seen this before, recall that

log(1− x) = −x + x2/2 + . . .
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so we have n log(1− λ/n) = −λ + λ2/n + . . .→ λ as n→∞.
Combining (i)–(iv), we see that (2.15) converges to

λk

k!
· 1 · e−λ · 1

which is the Poisson distribution with mean λ.

By extending the last argument we can also see why the number of individ-
uals that arrive in two disjoint time intervals should be independent. Using the
multinomial instead of the binomial, we see that the probability j people will
go between 12:17 and 12:18 and k people will go between 12:31 and 12:33 is

n!
j!k!(n− j − k)!

(
λ

n

)j (2λ

n

)k (
1− 3λ

n

)n−(j+k)

Rearranging gives

(λ)j

j!
· (2λ)k

k!
· n(n− 1) · · · (n− j − k + 1)

nj+k
·
(

1− 3λ

n

)n−(j+k)

Reasoning as before shows that when n is large, this is approximately

(λ)j

j!
· (2λ)k

k!
· 1 · e−3λ

Writing e−λ = e−λ/3e−2λ/3 and rearranging we can write the last expression as

e−λ λj

j!
· e−2λ (2λ)k

k!

This shows that the number of arrivals in the two time intervals we chose are
independent Poissons with means λ and 2λ.

The last proof can be easily generalized to show that if we divide the hour
between 12:00 and 1:00 into any number of intervals, then the arrivals are
independent Poissons with the right means. However, the argument gets very
messy to write down.

More realistic models.

Two of the weaknesses of the derivation above are:

(i) All students are assumed to have exactly the same probability of going to
the Great Hall.

(ii) The probability of going in a given time interval is a constant multiple of
the length of the interval, so the arrival rate of customers is constant during
the hour. In reality there is a large influx of people between 11:30 and 11:45
soon after the end of 10:10-11:25 classes.

(i) is a very strong assumption but can be weakened by using a more general
Poisson approximation result like the following:

Theorem 2.9. Let Xn,m, 1 ≤ m ≤ n be independent random variables with
P (Xm = 1) = pm and P (Xm = 0) = 1− pm. Let

Sn = X1 + · · ·+ Xn, λn = ESn = p1 + · · ·+ pn,
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and Zn = Poisson(λn). Then for any set A

|P (Sn ∈ A)− P (Zn ∈ A)| ≤
n∑

m=1

p2
m

Why is this true? If X and Y are integer valued random variables then for
any set A

|P (X ∈ A)− P (Y ∈ A)| ≤ 1
2

∑
n

|P (X = n)− P (Y = n)|

The right-hand side is called the total variation distance between the two
distributions and is denoted ‖X − Y ‖. If P (X = 1) = p, P (X = 0) = 1 − p,
and Y = Poisson(p) then∑

n

|P (X = n)− P (Y = n)| = |(1− p)− e−p|+ |p− pe−p|+ 1− (1 + p)e−p

Since 1 ≥ e−p ≥ 1− p the right-hand side is

e−p − 1 + p + p− pe−p + 1− e−p − pe−p = 2p(1− e−p ≤ 2p2

Let Ym = Poisson(pm) be independent. At this point we have shown ‖Xi −
Yi‖ ≤ p2

i . With a little work one can show

‖(X1 + · · ·+ Xn)− (Y1 + · · ·+ Yn)‖

‖(X1, · · · , Xn)− (Y1, · · · , Yn)‖ ≤
n∑

m=1

‖Xm − Ym‖

and the desired result follows.

Theorem 2.9 is useful because it gives a bound on the difference between
the distribution of Sn and the Poisson distribution with mean λn = ESn. To
bound the bound it is useful to note that

n∑
m=1

p2
m ≤ max

k
pk

(
n∑

m=1

pm

)
so the approximation is good if maxk pk is small. This is similar to the usual
heuristic for the normal distribution: the sum is due to small contributions from
a large number of variables. However, here small means that it is nonzero with
small probability. When a contribution is made it is equal to 1.

The last results handles problem (i). To address the problem of varying
arrival rates mentioned in (ii), we generalize the definition.

Nonhomogeneous Poisson processes. We say that {N(s), s ≥ 0} is a
Poisson process with rate λ(r) if

(i) N(0) = 0,
(ii) N(t) has independent increments, and
(iii) N(t)−N(s) is Poisson with mean

∫ t

s
λ(r) dr.

The first definition does not work well in this setting since the interarrival
times τ1, τ2, . . . are no longer exponentially distributed or independent. To
demonstrate the first claim, we note that

P (τ1 > t) = P (N(t) = 0) = e−
R t
0 λ(s) ds
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since N(t) is Poisson with mean µ(t) =
∫ t

0
λ(s) ds. Differentiating gives the

density function

P (τ1 = t) = − d

dt
P (t1 > t) = λ(t)e−

R t
0 λ(s) ds = λ(t)e−µ(t)

Generalizing the last computation shows that the joint distribution

fT1,T2(u, v) = λ(u)e−µ(u) · λ(v)e−(µ(v)−µ(u))

Changing variables, s = u, t = v − u, the joint density

fτ1,τ2(s, t) = λ(s)e−µ(s) · λ(s + t)e−(µ(s+t)−µ(s))

so τ1 and τ2 are not independent when λ(s) is not constant.

2.3 Compound Poisson Processes

In this section we will embellish our Poisson process by associating an indepen-
dent and identically distributed (i.i.d.) random variable Yi with each arrival.
By independent we mean that the Yi are independent of each other and of the
Poisson process of arrivals. To explain why we have chosen these assumptions,
we begin with two examples for motivation.

Example 2.1. Consider the McDonald’s restaurant on Route 13 in the south-
ern part of Ithaca. By arguments in the last section, it is not unreasonable to
assume that between 12:00 and 1:00 cars arrive according to a Poisson process
with rate λ. Let Yi be the number of people in the ith vehicle. There might be
some correlation between the number of people in the car and the arrival time,
e.g., more families come to eat there at night, but for a first approximation it
seems reasonable to assume that the Yi are i.i.d. and independent of the Poisson
process of arrival times.

Example 2.2. Messages arrive at a central computer to be transmitted across
the Internet. If we imagine a large number of users working at terminals con-
nected to a central computer, then the arrival times of messages can be modeled
by a Poisson process. If we let Yi be the size of the ith message, then again
it is reasonable to assume Y1, Y2, . . . are i.i.d. and independent of the Poisson
process of arrival times.

Having introduced the Yi’s, it is natural to consider the sum of the Yi’s we
have seen up to time t:

S(t) = Y1 + · · ·+ YN(t)

where we set S(t) = 0 if N(t) = 0. In Example 2.1, S(t) gives the number of
customers that have arrived up to time t. In Example 2.2, S(t) represents the
total number of bytes in all of the messages up to time t. In each case it is
interesting to know the mean and variance of S(t).

Theorem 2.10. Let Y1, Y2, . . . be independent and identically distributed, let
N be an independent nonnegative integer valued random variable, and let S =
Y1 + · · ·+ YN with S = 0 when N = 0.

(i) If E|Yi|, EN <∞, then ES = EN · EYi.

(ii) If EY 2
i , EN2 <∞, then var (S) = EN var (Yi) + var (N)(EYi)2.

(iii) If N is Poisson(λ), then var (S) = λEY 2
i .
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Why is this reasonable? The first of these is natural since if N = n is
nonrandom ES = nEYi. (i) then results by setting n = EN . The formula in
(ii) is more complicated but it clearly has two of the necessary properties:

If N = n is nonrandom, var (S) = n var (Yi).

If Yi = c is nonrandom var (S) = c2 var (N).

Combining these two observations, we see that EN var (Yi) is the contribu-
tion to the variance from the variability of the Yi, while var (N)(EYi)2 is the
contribution from the variability of N .

Proof. When N = n, S = X1 + · · · + Xn has ES = nEYi. Breaking things
down according to the value of N ,

ES =
∞∑

n=0

E(S|N = n) · P (N = n)

=
∞∑

n=0

nEYi · P (N = n) = EN · EYi

For the second formula we note that when N = n, S = X1 + · · · + Xn has
var (S) = n var (Yi) and hence,

E(S2|N = n) = n var (Yi) + (nEYi)2

Computing as before we get

ES2 =
∞∑

n=0

E(S2|N = n) · P (N = n)

=
∞∑

n=0

{n · var (Yi) + n2(EYi)2} · P (N = n)

= (EN) · var (Yi) + EN2 · (EYi)2

To compute the variance now, we observe that

var (S) = ES2 − (ES)2

= (EN) · var (Yi) + EN2 · (EYi)2 − (EN · EYi)2

= (EN) · var (Yi) + var (N) · (EYi)2

where in the last step we have used var (N) = EN2 − (EN)2 to combine the
second and third terms.

For part (iii), we note that in the special case of the Poisson, we have EN =
λ and var (N) = λ, so the result follows from var (Yi) + (EYi)2 = EY 2

i .

For a concrete example of the use of Theorem 2.10 consider

Example 2.3. Suppose that the number of customers at a liquor store in a
day has a Poisson distribution with mean 81 and that each customer spends an
average of $8 with a standard deviation of $6. It follows from (i) in Theorem
2.10 that the mean revenue for the day is 81 · $8 = $648. Using (iii), we see
that the variance of the total revenue is

81 ·
{
($6)2 + ($8)2

}
= 8100

Taking square roots we see that the standard deviation of the revenue is $90
compared with a mean of $648.
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2.4 Transformations

2.4.1 Thinning

In the previous section, we added up the Yi’s associated with the arrivals in our
Poisson process to see how many customers, etc., we had accumulated by time
t. In this section we will use the Yi to split one Poisson process into several.
Let Nj(t) be the number of i ≤ N(t) with Yi = j. In Example 2.1, where Yi is
the number of people in the ith car, Nj(t) will be the number of cars that have
arrived by time t with exactly j people. The somewhat remarkable fact is:

Theorem 2.11. Nj(t) are independent Poisson processes with rate λP (Yi = j).

Why is this remarkable? There are two “surprises” here: the resulting
processes are Poisson and they are independent. To drive the point home con-
sider a Poisson process with rate 10 per hour, and then flip coins to determine
whether the arriving customers are male or female. One might think that see-
ing 40 men arrive in one hour would be indicative of a large volume of business
and hence a larger than normal number of women, but Theorem 2.11 tells us
that the number of men and the number of women that arrive per hour are
independent.

Proof. To begin we suppose that P (Yi = 1) = p and P (Yi = 2) = 1−p, so there
are only two Poisson processes to consider: N1(t) and N2(t). We will check the
second definition given in Theorem 2.7. It should be clear that the independent
increments property of the Poisson process implies that the pairs of increments

(N1(ti)−N1(ti−1), N2(ti)−N2(ti−1)), 1 ≤ i ≤ n

are independent of each other. Since N1(0) = N2(0) = 0 by definition, it only
remains to check that the components Xi = Ni(t + s)−Ni(s) are independent
and have the right Poisson distributions. To do this, we note that if X1 = j
and X2 = k, then there must have been j + k arrivals between s and s + t, j of
which were assigned 1’s and k of which were assigned 2’s, so

P (X1 = j, X2 = k) = e−λt (λt)j+k

(j + k)!
· (j + k)!

j!k!
pj(1− p)k

= e−λpt (λpt)j

j!
e−λ(1−p)t (λ(1− p)t)k

k!
(2.16)

so X1 = Poisson(λpt) and X2 = Poisson(λ(1 − p)t). For the general case, we
use the multinomial to conclude that if pj = P (Yi = j) for 1 ≤ j ≤ m then

P (X1 = k1, . . . Xm = km)

= e−λt (λt)k1+···km

(k1 + · · · km)!
(k1 + · · · km)!

k1! · · · km!
pk1
1 · · · pkm

m =
m∏

j=1

e−λpjt (λpj)kj

kj !

which proves the desired result.

The thinning results generalizes easily to the nonhomogeneous case:

Theorem 2.12. Suppose that in a Poisson process with rate λ, we keep a point
that lands at s with probability p(s). Then the result is a nonhomogeneous
Poisson process with rate λp(s).
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For an application of this consider

Example 2.4. M/G/∞ queue. In modeling telephone traffic, we can, as
a first approximation, suppose that the number of phone lines is infinite, i.e.,
everyone who tries to make a call finds a free line. This certainly is not always
true but analyzing a model in which we pretend this is true can help us to
discover how many phone lines we need to be able to provide service 99.99% of
the time.

The argument for arrivals at the Great Hall implies that the beginnings of
calls follow a Poisson process. As for the calls themselves, while many people
on the telephone show a lack of memory, there is no reason to suppose that
the duration of a call has an exponential distribution. So we use a general
distribution function G with G(0) = 0 and mean µ. Suppose that the system
starts empty at time 0. The probability a call started at s has ended by time t
is G(t− s), so using Theorem 2.12 the number of calls still in progress at time
t is Poisson with mean∫ t

s=0

λ(1−G(t− s)) ds = λ

∫ t

r=0

(1−G(r)) dr

Letting t→∞ and using (A.22) we see that in the long run the number of calls
in the system will be Poisson with mean

λ

∫ ∞

r=0

(1−G(r)) dr = λµ

That is, the mean number in the system is the rate at which calls enter times
their average duration. In the argument above we supposed that the system
starts empty. Since the number of initial calls still in the system at time t
decreases to 0 as t → ∞, the limiting result is true for any initial number of
calls X0.

2.4.2 Superposition

Taking one Poisson process and splitting it into two or more by using an i.i.d. se-
quence Yi is called thinning. Going in the other direction and adding up a lot
of independent processes is called superposition. Since a Poisson process can
be split into independent Poisson processes, it should not be too surprising that
when the independent Poisson processes are put together, the sum is Poisson
with a rate equal to the sum of the rates.

Theorem 2.13. Suppose N1(t), . . . Nk(t) are independent Poisson processes
with rates λ1, . . . , λk, then N1(t) + · · · + Nk(t) is a Poisson process with rate
λ1 + · · ·+ λk.

Proof. Again we consider only the case k = 2 and check the second definition
given in Theorem 2.7. It is clear that the sum has independent increments
and N1(0) + N2(0) = 0. The fact that the increments have the right Poisson
distribution follows from Theorem 2.4.

We will see in the next chapter that the ideas of compounding and thinning
are very useful in computer simulations of continuous time Markov chains. For
the moment we will illustrate their use in computing the outcome of races
between Poisson processes.
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Example 2.5. A Poisson race. Given a Poisson process of red arrivals with
rate λ and an independent Poisson process of green arrivals with rate µ, what
is the probability that we will get 6 red arrivals before a total of 4 green ones?

Solution. The first step is to note that the event in question is equivalent to
having at least 6 red arrivals in the first 9. If this happens, then we have at
most 3 green arrivals before the 6th red one. On the other hand if there are 5
or fewer red arrivals in the first 9, then we have had at least 4 red arrivals and
at most 5 green.

Viewing the red and green Poisson processes as being constructed by starting
with one rate λ + µ Poisson process and flipping coins with probability p =
λ/(λ + µ) to decide the color, we see that the probability of interest is

9∑
k=6

(
9
k

)
pk(1− p)9−k

If we suppose for simplicity that λ = µ so p = 1/2, this expression becomes

1
512
·

9∑
k=6

(
9
k

)
=

1 + 9 + (9 · 8)/2 + (9 · 8 · 7)/3!
512

=
140
512

= 0.273

2.4.3 Conditioning

Let T1, T2, T3, . . . be the arrival times of a Poisson process with rate λ, let
U1, U2, . . . Un be independent and uniformly distributed on [0, t], and let V1 <
. . . Vn be the Ui rearranged into increasing order . This section is devoted to
the proof of the following remarkable fact.

Theorem 2.14. If we condition on N(t) = n, then the vector (T1, T2, . . . Tn)
has the same distribution as (V1, V2, . . . Vn) and hence the set of arrival times
{T1, T2, . . . , Tn} has the same distribution as {U1, U2, . . . , Un}.

Why is this true? We begin by finding the joint density function of (T1, T2, T3)
given that there were 3 arrivals before time t. The probability is 0 unless
0 < v1 < v2 < v3 < t. To compute the answer in this case, we note that
P (N(t) = 4) = e−λt(λt)3/3!, and in order to have T1 = t1, T2 = t2, T3 = t3,
N(t) = 4 we must have τ1 = t1, τ2 = t2− t1, τ3 = t3− t2, and τ > t− t3, so the
desired conditional distribution is:

=
λe−λt1 · λe−λ(t2−t1) · λe−λ(t3−t2) · e−λ(t−t3)

e−λt(λt)3/3!

=
λ3e−λt

e−λt(λt)3/3!
=

3!
t3

Note that the answer does not depend on the values of v1, v2, v3 (as long as
0 < v1 < v2 < v3 < t), so the resulting conditional distribution is uniform over

{(v1, v2, v3) : 0 < v1 < v2 < v3 < t}

This set has volume t3/3! since {(v1, v2, v3) : 0 < v1, v2, v3 < t} has volume t3

and v1 < v2 < v3 is one of 3! possible orderings.
Generalizing from the concrete example it is easy to see that the joint density

function of (T1, T2, . . . Tn) given that there were n arrivals before time t is n!/tn
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for all times 0 < t1 < . . . < tn < t, which is the joint distribution of (V1, . . . , Vn).
The second fact follows easily from this, since there are n! sets {T1, T2, . . . Tn}
or {U1, U2, . . . Un} for each ordered vector (T1, T2, . . . Tn) or (V1, V2, . . . , Vn).

Theorem 2.14 implies that if we condition on having n arrivals at time t,
then the locations of the arrivals are the same as the location of n points thrown
uniformly on [0, t]. From the last observation we immediately get:

Theorem 2.15. If s < t and 0 ≤ m ≤ n, then

P (N(s) = m|N(t) = n) =
(

n

m

)(s

t

)m (
1− s

t

)n−m

That is, the conditional distribution of N(s) given N(t) = n is binomial(n, s/t).

Proof. The number of arrivals by time s is the same as the number of Ui < s.
The events {Ui < s} these events are independent and have probability s/t, so
the number of Ui < s will be binomial(n, s/t).

2.5 Chapter Summary

A random variable T is said to have an exponential distribution with rate
λ, or T = exponential(λ), if P (T ≤ t) = 1 − e−λt for all t ≥ 0. The mean
is 1/λ, variance 1/λ2. The density function is fT (t) = λe−λt. The sum of n
independent exponentials has the gamma(n, λ) density

λe−λt (λt)n−1

(n− 1)!

Lack of memory property. “if we’ve been waiting for t units of time then
the probability we must wait s more units of time is the same as if we haven’t
waited at all.”

P (T > t + s|T > t) = P (T > s)

Exponential races. Let T1, . . . , Tn are independent, Ti = exponential(λi),
and S = min(T1, . . . , Tn). Then S = exponential(λ1 + · · ·+ λn)

P (Ti = min(T1, . . . , Tn)) =
λi

λ1 + · · ·+ λn

max{S, T} = S +T −min{S, T} so taking expected value if S = exponential(µ)
and T = exponential(λ) then

E max{S, T} =
1
µ

+
1
λ
− 1

µ + λ

=
1

µ + λ
+

λ

λ + µ
· 1
µ

+
µ

λ + µ
· 1
λ

Poisson(µ) distribution. P (X = n) = e−µµn/n!. The mean and variance of
X are µ.

Poisson process. Let t1, t2, . . . be independent exponential(λ) random vari-
ables. Let Tn = t1 + . . .+ tn be the time of the nth arrival. Let N(t) = max{n :
Tn ≤ t} be the number of arrivals by time t, which is Poisson(λt). N(t) has
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independent increments: if t0 < t1 < . . . < tn, then N(t1)−N(t0), N(t2)−
N(t1), . . . N(tn)−N(tn−1) are independent.

Thinning. Suppose we embellish our Poisson process by associating to each
arrival an independent and identically distributed (i.i.d.) positive integer ran-
dom variable Yi. If we let pk = P (Yi = k) and let Nk(t) be the number of
i ≤ N(t) with Yi = k then N1(t), N2(t), . . . are independent Poisson processes
and Nk(t) has rate λpk.

Random sums. Let Y1, Y2, . . . be i.i.d., let N be an independent nonnegative
integer valued random variable, and let S = Y1 + · · · + YN with S = 0 when
N = 0.

(i) If E|Yi|, EN <∞, then ES = EN · EYi.

(ii) If EY 2
i , EN2 <∞, then var (S) = EN var (Yi) + var (N)(EYi)2.

(iii) If N is Poisson(λ) var (S) = λE(Y 2
i )

Superposition. If N1(t) and N2(t) are independent Poison processes with
rates λ1 and λ2 then N1(t) + N2(t) is Poisson rate λ1 + λ2.

Conditioning. Let T1, T2, T3, . . . be the arrival times of a Poisson process
with rate λ, and let U1, U2, . . . Un be independent and uniformly distributed on
[0, t]. If we condition on N(t) = n, then the set {T1, T2, . . . Tn} has the same
distribution as {U1, U2, . . . , Un}.

2.6 Exercises

Exponential distribution

2.1. Suppose that the time to repair a machine is exponentially distributed
random variable with mean 2. (a) What is the probability the repair takes
more than 2 hours. (b) What is the probability that the repair takes more than
5 hours given that it takes more than 3 hours.

2.2. The lifetime of a radio is exponentially distributed with mean 5 years. If
Ted buys a 7 year-old radio, what is the probability it will be working 3 years
later?

2.3. A doctor has appointments at 9 and 9:30. The amount of time each
appointment lasts is exponential with mean 30. What is the expected amount
of time after 9:30 until the second patient has completed his appointment?

2.4. Copy machine 1 is in use now. Machine 2 will be turned on at time t.
Suppose that the machines fail at rate λi. What is the probability that machine
2 is the first to fail?

2.5. Three people are fishing and each catches fish at rate 2 per hour. How
long do we have to wait until everyone has caught at least one fish?

2.6. Alice and Betty enter a beauty parlor simultaneously, Alice to get a man-
icure and Betty to get a haircut. Suppose the time for a manicure (haircut) is
exponentially distributed with mean 20 (30) minutes. (a) What is the probabil-
ity Alice gets done first? (b) What is the expected amount of time until Alice
and Betty are both done?
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2.7. Let S and T be exponentially distributed with rates λ and µ. Let U =
min{S, T} and V = max{S, T}. Find (a) EU . (b) E(V − U), (c) EV . (d) Use
the identity V = S +T −U to get a different looking formula for EV and verify
the two are equal.

2.8. Let S and T be exponentially distributed with rates λ and µ. Let U =
min{S, T}, V = max{S, T}, and W = V − U . Find the variances of U , V , and
W .

2.9. In a hardware store you must first go to server 1 to get your goods and
then go to a server 2 to pay for them. Suppose that the times for the two
activities are exponentially distributed with means 6 minutes and 3 minutes.
(a) Compute the average amount of time it take Bob to get his goods and pay
if when he comes in there is one customer named Al with server 1 and no one at
server 2. (b) Find the answer when times for the two activities are exponentially
distributed with rates λ and µ.

2.10. Consider a bank with two tellers. Three people, Alice, Betty, and Carol
enter the bank at almost the same time and in that order. Alice and Betty go
directly into service while Carol waits for the first available teller. Suppose that
the service times for each customer are exponentially distributed with mean 4
minutes. (a) What is the expected total amount of time for Carol to complete
her businesses? (b) What is the expected total time until the last of the three
customers leaves? (c) What is the probability Carol is the last one to leave?

2.11. Consider the set-up of the previous problem but now suppose that the
two tellers have exponential service times with rates λ ≤ µ. Again, answer
questions (a), (b), and (c).

2.12. A flashlight needs two batteries to be operational. You start with four
batteries numbered 1 to 4. Whenever a battery fails it is replaced by the lowest-
numbered working battery. Suppose that battery life is exponential with mean
100 hours. Let T be the time at which there is one working battery left and N
be the number of the one battery that is still good. (a) Find ET . (b) Find the
distribution of N . (c) Solve (a) and (b) for a general number of batteries.

2.13. A machine has two critically important parts and is subject to three
different types of shocks. Shocks of type i occur at times of a Poisson process
with rate λi. Shocks of types 1 break part 1, those of type 2 break part 2,
while those of type 3 break both parts. Let U and V be the failure times of the
two parts. (a) Find P (U > s, V > t). (b) Find the distribution of U and the
distribution of V . (c) Are U and V independent?

2.14. A submarine has three navigational devices but can remain at sea if at
least two are working. Suppose that the failure times are exponential with
means 1 year, 1.5 years, and 3 years. What is the average length of time the
boat can remain at sea.

2.15. Excited by the recent warm weather Jill and Kelly are doing spring
cleaning at their apartment. Jill takes an exponentially distributed amount of
time with mean 30 minutes to clean the kitchen. Kelly takes an exponentially
distributed amount of time with mean 40 minutes to clean the bath room. The
first one to complete their task will go outside and start raking leaves, a task
that takes an exponentially distributed amount of time with a mean of one hour.
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When the second person is done inside, they will help the other and raking will
be done at rate 2. (Of course the other person may already be done raking in
which case the chores are done.) What is the expected time until the chores
are all done?

2.16. Ron, Sue, and Ted arrive at the beginning of a professor’s office hours.
The amount of time they will stay is exponentially distributed with means of
1, 1/2, and 1/3 hour. (a) What is the expected time until only one student
remains? (b) For each student find the probability they are the last student
left. (c) What is the expected time until all three students are gone?

2.17. Let Ti, i = 1, 2, 3 be independent exponentials with rate λi. (a) Show
that for any numbers t1, t2, t3

max{t1, t2, t3} = t1 + t2 + t3 −min{t1, t2} −min{t1, t3}
−min{t2, t3}+ min{t1, t2, t3}

(b) Use (a) to find E max{T1, T2, T3}. (c) Use the formula to give a simple
solution of part (c) of Exercise 2.16.

Poisson approximation to binomial

2.18. Compare the Poisson approximation with the exact binomial probabilities
of 1 success when n = 20, p = 0.1.

2.19. Compare the Poisson approximation with the exact binomial probabilities
of no success when (a) n = 10, p = 0.1, (b) n = 50, p = 0.02.

2.20. The probability of a three of a kind in poker is approximately 1/50. Use
the Poisson approximation to estimate the probability you will get at least one
three of a kind if you play 20 hands of poker.

2.21. Suppose 1% of a certain brand of Christmas lights is defective. Use the
Poisson approximation to compute the probability that in a box of 25 there will
be at most one defective bulb.

Poisson processes: Basic properties

2.22. Suppose N(t) is a Poisson process with rate 3. Let Tn denote the time of
the nth arrival. Find (a) E(T12), (b) E(T12|N(2) = 5), (c) E(N(5)|N(2) = 5).

2.23. Customers arrive at a shipping office at times of a Poisson process with
rate 3 per hour. (a) The office was supposed to open at 8AM but the clerk Oscar
overslept and came in at 10AM. What is the probability that no customers
came in the two-hour period? (b) What is the distribution of the amount of
time Oscar has to wait until his first customer arrives?

2.24. Suppose that the number of calls per hour to an answering service follows
a Poisson process with rate 4. (a) What is the probability that fewer (i.e., <)
than 2 calls came in the first hour? (b) Suppose that 6 calls arrive in the first
hour, what is the probability there will be < 2 in the second hour. (c) Suppose
that the operator gets to take a break after she has answered 10 calls. How
long are her average work periods?
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2.25. Traffic on Rosedale Road in Princeton, NJ, follows a Poisson process
with rate 6 cars per minute. A deer runs out of the woods and tries to cross
the road. If there is a car passing in the next 5 seconds then there will be a
collision. (a) Find the probability of a collision. (b) What is the chance of a
collision if the deer only needs 2 seconds to cross the road.

2.26. Calls to the Dryden fire department arrive according to a Poisson process
with rate 0.5 per hour. Suppose that the time required to respond to a call,
return to the station, and get ready to respond to the next call is uniformly
distributed between 1/2 and 1 hour. If a new call comes before the Dryden fire
department is ready to respond, the Ithaca fire department is asked to respond.
Suppose that the Dryden fire department is ready to respond now. Find the
probability distribution for the number of calls they will handle before they
have to ask for help from the Ithaca fire department.

2.27. A math professor waits at the bus stop at the Mittag-Leffler Institute in
the suburbs of Stockholm, Sweden. Since he has forgotten to find out about
the bus schedule, his waiting time until the next bus is uniform on (0,1). Cars
drive by the bus stop at rate 6 per hour. Each will take him into town with
probability 1/3. What is the probability he will end up riding the bus?

2.28. The number of hours between successive trains is T which is uniformly
distributed between 1 and 2. Passengers arrive at the station according to a
Poisson process with rate 24 per hour. Let X denote the number of people who
get on a train. Find (a) EX, (b) var (X).

2.29. Consider a Poisson process with rate λ and let L be the time of the last
arrival in the interval [0, t], with L = 0 if there was no arrival. (a) Compute
E(t− L) (b) What happens when we let t→∞ in the answer to (a)?

2.30. Customers arrive according to a Poisson process of rate λ per hour. Joe
does not want to stay until the store closes at T = 10PM, so he decides to close
up when the first customer after time T − s arrives. He wants to leave early
but he does not want to lose any business so he is happy if he leaves before T
and no one arrives after. (a) What is the probability he achieves his goal? (b)
What is the optimal value of s and the corresponding success probability?

2.31. Customers arrive at a sporting goods store at rate 10 per hour. 60% of
the customers are men and 40% are women. Women spend an amount of time
shopping that is uniformly distributed on [0, 30] minutes, while men spend an
exponentially distributed amount of time with mean 30 minutes. Let M and
N be the number of men and women in the store. What is the distribution of
(M,N) in equilibrium.

2.32. Let T be exponentially distributed with rate λ. (a) Use the definition of
conditional expectation to compute E(T |T < c). (b) Determine E(T |T < c)
from the identity

ET = P (T < c)E(T |T < c) + P (T > c)E(T |T > c)

2.33. When did the chicken cross the road? Suppose that traffic on a road
follows a Poisson process with rate λ cars per minute. A chicken needs a gap of
length at least c minutes in the traffic to cross the road. To compute the time
the chicken will have to wait to cross the road, let t1, t2, t3, . . . be the interarrival
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times for the cars and let J = min{j : tj > c}. If Tn = t1 + · · · + tn, then the
chicken will start to cross the road at time TJ−1 and complete his journey at
time TJ−1 + c. Use the previous exercise to show E(TJ−1 + c) = (eλc − 1)/λ.

Random sums

2.34. Edwin catches trout at times of a Poisson process with rate 3 per hour.
Suppose that the trout weigh an average of 4 pounds with a standard deviation
of 2 pounds. Find the mean and standard deviation of the total weight of fish
he catches in two hours.

2.35. An insurance company pays out claims at times of a Poisson process with
rate 4 per week. Writing K as shorthand for “thousands of dollars,” suppose
that the mean payment is 10K and the standard deviation is 6K. Find the mean
and standard deviation of the total payments for 4 weeks.

2.36. Customers arrive at an automated teller machine at the times of a Poisson
process with rate of 10 per hour. Suppose that the amount of money withdrawn
on each transaction has a mean of $30 and a standard deviation of $20. Find
the mean and standard deviation of the total withdrawals in 8 hours.

2.37. As a community service members of the Mu Alpha Theta fraternity are
going to pick up cans from along a roadway. A Poisson mean 60 members show
up for work. 2/3 of the workers are enthusiastic and will pick up a mean of 10
cans with a standard deviation of 5. 1/3 of the workers are lazy and will only
pick up an average of 3 cans with a standard deviation of 2. Find the mean
and standard deviation of the the number of cans collected.

2.38. Let St be the price of stock at time t and suppose that at times of a
Poisson process with rate λ the price is multiplied by a random variable Xi > 0
with mean µ and variance σ2. That is,

St = S0

N(t)∏
i=1

Xi

where the product is 1 if N(t) = 0. Find ES(t) and varS(t).

2.39. Messages arrive to be transmitted across the internet at times of a Poisson
process with rate λ. Let Yi be the size of the ith message, measured in bytes,
and let g(z) = EzYi be the generating function of Yi. Let N(t) be the number
of arrivals at time t and S = Y1 + ·+ YN(t) be the total size of the messages up
to time t. (a) Find the generating function f(z) = E(zS). (b) Differentiate and
set z = 1 to find ES. (c) Differentiate again and set z = 1 to find E{S(S−1)}.
(d) Compute var (S).

2.40. Let {N(t), t ≥ 0} be a Poisson process with rate λ. Let T ≥ 0 be an
independent with mean µ and variance σ2. Find cov (T,NT ).

2.41. Let t1, t2, . . . be independent exponential(λ) random variables and let N
be an independent random variable with P (N = n) = (1− p)n−1. What is the
distribution of the random sum T = t1 + · · ·+ tN?

Thinning and conditioning
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2.42. Traffic on Snyder Hill Road in Ithaca, NY, follows a Poisson process with
rate 2/3’s of a vehicle per minute. 10% of the vehicles are trucks, the other 90%
are cars. (a) What is the probability at least one truck passes in a hour? (b)
Given that 10 trucks have passed by in an hour, what is the expected number
of vehicles that have passed by. (c) Given that 50 vehicles have passed by in a
hour, what is the probability there were exactly 5 trucks and 45 cars.

2.43. Rock concert tickets are sold at a ticket counter. Females and males arrive
at times of independent Poisson processes with rates 30 and 20 customers per
hour. (a) What is the probability the first three customers are female? (b) If
exactly 2 customers arrived in the first five minutes, what is the probability
both arrived in the first three minutes. (c) Suppose that customers regardless
of sex buy 1 ticket with probability 1/2, two tickets with probability 2/5, and
three tickets with probability 1/10. Let Ni be the number of customers that
buy i tickets in the first hour. Find the joint distribution of (N1, N2, N3).

2.44. Ellen catches fish at times of a Poisson process with rate 2 per hour. 40%
of the fish are salmon, while 60% of the fish are trout. What is the probability
she will catch exactly 1 salmon and 2 trout if she fishes for 2.5 hours?

2.45. Signals are transmitted according to a Poisson process with rate λ. Each
signal is successfully transmitted with probability p and lost with probability
1− p. The fates of different signals are independent. For t ≥ 0 let N1(t) be the
number of signals successfully transmitted and let N2(t) be the number that are
lost up to time t. (a) Find the distribution of (N1(t), N2(t)). (b) What is the
distribution of L = the number of signals lost before the first one is successfully
transmitted?

2.46. A policewoman on the evening shift writes a Poisson mean 6 number of
tickets per hour. 2/3’s of these are for speeding and cost $100. 1/3’s of these
are for DWI and cost $400. (a) Find the mean and standard deviation for the
total revenue from the tickets she writes in an hour. (b) What is the probability
that between 2AM and 3AM she writes 5 tickets for speeding and 1 for DWI.
(c) Let A be the event that she writes no tickets between 1AM and 1:30, and
N be the number of tickets she writes between 1AM and 2AM. Which is larger
P (A) or P (A|N = 5)? Don’t just answer yes or no, compute both probabilities.

2.47. Trucks and cars on highway US 421 are Poisson processes with rate 40
and 100 per hour respectively. 1/8 of the trucks and 1/10 of the cars get off on
exit 257 to go to the Bojangle’s in Yadkinville. (a) Find the probability that
exactly 6 trucks arrive at Bojangle’s between noon and 1PM. (b) Given that
there were 6 truck arrivals at Bojangle’s between noon and 1PM, what is the
probability that exactly two arrived between 12:20 and 12:40? (c) Suppose that
all trucks have 1 passenger while 30% of the cars have 1 passenger, 50% have
2, and 20% have 4. Find the mean and standard deviation of the number of
customers are that arrive at Bojangles’ in one hour.

2.48. When a power surge occurs on an electrical line, it can damage a com-
puter without a surge protector. There are three types of surges: “small”
surges occur at rate 8 per day and damage a computer with probability 0.001;
“medium” surges occur at rate 1 per day and will damage a computer with
probability 0.01; “large” surges occur at rate 1 per month and damage a com-
puter with probability 0.1. Assume that months are 30 days. (a) what is the
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expected number of power surges per month? (b) What is the expected number
of computer damaging power surges per month? (c) What is the probability a
computer will not be damaged in one month? (d) What is the probability that
the first computer damaging surge is a small one?

2.49. Wayne Gretsky scored a Poisson mean 6 number of points per game. 60%
of these were goals and 40% were assists (each is worth one point). Suppose he
is paid a bonus of 3K for a goal and 1K for an assist. (a) Find the mean and
standard deviation for the total revenue he earns per game. (b) What is the
probability that he has 4 goals and 2 assists in one game? (c) Conditional on
the fact that he had 6 points in a game, what is the probability he had 4 in the
first half?

2.50. A copy editor reads a 200-page manuscript, finding 108 typos. Suppose
that the author’s typos follow a Poisson process with some unknown rate λ per
page, while from long experience we know that the copyeditor finds 90% of the
mistakes that are there. (a) Compute the expected number of typos found as
a function of the arrival rate λ. (b) Use the answer to (a) to find an estimate
of λ and of the number of undiscovered typos.

2.51. Two copy editors read a 300-page manuscript. The first found 100 typos,
the second found 120, and their lists contain 80 errors in common. Suppose that
the author’s typos follow a Poisson process with some unknown rate λ per page,
while the two copy editors catch errors with unknown probabilities of success
p1 and p2. Let X0 be the number of typos that neither found. Let X1 and X2

be the number of typos found only by 1 or only by 2, and let X3 be the number
of typos found by both. (a) Find the joint distribution of (X0, X1, X2, X3). (b)
Use the answer to (a) to find an estimates of p1, p2 and then of the number of
undiscovered typos.

2.52. A light bulb has a lifetime that is exponential with a mean of 200 days.
When it burns out a janitor replaces it immediately. In addition there is a
handyman who comes at times of a Poisson process at rate .01 and replaces the
bulb as “preventive maintenance.” (a) How often is the bulb replaced? (b) In
the long run what fraction of the replacements are due to failure?

2.53. Starting at some fixed time, which we will call 0 for convenience, satellites
are launched at times of a Poisson process with rate λ. After an independent
amount of time having distribution function F and mean µ, the satellite stops
working. Let X(t) be the number of working satellites at time t. (a) Find the
distribution of X(t). (b) Let t→∞ in (a) to show that the limiting distribution
is Poisson(λµ).

2.54. Calls originate from Dryden according to a rate 12 Poisson process. 3/4
are local and 1/4 are long distance. Local calls last an average of 10 minutes,
while long distance calls last an average of 5 minutes. Let M be the number
of local calls and N the number of long distance calls in equilibrium. Find the
distribution of (M,N). what is the number of people on the line.

2.55. Ignoring the fact that the bar exam is only given twice a year, let us
suppose that new lawyers arrive in Los Angeles according to a Poisson process
with mean 300 per year. Suppose that each lawyer independently practices for
an amount of time T with a distribution function F (t) = P (T ≤ t) that has
F (0) = 0 and mean 25 years. Show that in the long run the number of lawyers
in Los Angeles is Poisson with mean 7500.
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2.56. Policy holders of an insurance company have accidents at times of a
Poisson process with rate λ. The distribution of the time R until a claim
is reported is random with P (R ≤ r) = G(r) and ER = ν. (a) Find the
distribution of the number of unreported claims. (b) Suppose each claim has
mean µ and variance σ2. Find the mean and variance of S the total size of the
unreported claims.

2.57. Suppose N(t) is a Poisson process with rate 2. Compute the conditional
probabilities (a) P (N(3) = 4|N(1) = 1), (b) P (N(1) = 1|N(3) = 4).

2.58. For a Poisson process N(t) with arrival rate 2 compute: (a) P (N(2) = 5),
(b) P (N(5) = 8|N(2) = 3, (c) P (N(2) = 3|N(5) = 8).

2.59. Customers arrive at a bank according to a Poisson process with rate 10
per hour. Given that two customers arrived in the first 5 minutes, what is the
probability that (a) both arrived in the first 2 minutes. (b) at least one arrived
in the first 2 minutes.

2.60. Suppose that the number of calls per hour to an answering service follows
a Poisson process with rate 4. Suppose that 3/4’s of the calls are made by men,
1/4 by women, and the sex of the caller is independent of the time of the call.
(a) What is the probability that in one hour exactly 2 men and 3 women will
call the answering service? (b) What is the probability 3 men will make phone
calls before 3 women do?

2.61. Hockey teams 1 and 2 score goals at times of Poisson processes with rates
1 and 2. Suppose that N1(0) = 3 and N2(0) = 1. (a) What is the probability
that N1(t) will reach 5 before N2(t) does? (b) Answer part (a) for Poisson
processes with rates λ1 and λ2.

2.62. Consider two independent Poisson processes N1(t) and N2(t) with rates
λ1 and λ2. What is the probability that the two-dimensional process (N1(t), N2(t))
ever visits the point (i, j)?
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Chapter 3

Renewal Processes

3.1 Laws of Large Numbers

In the Poisson process the times between successive arrivals are independent
and exponentially distributed. The lack of memory property of the exponential
distribution is crucial for many of the special properties of the Poisson pro-
cess derived in this chapter. However, in many situations the assumption of
exponential interarrival times is not justified. In this section we will consider
a generalization of Poisson processes called renewal processes in which the
times t1, t2, . . . between events are independent and have distribution F .

In order to have a simple metaphor with which to discuss renewal processes,
we will think of a single light bulb maintained by a very diligent janitor, who
replaces the light bulb immediately after it burns out. Let ti be the lifetime
of the ith light bulb. We assume that the light bulbs are bought from one
manufacturer, so we suppose

P (ti ≤ t) = F (t)

where F is a distribution function with F (0) = P (ti ≤ 0) = 0.
If we start with a new bulb (numbered 1) at time 0 and each light bulb is

replaced when it burns out, then Tn = t1 + · · ·+ tn gives the time that the nth
bulb burns out, and

N(t) = max{n : Tn ≤ t}

is the number of light bulbs that have been replaced by time t. The picture is
the same as the one for the Poisson process, see Figure 2.1.

If renewal theory were only about changing light bulbs, it would not be
a very useful subject. The reason for our interest in this system is that it
captures the essence of a number of different situations. On example that we
have already seen is

Example 3.1. Markov chains. Let Xn be a Markov chain and suppose that
X0 = x. Let Tn be the nth time that the process returns to x. The strong
Markov property implies that tn = Tn − Tn−1 are independent, so Tn is a
renewal process.

Example 3.2. Machine repair. Instead of a light bulb, think of a machine
that works for an amount of time si before it fails, requiring an amount of time
ui to be repaired. Let ti = si + ui be the length of the ith cycle of breakdown

101
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and repair. If we assume that the repair leaves the machine in a “like new”
condition, then the ti are independent and identically distributed (i.i.d.) and a
renewal process results.

Example 3.3. Counter processes. The following situation arises, for exam-
ple, in medical imaging applications. Particles arrive at a counter at times of a
Poisson process with rate λ. Each arriving particle that finds the counter free
gets registered and locks the counter for an amount of time τ . Particles arriving
during the locked period have no effect. If we assume the counter starts in the
unlocked state, then the times Tn at which it becomes unlocked for the nth
time form a renewal process. This is a special case of the previous example:
ui = τ , si = exponential with rate λ.

In addition there will be several applications to queueing theory.
The first important result about renewal processes is the following law of

large numbers:

Theorem 3.1. Let µ = Eti be mean interarrival time. If P (ti > 0) > 0 then
with probability one,

N(t)/t→ 1/µ as t→∞

In words, this says that if our light bulb lasts µ years on the average then in
t years we will use up about t/µ light bulbs. Since the interarrival times in
a Poisson process are exponential with mean 1/λ Theorem 3.1 implies that if
N(t) is the number of arrivals up to time t in a Poisson process, then

N(t)/t→ λ as t→∞ (3.1)

Proof of Theorem 3.1. We use the

Theorem 3.2. Strong law of large numbers. Let x1, x2, x3, . . . be i.i.d. with
Exi = µ, and let Sn = x1 + · · ·+ xn. Then with probability one,

Sn/n→ µ as n→∞

Taking xi = ti, we have Sn = Tn, so Theorem 3.2 implies that with probability
one, Tn/n→ µ as n→∞. Now by definition,

TN(t) ≤ t < TN(t)+1

Dividing by N(t), we have

TN(t)

N(t)
≤ t

N(t)
≤

TN(t)+1

N(t) + 1
· N(t) + 1

N(t)

By the strong law of large numbers, the left- and right-hand sides converge to
µ. From this it follows that t/N(t)→ µ and hence N(t)/t→ 1/µ.

Our next topic is a simple extension of the notion of a renewal process that
greatly extends the class of possible applications. We suppose that at the time
of the ith renewal we earn a reward ri. The reward ri may depend on the ith
interarrival time ti, but we will assume that the pairs (ri, ti), i = 1, 2, . . . are
independent and have the same distribution. Let

R(t) =
N(t)∑
i=1

ri
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be the total amount of rewards earned by time t. The main result about renewal
reward processes is the following strong law of large numbers.

Theorem 3.3. With probability one,

R(t)
t
→ Eri

Eti
(3.2)

Proof. Multiplying and dividing by N(t), we have

R(t)
t

=

 1
N(t)

N(t)∑
i=1

ri

 N(t)
t
→ Eri ·

1
Eti

where in the last step we have used Theorem 3.1 and applied the strong law
of large numbers to the sequence ri. Here and in what follows we are ignoring
rewards earned in the interval [TN(t), t]. These do not effect the limit but
proving this is not trivial.

Intuitively, (3.2) can be written as

reward/time =
expected reward/cycle
expected time/cycle

an equation that can be “proved” by pretending the words on the right-hand
side are numbers and then canceling the “expected” and “1/cycle” that appear
in numerator and denominator. The last calculation is not given to convince
you that Theorem 3.3 is correct but to help you remember the result. A second
approach to this is that if we earn a reward of ρ dollar every τ units of time
then in the long run we earn ρ/τ dollars per unit time. To get from this to the
answer given in 3.3, note that the answer there only depends on the means Eri

and Eti, so the general answer must be

ρ/τ = Eri/Eti

This device can be applied to remember many of the results in this chapter:
when the answer only depends on the mean the limit must be the same as in
the case when the times are not random.

To illustrate the use of Theorem 3.3 we consider

Example 3.4. Long run car costs. Suppose that the lifetime of a car is a
random variable with density function h. Our methodical Mr. Brown buys a
new car as soon as the old one breaks down or reaches T years. Suppose that
a new car costs A dollars and that an additional cost of B dollars to repair the
vehicle is incurred if it breaks down before time T . What is the long-run cost
per unit time of Mr. Brown’s policy?

Solution. The duration of the ith cycle, ti, has

Eti =
∫ T

0

th(t) dt + T

∫ ∞

T

h(t) dt

since the length of the cycle will be ti if the car’s life is ti < T , but T if the
car’s life ti ≥ T . The reward (or cost) of the ith cycle has

Eri = A + B

∫ T

0

h(t) dt
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since Mr. Brown always has to pay A dollars for a new car but only owes the
additional B dollars if the car breaks down before time T . Using Theorem 3.3
we see that the long run cost per unit time is

Eri

Eti
=

A + B
∫ T

0
h(t) dt∫ T

0
th(t) dt +

∫∞
T

Th(t) dt

Concrete example. Suppose that the lifetime of Mr. Brown’s car is uniformlu
distributed on [0, 10]. This is probably not a reasonable assumption, since
when cars get older they have a greater tendency to break. However, having
confessed to this weakness, we will proceed with this assumption since it makes
calculations easier. Suppose that the cost of a new car is A = 10 (thousand
dollars), while the breakdown cost is B = 3 (thousand dollars). If Mr. Brown
replaces his car after T years then the expected values of interest are

Eri = 10 + 3
T

10
= 10 + 0.3T

Eti =
∫ T

0

t

10
dt + T

(
1− T

10

)
=

T 2

20
+ T − T 2

10
= T − 0.05T 2

Combining the expressions for the Eri and Eti we see that the long-run cost
per unit time is

Eri

Eti
=

10 + 0.3T

T − 0.05T 2

To maximize we take the derivative

d

dT

Eri

Eti
=

0.3(T − 0.05T 2)− (10 + 0.3T )(1− 0.1T )
(T − 0.1T 2)2

=
0.3T − 0.015T 2 − 10− 0.3T + T + 0.03T 2

(T − 0.1T 2)2

The numerator is 0.015T 2 + T − 10 which is 0 when

T =
−1±

√
1 + 4(0.015)(10)
2(0.015)

=
−1±

√
1.6

0.03

We want the + root which is T = 8.83.

Using the idea of renewal reward processes, we can easily treat the following
extension of renewal processes.

Example 2.5. Alternating renewal processes. Let s1, s2, . . . be indepen-
dent with a distribution F that has mean µF , and let u1, u2, . . . be independent
with distribution G that has mean µG. For a concrete example consider the
machine in Example 1.1 that works for an amount of time si before needing a
repair that takes ui units of time. However, to talk about things in general we
will say that the alternating renewal process spends an amount of time si in
state 1, an amount of time ui in state 2, and then repeats the cycle again.

Theorem 3.4. In an alternating renewal process, the limiting fraction of time
in state 1 is

µF

µF + µG
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To see that this is reasonable and to help remember the formula, consider the
nonrandom case. If the machine always works for exactly µF days and then
needs repair for exactly µG days, then the limiting fraction of time spent working
is µF /(µF + µG).

Proof. In order to compute the limiting fraction of time the machine is working
we let ti = si + ui be the duration of the ith cycle, and let the reward ri = si,
the amount of time the machine was working during the ith cycle. In this case,
Theorem 3.3 implies that

R(t)
t
→ Eri

Eti
=

µF

µF + µG

which gives the desired result.

For a concrete example of alternating renewal processes, consider

Example 3.5. Poisson janitor. A light bulb burns for an amount of time
having distribution F with mean µF then burns out. A janitor comes at times
of a rate λ Poisson process to check the bulb and will replace the bulb if it
is burnt out. (a) At what rate are bulbs replaced? (b) What is the limiting
fraction of time that the light bulb works? (c) What is the limiting fraction of
visits on which the bulb is working?

Solution. Suppose that a new bulb is put in at time 0. It will last for an amount
of time s1. Using the lack of memory property of the exponential distribution,
it follows that the amount of time until the next inspection, u1, will have an
exponential distribution with rate λ. The bulb is then replaced and the cycle
starts again, so we have an alternating renewal process.

To answer (a), we note that the expected length of a cycle Eti = µF +1/λ, so
if N(t) is the number of bulbs replaced by time t, then it follows from Theorem
3.1 that

N(t)
t
→ 1

µF + 1/λ

In words, bulbs are replaced on the average every µF + 1/λ units of time.
To answer (b), we let ri = si, so Theorem 3.4 implies that in the long run,

the fraction of time the bulb has been working up to time t is

Eri

Eti
=

µF

µF + 1/λ

To answer (c), we note that if V (t) is the number of visits the janitor has
made by time t, then by the law of large numbers for the Poisson process we
have

V (t)
t
→ λ

Combining this with the result of (a), we see that the fraction of visits on which
bulbs are replaced

N(t)
V (t)

→ 1/(µF + 1/λ)
λ

=
1/λ

µF + 1/λ

This answer is reasonable since it is also the limiting fraction of time the bulb
is off.
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3.2 Applications to Queueing Theory

In this section we will use the ideas of renewal theory to prove results for
queueing systems with general service times. In the first part of this section we
will consider general arrival times. In the second we will specialize to Poisson
arrivals.

3.2.1 GI/G/1 queue

Here the GI stands for general input. That is, we suppose that the times ti
between successive arrivals are independent and have a distribution F with
mean 1/λ. We make this somewhat unusual choice of notation for mean so that
if N(t) is the number of arrivals by time t, then Theorem 3.1 implies that the
long-run arrival rate is

lim
t→∞

N(t)
t

=
1

Eti
= λ

The second G stands for general service times. That is, we assume that the
ith customer requires an amount of service si, where the si are independent
and have a distribution G with mean 1/µ. Again, the notation for the mean is
chosen so that the service rate is µ. The final 1 indicates there is one server.
Our first result states that the queue is stable if the arrival rate is smaller than
the long-run service rate.

Theorem 3.5. Suppose λ < µ. If the queue starts with some finite number
k ≥ 1 customers who need service, then it will empty out with probability one.
Furthermore, the limiting fraction of time the server is busy is ≥ λ/µ.

Proof. Let Tn = t1 + · · ·+ tn be the time of the nth arrival. The strong law of
large numbers, Theorem 3.2 implies that

Tn

n
→ 1

λ

Let Z0 be the sum of the service times of the customers in the system at time
0 and let si be the service time of the ith customer to arrive after time 0. The
strong law of large numbers implies

Z0 + Sn

n
→ 1

µ

The amount of time the server has been busy up to time Tn is ≤ Z0 +Sn. Using
the two results

Z0 + Sn

Tn
→ λ

µ

The actual time spent working in [0, Tn] is Z0+Sn−Zn where Zn is the amount
of work in the system at time Tn, i.e., the amount of time needed to empty the
system if there were no more arrivals. To argue that equality holds we need
to show that Zn/n → 0. Intuitively, the condition λ < µ implies the queue
reaches equilibrium, so EZn stays bounded, and hence Zn/n→ 0. The details
of completing this proof are too complicated to give here. However, in Example
3.6 we will give a simple proof of this.
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3.2.2 Cost equations

In this subsection we will prove some general results about the GI/G/1 queue
that come from very simple arguments. Let Xs be the number of customers in
the system at time s. Let L be the long-run average number of customers in
the system:

L = lim
t→∞

1
t

∫ t

0

Xs ds

Let W be the long-run average amount of time a customer spends in the system:

W = lim
n→∞

1
n

n∑
m=1

Wm

where Wm is the amount of time the mth arriving customer spends in the
system. Finally, let λa be the long-run average rate at which arriving customers
join the system, that is,

λa = lim
t→∞

Na(t)/t

where Na(t) is the number of customers who arrive before time t and enter the
system. Ignoring the problem of proving the existence of these limits, we can
assert that these quantities are related by

Theorem 3.6. Little’s formula. L = λaW .

Why is this true? Suppose each customer pays $1 for each minute of time she
is in the system. When ` customers are in the system, we are earning $` per
minute, so in the long run we earn an average of $L per minute. On the other
hand, if we imagine that customers pay for their entire waiting time when they
arrive then we earn at rate λaW per minute, i.e., the rate at which customers
enter the system multiplied by the average amount they pay.

Example 3.6. Waiting time in the queue. Consider the GI/G/1 queue
and suppose that we are only interested in the customer’s average waiting time
in the queue, WQ. If we know the average waiting time W in the system, this
can be computed by simply subtracting out the amount of time the customer
spends in service

WQ = W − Esi (3.3)

For instance, in the previous example, subtracting off the 0.333 hours that his
haircut takes we see that the customer’s average time waiting in the queue
WQ = 0.246 hours or 14.76 minutes.

Let LQ be the average queue length in equilibrium; i.e., we do not count
the customer in service if there is one. If suppose that customers pay $1 per
minute in the queue and repeat the derivation of Little’s formula, then

LQ = λaWQ (3.4)

The length of the queue is 1 less than the number in the system, except when
the number in the system is 0, so if π(0) is the probability of no customers, then

LQ = L− 1 + π(0)

Combining the last three equations with our first cost equation:

π(0) = LQ − (L− 1) = 1 + λa(WQ −W ) = 1− λaEsi (3.5)

Recalling that Esi = 1/µ, we have a simple proof that the inequality in Theorem
3.5 is sharp.
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3.2.3 M/G/1 queue

Here the M stands for Markovian input and indicates we are considering the
special case of the GI/G/1 queue in which the inputs are a rate λ Poisson
process. The rest of the set-up is as before: there is a one server and the ith
customer requires an amount of service si, where the si are independent and
have a distribution G with mean 1/µ.

When the input process is Poisson, the system has special properties that
allow us to go further. We learned in Theorem 3.5 that if λ < µ then a GI/G/1
queue will repeatedly return to the empty state. Thus the server experiences
alternating busy periods with duration Bn and idle periods with duration In.
In the case of Markovian inputs, the lack of memory property implies that In

has an exponential distribution with rate λ. Combining this observation with
our result for alternating renewal processes we see that the limiting fraction of
time the server is idle is

1/λ

1/λ + EBn
= π(0)

by (3.5). Rearranging, we have

EBn =
1
λ

(
1

π(0)
− 1
)

(3.6)

Note that this is λ not λa. For the fourth and final formula we will have
to suppose that all arriving customers enter the system so that we have the
following special property of Poisson arrivals is:

PASTA. These initials stand for “Poisson arrivals see time averages.” To be
precise, if π(n) is the limiting fraction of time that there are n individuals in
the queue and an is the limiting fraction of arriving customers that see a queue
of size n, then

Theorem 3.7. an = π(n).

Why is this true? If we condition on there being arrival at time t, then the times
of the previous arrivals are a Poisson process with rate λ. Thus knowing that
there is an arrival at time t does not affect the distribution of what happened
before time t.

Example 3.7. Workload in the M/G/1 queue. We define the workload
in the system at time t, Zt, to be the sum of the remaining service times of all
customers in the system, and define the long run average workload to be

Z = lim
t→∞

1
t

∫ t

0

Zs ds

As in the proof of Little’s formula we will derive our result by computing
the rate at which revenue is earned in two ways. This time we suppose that
each customer in the queue or in service pays at a rate of $y when his remaining
service time is y; i.e., we do not count the remaining waiting time in the queue.
If we let Y be the average total payment made by an arriving customer, then
our cost equation reasoning implies that the average workload Z satisfies

Z = λY
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Since a customer with service time si pays si during the qi units of time spent
waiting in the queue and at rate si − x after x units of time in service

Y = E(siqi) + E

(∫ si

0

si − x dx

)
Now a customer’s waiting time in the queue can be determined by looking
at the arrival process and at the service times of previous customers, so it is
independent of her service time, i.e., E(siqi) = Esi ·WQ and we have

Y = (Esi)WQ + E(s2
i /2)

PASTA implies that arriving customers see the long run average behavior so
the workload they see Z = WQ, so we have

WQ = λ(Esi)WQ + λE(s2
i /2)

Solving for WQ now gives

WQ =
λE(s2

i /2)
1− λEsi

(3.7)

the so-called Pollaczek-Khintchine formula. Using formula (3.3), and The-
orem 3.6, we can now compute

W = WQ + Esi L = λW

Example 3.8. We see a number of applications of the equations from this
section to Markovian queues in Chapter 4. Customers arrive at the CIT help
desk at rate 1/6 per minute, i.e., the mean time between arrivals is 6 minutes.
Suppose that each service takes a time with mean 5 and standard deviation√

59.

(a) In the long run what is the fraction of time, π(0), that the server is idle?
λ = 1/6, Esi = 5 = 1/µ, so by (3.5) π(0) = 1− (1/6)/(1/5) = 1/6.

(b) What is the average waiting W time for a customer (including their service
time)? Es2

i = 52 + 59 = 84, so (3.7) implies

WQ =
λEs2

i /2
1− λEsi

=
(1/6) · 84/2

1/6
= 42

and W = WQ + Esi = 47.

(c) What is the average queue length (counting the customer in service)?
By Little’s formula, L = λW = 47/6.

3.3 Age and Residual Life*

Let t1, t2, . . . be i.i.d. interarrival times, let Tn = t1 + · · · + tn be the time of
the nth renewal, and let N(t) = max{n : Tn ≤ t} be the number of renewals by
time t. Let

A(t) = t− TN(t) and Z(t) = TN(t)+1 − t

A(t) gives the age of the item in use at time t, while Z(t) gives its residual
lifetime.
To explain the interest in Z(t) note that the interrarival times after TN(t)+1

will be independent of Z(t) and i.i.d. with distribution F , so if we can show
that Z(t) converges in distribution, then the renewal process after time t will
converge to an equilibrium.
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× × × × ×
0 T1 T2 TN(t) t TN(t)+1

A(t) Z(t)

Figure 3.1: Age and residual life.

3.3.1 Discrete case

The situation in which all the interarrival times are positive integers is very
simple but also important because visits of a Markov chain to a fixed state,
Example 3.1, are a special case. Let

Vm =

{
1 if m ∈ {T0, T1, T2, . . .}
0 otherwise

Vm = 1 if a renewal occurs at time m, i.e., if Tn visits m. Let An = min{n−m :
m ≤ n, Vm = 1} be the age and let Zn = min{m − n : m ≥ n, Vm = 1} be the
residual life. An example should help clarify the definitions:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Vn 1 0 0 0 1 0 0 1 1 0 0 0 0 1
An 0 1 2 3 0 1 2 0 0 1 2 3 4 0
Zn 0 3 2 1 0 2 1 0 0 4 3 2 1 0

As we can see from the concrete example, values taken in an excursion away
from 0 are j, j1, . . . 1 in the residual life chain and 1, 2, . . . j in the age chain so
we will have

lim
n→∞

1
n

n∑
m=1

P (Am = i) = lim
n→∞

1
n

n∑
m=1

P (Zm = i)

From this we see that it is enough to study one of the two chains. We choose
with Zn since it is somewhat simpler. It is clear that if Zn = i > 0 then
Zn+1 = i− 1.

When Zn = 0, a renewal has just occurred. If the time to the next renewal
is k then Zn+1 = k − 1. To check this note that Z4 = 0 and the time to the
next renewal is 3 (it occurs at time 7) so Z5 = 2. Thus Zn is a Markov chain
with state space S = {0, 1, 2, . . .} and transition probability

p(0, j) = fj+1 for j ≥ 0
p(i, i− 1) = 1 for i ≥ 1

p(i, j) = 0 otherwise

In this chain 0 is always recurrent. If there are infinitely many values of k with
fk > 0 then it is irreducible. If not and K is the largest value of k with fk > 0
then {0, 1, . . . K − 1} is a closed irreducible set.

To define a stationary measure we will use the cycle trick, Theorem 1.20,
with x = 0. Starting from 0 the chain will visit a site i at most omce before it
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returns to 0, and this will happen if and only if the first jump is to a state ≥ i,
i.e., t1 > i. Thus the stationary measure is

µ(i) = P (t1 > i)

Using (A.20) we see that
∞∑

i=0

µ(i) = Et1

so the chain is positive recurrent if and only if Et1 <∞. In this case

π(i) = P (t1 > i)/Et1 (3.8)

I0 ⊃ J0 = {k : fk > 0} so if the greatest common divisor of J0 is 1 then 0
is aperiodic. To argue the converse note that I0 consists of all finite sums of
elements in J0 so g.c.d. I0 = g.c.d. J0. Using the Markov chain convergence
theorem now gives:

Theorem 3.8. Suppose Et1 <∞ and the greatest common divisor of {k : fk >
0} is 1 then

lim
n→∞

P (Zn = i) =
P (t1 > i)

Et1

In particular P (Zn = 0)→ 1/Et1.

Example 3.9. Visits to Go. In Monopoly one rolls two dice and then moves
that number of squares. As in Example 1.27 we will ignore Go to Jail, Chance,
and other squares that make the chain complicated. The average number of
spaces moved in one roll is Et1 = 7 so in the long run we land exactly on Go
in 1/7 of the trips around the board. Using Theorem 3.8 we can calculate the
limiting distribution of the amount we overshoot Go.

0 1 2 3 4 5 6 7 8 9 10 11
1
7

1
7

35
252

33
252

30
252

26
252

21
252

15
252

10
252

6
252

3
252

1
252

3.3.2 General case

With the discrete case taken care of, we will proceed to the general case, which
will be studied using renewal reward processes.

Theorem 3.9. As t→∞
1
t

∫ t

0

1{As>x,Zs>y} ds→ 1
Et1

∫ ∞

x+y

P (ti > z) dz

Proof. Let Ix,y(s) = 1 if As > x and Zs > y. It is easy to see that∫ Ti

Ti−1

Ic(s) ds = (ti − (x + y))+

To check this we consider two cases. Ignoring the contribution from the last
incomplete cycle [TN(t), t], we have∫ t

0

Ix,y(s) ds ≈
N(t)∑
i=1

(ti − (x + y))+

The right-hand side is a renewal reward process with so it follows from Theorem
3.3 that the limit is E(t1−(x+y))+/Et1. Applying (A.22) to X = (t1−(x+y))+

now gives the desired result.
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Setting x = 0 and then y = 0 we see that the limiting distribution for the
age and residual life have the density function given by

g(z) =
P (ti > z)

Eti
(3.9)

which looks the same as the result in discrete time. Multiplying by z, integrating
from 0 to ∞ and using (A.21) the limit has expected value

Et2i /2Eti (3.10)

Differentiating twice we see that if ti has density function fT then the limiting
joint density of (At, Zt) is

fT (a + z)/Et1 (3.11)

Example 3.10. Exponential. In this case the limiting density given in (3.11)
is

λe−λ(x+y)

1/λ
= λe−λa · λe−λz

So in the limit the age and residual life are independent exponential.

Example 3.11. Uniform on (0,b). Plugging into (3.11) gives for a, z > 0,
a + z < b:

1/b

b/2
=

2
b2

The margin densities given in (3.9) are

(b− x)/b

b/2
=

2
b
·
(
1− x

b

)
In words, the limiting density is a linear function that starts at 2/b at 0 and
hits 0 at c = b.

Inspection paradox. Let L(t) = A(t) + Z(t) be the lifetime of the item in
use at time t. Using (3.10), we see that the average lifetime of the items in use
up to time t:

E(t21)
Et1

> Eti

since var (ti) = Et2i − (Eti)2 > 0. This is a paradox because the average of the
lifetimes of the first n items:

t1 + · · ·+ tn
n

→ Eti

and hence
t1 + · · ·+ tN(t)

N(t)
→ Eti

There is a simple explanation for this “paradox”: taking the average age of the
item in use up to time s is biased since items that last for time u are counted
u times. That is,

1
t

∫ t

0

A(s) + Z(s) ds ≈ N(t)
t
· 1
N(t)

N(t)∑
i=1

ti · ti →
1

Et1
· Et21
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3.4 Chapter Summary

This chapter shows the power of the law of large numbers to give simple deriva-
tions of useful results. The work horse of the chapter is the result for renewal
reward processes. If the times between renewals and the rewards earned in these
periods (ti, ri) are an i.i.d. sequence then the limiting rate at which rewards are
earned is Eri/Eti. Taking ri = 1 this reduces to the law of large numbers
(Theorem 3.1) for the renewal process

N(t)/t→ 1/Eti

If the ti = si + ui with the (si, ui) are i.i.d. representing the times in states 1
and 2 then taking ri = si we get see that the limiting fraction of time in state
1 is

Esi/(Esi + Eui)

our result (Theorem 3.4) for alternating renewal processes. Other applications
of renewal reward processes gave us results for the limiting behavior of the age
and residual life in Section 3.3.

A second theme here was the simple minded scheme of computing costs
two different ways to prove quantities were equal. For the GI/G/1 queue, this
allowed us to show that if

the average interarrival time Eti = 1/λ,
the average service time Esi = 1/µ,
the average waiting time in the queue is L,
the long run rate at which customers enter the system is λa,
the average waiting time in the system is W ,
and the fraction of time the queue is empty is π(0)

then we have
L = λaW π(0) = 1− λa

µ

In the M/G/1 case, the expected duration of busy periods and the average
waiting time in the queue satisfy:

π(0) =
1/λ

1/λ + EB
WQ =

E(s2
i /2)

1− λ/µ

The first formula is a simple consequence of our result for alternating renewal.
The more sophisticated second formula uses “Poisson Arrivals See Time Aver-
ages” along with cost equation reasoning.

3.5 Exercises

3.1. The weather in a certain locale consists of alternating wet and dry spells.
Suppose that the number of days in each rainy spell is a Poisson distribution
with mean 2, and that a dry spell follows a geometric distribution with mean 7.
Assume that the successive durations of rainy and dry spells are independent.
What is the long-run fraction of time that it rains?

3.2. Monica works on a temporary basis. The mean length of each job she gets
is 11 months. If the amount of time she spends between jobs is exponential
with mean 3 months, then in the long run what fraction of the time does she
spend working?
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3.3. Thousands of people are going to a Grateful dead concert in Pauley Pavil-
lion at UCLA. They park their 10 foot cars on several of the long streets near
the arena. There are no lines to tell the drivers where to park, so they park
at random locations, and end up leaving spacings between the cars that are
independent and uniform on (0, 10). In the long run, what fraction of the street
is covered with cars?

3.4. The times between the arrivals of customers at a taxi stand are indepen-
dent and have a distribution F with mean µF . Assume an unlimited supply
of cabs, such as might occur at an airport. Suppose that each customer pays
a random fare with distribution G and mean µG. Let W (t) be the total fares
paid up to time t. Find limt→∞E W (t)/t.

3.5. In front of terminal C at the Chicago airport is an area where hotel shuttle
vans park. Customers arrive at times of a Poisson process with rate 10 per hour
looking for transportation to the Hilton hotel nearby. When 7 people are in the
van it leaves for the 36-minute round trip to the hotel. Customers who arrive
while the van is gone go to some other hotel instead. (a) What fraction of the
customers actually go to the Hilton? (b) What is the average amount of time
that a person who actually goes to the Hilton ends up waiting in the van?

3.6. Three children take turns shooting a ball at a basket. They each shoot
until they misses and then it is next child’s turn. Suppose that child i makes
a basket with probability pi and that successive trials are independent. (a)
Determine the proportion of time in the long run that each child shoots. (b)
Find the answer when p1 = 2/3, p2 = 3/4, p3 = 4/5.

3.7. A policeman cruises (on average) approximately 10 minutes before stop-
ping a car for speeding. 90% of the cars stopped are given speeding tickets with
an $80 fine. It takes the policeman an average of 5 minutes to write such a
ticket. The other 10% of the stops are for more serious offenses, leading to an
average fine of $300. These more serious charges take an average of 30 minutes
to process. In the long run, at what rate (in dollars per minute) does he assign
fines.

3.8. Counter processes. As in Example 1.5, we suppose that arrivals at a
counter come at times of a Poisson process with rate λ. An arriving particle
that finds the counter free gets registered and then locks the counter for an
amount of time τ . Particles that arrive while the counter is locked have no
effect. (a) Find the limiting probability the counter is locked at time t. (b)
Compute the limiting fraction of particles that get registered.

3.9. A cocaine dealer is standing on a street corner. Customers arrive at times
of a Poisson process with rate λ. The customer and the dealer then disappear
from the street for an amount of time with distribution G while the transaction
is completed. Customers that arrive during this time go away never to return.
(a) At what rate does the dealer make sales? (b) What fraction of customers
are lost?

3.10. One of the difficulties about probability is realizing when two different
looking problems are the same, in this case dealing cocaine and fighting fires.
In Problem 2.26, calls to a fire station arrive according to a Poisson process
with rate 0.5 per hour, and the time required to respond to a call, return to
the station, and get ready to respond to the next call is uniformly distributed
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between 1/2 and 1 hour. If a new call comes before the Dryden fire department
is ready to respond, the Ithaca fire department is asked to respond. What
fraction of calls must be handled by the Ithaca fire department

3.11. A young doctor is working at night in an emergency room. Emergencies
come in at times of a Poisson process with rate 0.5 per hour. The doctor can
only get to sleep when it has been 36 minutes (.6 hours) since the last emergency.
For example, if there is an emergency at 1:00 and a second one at 1:17 then she
will not be able to get to sleep until at least 1:53, and it will be even later if
there is another emergency before that time.
(a) Compute the long-run fraction of time she spends sleeping, by formulating
a renewal reward process in which the reward in the ith interval is the amount
of time she gets to sleep in that interval.
(b) The doctor alternates between sleeping for an amount of time si and being
awake for an amount of time ui. Use the result from (a) to compute Eui.
(c) Solve problem (b) by noting that the doctor trying to sleep is the same as
chicken crossing the road in Exercise 2.33.

3.12. A worker has a number of machines to repair. Each time a repair is
completed a new one is begun. Each repair independently takes an exponential
amount of time with rate µ to complete. However, independent of this, mistakes
occur according to a Poisson process with rate λ. Whenever a mistake occurs,
the item is ruined and work is started on a new item. In the long run how often
are jobs completed?

3.13. In the Duke versus Miami football game, possessions alternate between
Duke who has the ball for an average of 2 minutes and Miami who has the ball
for an average of 6 minutes. (a) In the long run what fraction of time does Duke
have the ball? (b) Suppose that on each possession Duke scores a touchdown
with probability 1/4 while Miami scores with probability one. On the average
how many touchdowns will they score per hour?

3.14. Random Investment. An investor has $100,000. If the current interest
rate is i% (compounded continuously so that the grow per year is exp(i/100)),
he invests his money in a i year CD, takes the profits and then reinvests the
$100,000. Suppose that the kth investment leads to an interest rate Xk which
is uniform on {1, 2, 3, 4, 5}. In the long run how much money does he make per
year.

3.15. Consider the set-up of Example 3.4 but now suppose that the car’s life-
time h(t) = λe−λt. Show that for any A and B the optimal time T =∞. Can
you give a simple verbal explanantion?

3.16. A machine tool wears over time and may fail. The failure time measured
in months has density fT (t) = 2t/900 for 0 ≤ t ≤ 30 and 0 otherwise. If the
tool fails it must be replaced immediately at a cost of $1200. If it is replaced
prior to failure the cost is only $300. Consider a replacement policy in which
the tool is replaces after c months or when it fails. What is the value of c that
minimizes cost per unit time.

3.17. People arrive at a college admissions office at rate 1 per minute. When
k people have arrive a tour starts. Student tour guides are paid $20 for each
tour they conduct. The college estimates that it loses 10 cents in good will for
each minute a person waits. What is the optimal tour group size?
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3.18. A scientist has a machine for measuring ozone in the atmosphere that
is located in the mountains just north of Los Angeles. At times of a Poisson
process with rate 1, storms or animals disturb the equipment so that it can
no longer collect data. The scientist comes every L units of time to check the
equipment. If the equipment has been disturbed then she can usually fix it
quickly so we will assume the the repairs take 0 time. (a) What is the limiting
fraction of time the machine is working? (b) Suppose that the data that is being
collected is worth a dollars per unit time, while each inspection costs c < a.
Find the best value of the inspection time L.

Age and Residual Life

3.19. Consider the discrete renewal process with fj = P (t1 = j) and Fi =
P (t1 > i). (a) Show that the age chain has transition probability

q(j, j + 1) =
Fj+1

Fj
q(j, 0) = 1− Fj+1

Fj
=

fj+1

Fj
for j ≥ 0

(b) Show that if Et1 < ∞, the stationary distribution π(i) = P (t1 > i)/Et1.
(c) Let p(i, j) be the transition probability for the renewal chain. Verify that It
should be clear by comparing the numerical examples above that there is a close
relationship between q is the dual chain of p, i.e., the chain p run backwards.
That is,

q(i, j) =
π(j)p(j, i)

π(i)

3.20. Show that chain in Exercise 1.38 with transition probability is

1 2 3 4
1 1/2 1/2 0 0
2 2/3 0 1/3 0
3 3/4 0 0 1/4
4 1 0 0 0

is a special case of the age chain. Use this observation and the previous exercise
to compute the stationary distribution.

3.21. The city of Ithaca, New York, allows for two-hour parking in all downtown
spaces. Methodical parking officials patrol the downtown area, passing the same
point every two hours. When an official encounters a car, he marks it with chalk.
If the car is still there two hours later, a ticket is written. Suppose that you
park your car for a random amount of time that is uniformly distributed on
(0, 4) hours. What is the probability you will get a ticket?

3.22. Each time the frozen yogurt machine at the mall breaks down, it is
replaced by a new one of the same type. (a) What is the limiting age distribution
for the machine in use if the lifetime of a machine has a gamma(2,λ) distribution,
i.e., the sum of two exponentials with mean 1/λ. (b) Find the answer to (a)
by thinking about a rate one Poisson process in which arrivals are alternately
colored red and blue.

3.23. While visiting Haifa, Sid Resnick discovered that people who wish to
travel from the port area up the mountain frequently take a shared taxi known
as a sherut. The capacity of each car is 5 people. Potential customers arrive
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according to a Poisson process with rate λ. As soon as 5 people are in the car,
it departs for The Carmel, and another taxi moves up to accept passengerso
on. A local resident (who has no need of a ride) wanders onto the scene. What
is the distribution of the time he has to wait to see a cab depart?

3.24. Suppose that the limiting age distribution in (3.9) is the same as the
original distribution. Conclude that F (x) = 1− e−λx for some λ > 0.
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Chapter 4

Continuous Time Markov
Chains

4.1 Definitions and Examples

In Chapter 1 we considered Markov chains Xn with a discrete time index
n = 0, 1, 2, . . . In this chapter we will extend the notion to a continuous time
parameter t ≥ 0, a setting that is more convenient for some applications. In
discrete time we formulated the Markov property as: for any possible values of
j, i, in−1, . . . i0

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i)

In continuous time, it is technically difficult to define the conditional probability
given all of the Xr for r ≤ s, so we instead say that Xt, t ≥ 0 is a Markov chain
if for any 0 ≤ s0 < s1 · · · < sn < s and possible states i0, . . . , in, i, j we have

P (Xt+s = j|Xs = i,Xsn
= in, . . . , Xs0 = i0) = P (Xt = j|X0 = i)

In words, given the present state, the rest of the past is irrelevant for predicting
the future. Note that built into the definition is the fact that the probability
of going from i at time s to j at time s + t only depends on t the difference in
the times.

Our first step is to construct a large collection of examples. In Example 4.6
we will see that this is almost the general case.

Example 4.1. Let N(t), t ≥ 0 be a Poisson process with rate λ and let Yn be a
discrete time Markov chain with transition probability u(i, j). Then Xt = YN(t)

is a continuous-time Markov chain. In words, Xt takes one jump according to
u(i, j) at each arrival of N(t).

Why is this true? Intuitively, this follows from the lack of memory property of
the exponential distribution. If Xs = i, then independent of what has happened
in the past, the time to the next jump will be exponentially distributed with
rate λ and will go to state j with probability u(i, j).

Discrete time Markov chains were described by giving their transition proba-
bilities p(i, j) = the probability of jumping from i to j in one step. In continuous

119
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time there is no first time t > 0, so we introduce for each t > 0 a transition
probability

pt(i, j) = P (Xt = j|X0 = i)

To compute this for Example 4.1, we note that N(t) has a Poisson number of
jumps with mean λt, so

pt(i, j) =
∞∑

n=0

e−λt (λt)n

n!
un(i, j)

where un(i, j) is the nth power of the transition probability u(i, j).
In continuous time, as in discrete time, the transition probability satisfies

Theorem 4.1. Chapman–Kolmogorov equation.∑
k

ps(i, k)pt(k, j) = ps+t(i, j)

Why is this true? In order for the chain to go from i to j in time s + t, it must
be in some state k at time s, and the Markov property implies that the two
parts of the journey are independent.

Proof. Breaking things down according to the state at time s, we have

P (Xs+t = j|X0 = i) =
∑

k

P (Xs+t = j, Xs = k|X0 = i)

Using the definition of conditional probability and the Markov property, the
above is

=
∑

k

P (Xs+t = j|Xs = k, X0 = i)P (Xs = k|X0 = i) =
∑

k

pt(k, j)ps(i, k)

(4.1) shows that if we know the transition probability for t < t0 for any
t0 > 0, we know it for all t. This observation and a large leap of faith (which we
will justify later) suggests that the transition probabilities pt can be determined
from their derivatives at 0:

q(i, j) = lim
h→0

ph(i, j)
h

for j 6= i (4.1)

If this limit exists (and it will in all the cases we consider) we will call q(i, j)
the jump rate from i to j. To explain this name we will compute the:

Jump rates for Example 4.1. The probability of at least two jumps by time h
is 1 minus the probability of 0 or 1 jumps

1−
(
e−λh + λhe−λh

)
= 1− (1 + λh)

(
1− λh +

(λh)2

2!
+ . . .

)
= (λh)2/2! + . . . = o(h)

That is, when we divide it by h it tends to 0 as h→ 0. Thus, if j 6= i,

ph(i, j)
h

≈ λe−λhu(i, j)→ λu(i, j)
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as h→ 0. Comparing the last equation with the definition of the jump rate in
(4.1) we see that q(i, j) = λu(i, j). In words we leave i at rate λ and go to j
with probability u(i, j).

Example 4.1 is atypical. There we started with the Markov chain and then
computed its rates. In most cases, it is much simpler to describe the system by
writing down its transition rates q(i, j) for i 6= j, which describe the rates at
which jumps are made from i to j. The simplest possible example is:

Example 4.2. Poisson process. Let X(t) be the number of arrivals up to
time t in a Poisson process with rate λ. Since arrivals occur at rate λ in the
Poisson process the number of arrivals, X(t), increases from n to n + 1 at rate
λ, or in symbols

q(n, n + 1) = λ for all n ≥ 0

This simplest example is a building block for other examples:

Example 4.3. M/M/s queue. Imagine a bank with s ≤ ∞ tellers that serve
customers who queue in a single line if all of the servers are busy. We imagine
that customers arrive at times of a Poisson process with rate λ, and that each
service time is an independent exponential with rate µ. As in Example 4.2,
q(n, n + 1) = λ. To model the departures we let

q(n, n− 1) =

{
nµ 0 ≤ n ≤ s

sµ n ≥ s

To explain this, we note that when there are n ≤ s individuals in the system
then they are all being served and departures occur at rate nµ. When n > s,
all s servers are busy and departures occur at sµ.

Example 4.4. Branching proceess. In this system each individual dies at
rate µ and gives birth to a new individual at rate λ so we have

q(n, n + 1) = λn q(n, n− 1) = µn

A very special case called the Yule process occurs when µ = 0.

Having seen several examples, it is natural to ask:

Given the rates, how do you construct the chain?

Let λi =
∑

j 6=i q(i, j) be the rate at which Xt leaves i. If λi = ∞, then the
process will want to leave i immediately, so we will always suppose that each
state i has λi < ∞. If λi = 0, then Xt will never leave i. So suppose λi > 0
and let

r(i, j) = q(i, j)/λi

Here r, short for “routing matrix,” is the probability the chain goes to j when
it leaves i.

Informal construction. If Xt is in a state i with λi = 0 then Xt stays there
forever and the construction is done. If λi > 0, Xt stays at i for an exponentially
distributed amount of time with rate λi, then goes to state j with probability
r(i, j).
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Formal construction. Suppose, for simplicity, that λi > 0 for all i. Let Yn be
a Markov chain with transition probability r(i, j). The discrete-time chain Yn,
gives the road map that the continuous-time process will follow. To determine
how long the process should stay in each state let τ0, τ1, τ2, . . . be independent
exponentials with rate 1.

At time 0 the process is in state Y0 and should stay there for an amount of
time that is exponential with rate λ(Y0), so we let the time the process stays
in state Y0 be t1 = τ0/λ(Y0).

At time T1 = t1 the process jumps to Y1, where it should stay for an expo-
nential amount of time with rate λ(Y1), so we let the time the process stays in
state Y1 be t2 = τ1/λ(Y1).

At time T2 = t1 + t2 the process jumps to Y2, where it should stay for an
exponential amount of time with rate λ(Y2), so we let the time the process stays
in state Y2 be t3 = τ2/λ(Y2).

Continuing in the obvious way, we can let the amount of time the process
stays in Yn be tn+1 = τn/λ(Yn), so that the process jumps to Yn+1 at time

Tn+1 = t1 + · · ·+ tn+1

In symbols, if we let T0 = 0, then for n ≥ 0 we have

X(t) = Yn for Tn ≤ t < Tn+1 (4.2)

Computer simulation. The construction described above gives a recipe for simu-
lating a Markov chain. Generate independent standard exponentials τi, say, by
looking at τi = − lnUi where Ui are uniform on (0, 1). Using another sequence
of random numbers, generate the transitions of Yn, then define ti, Tn, and Xt

as above.

The good news about the formal construction above is that if Tn → ∞ as
n → ∞, then we have succeeded in defining the process for all time and we
are done. This will be the case in almost all the examples we consider. The
bad news is that limn→∞ Tn < ∞ can happen. In most models, it is senseless
to have the process make an infinite amount of jumps in a finite amount of
time so we introduce a “cemetery state” ∆ to the state space and complete the
definition by letting T∞ = limn→∞ Tn and setting

X(t) = ∆ for all t ≥ T∞

To show that explosions can occur we consider.

Example 4.5. Pure birth processes with power law rates. Suppose
q(i, i + 1) = λip and all the other q(i, j) = 0. In this case the jump to n + 1
is made at time Tn = t1 + · · · + tn, where tn is exponential with rate np.
Etn = 1/np, so if p > 1

ETn = λ

n∑
m=1

1/mp

This implies ET∞ =
∑∞

m=1 1/mp < ∞, so T∞ < ∞ with probability one.
When p = 1 which is the case for the Yule process

ETn = (1/β)
n∑

m=1

1/m ∼ (log n)/β
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as n → ∞. This is, by itself, not enough to establish that Tn → ∞, but it is
not hard to fill in the missing details.

Proof. var (Tn) =
∑n

m=1 1/m2β2 ≤ C =
∑∞

m=1 1/m2β2. Chebyshev’s inequal-
ity implies

P (Tn ≤ ETn/2) ≤ 4C/(ETn)2 → 0

as n→∞. Since n→ Tn is increasing, it follows that Tn →∞.

Our final example justifies the remark we made before Example 4.1.

Example 4.6. Uniformization. Suppose that Λ = supi λi <∞ and let

u(i, j) = q(i, j)/Λ for j 6= i

u(i, i) = 1− λi/Λ

In words, each site attempts jumps at rate Λ but stays put with probability
1 − λi/Λ so that the rate of leaving state i is λi. If we let Yn be a Markov
chain with transition probability u(i, j) and N(t) be a Poisson process with
rate Λ then Xt = YN(t) has the desired transition rates. This construction is
useful because Yn is simpler to simulate that X(t) and has the same stationary
distribution.

4.2 Computing the Transition Probability

In the last section we saw that given jump rates q(i, j) we can construct a
Markov chain that has these jump rates. This chain, of course, has a transition
probability

pt(i, j) = P (Xt = j|X0 = i)

Our next question is: How do you compute the transition probability pt from
the jump rates q?

Our road to the answer starts by using the Chapman–Kolmogorov equations,
Theorem 4.1, and then taking the k = i term out of the sum.

pt+h(i, j)− pt(i, j) =

(∑
k

ph(i, k)pt(k, j)

)
− pt(i, j)

=

∑
k 6=i

ph(i, k)pt(k, j)

+ [ph(i, i)− 1] pt(i, j) (4.3)

Our goal is to divide each side by h and let h→ 0 to compute

p′t(i, j) = lim
h→0

pt+h(i, j)− pt(i, j)
h

By the definition of the jump rates

q(i, j) = lim
h→0

ph(i, j)
h

for i 6= j

Ignoring the detail of interchanging the limit and the sum, which we will do
throughout this chapter, we have

lim
h→0

1
h

∑
k 6=i

ph(i, k)pt(k, j) =
∑
k 6=i

q(i, k)pt(k, j) (4.4)
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For the other term we note that 1− ph(i, i) =
∑

k 6=i ph(i, k), so

lim
h→0

ph(i, i)− 1
h

= − lim
h→0

∑
k 6=i

ph(i, k)
h

= −
∑
k 6=i

q(i, k) = −λi

and we have

lim
h→0

ph(i, i)− 1
h

pt(i, j) = −λipt(i, j) (4.5)

Combining (4.4) and (4.5) with (4.3) and the definition of the derivative we
have

p′t(i, j) =
∑
k 6=i

q(i, k)pt(k, j)− λipt(i, j) (4.6)

To neaten up the last expression we introduce a new matrix

Q(i, j) =

{
q(i, j) if j 6= i

−λi if j = i

For future computations note that the off-diagonal elements q(i, j) with i 6= j
are nonnegative, while the diagonal entry is a negative number chosen to make
the row sum equal to 0.

Using matrix notation we can write (4.6) simply as

p′t = Qpt (4.7)

This is Kolmogorov’s backward equation. If Q were a number instead of
a matrix, the last equation would be easy to solve. We would set pt = eQt and
check by differentiating that the equation held. Inspired by this observation,
we define the matrix

eQt =
∞∑

n=0

(Qt)n

n!
=

∞∑
n=0

Qn · t
n

n!
(4.8)

and check by differentiating that

d

dt
eQt =

∞∑
n=1

Qn tn−1

(n− 1)!
=

∞∑
n=1

Q · Q
n−1tn−1

(n− 1)!
= QeQt

Kolmogorov’s forward equation. This time we split [0, t + h] into [0, t] and
[t, t + h] rather than into [0, h] and [h, t + h].

pt+h(i, j)− pt(i, j) =

(∑
k

pt(i, k)ph(k, j)

)
− pt(i, j)

=

∑
k 6=j

pt(i, k)ph(k, j)

+ [ph(j, j)− 1] pt(i, j)

Computing as before we arrive at

p′t(i, j) =
∑
k 6=j

pt(i, k)q(k, j)− pt(i, j)λj (4.9)
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Introducing matrix notation again, we can write

p′t = ptQ (4.10)

Comparing (4.10) with (4.7) we see that ptQ = Qpt and that the two forms
of Kolmogorov’s differential equations correspond to writing the rate matrix on
the left or the right. While we are on the subject of the choices, we should
remember that in general for matrices AB 6= BA, so it is somewhat remarkable
that ptQ = Qpt. The key to the fact that these matrices commute is that
pt = eQt is made up of powers of Q:

Q · eQt =
∞∑

n=0

Q · (Qt)n

n!
=

∞∑
n=0

(Qt)n

n!
·Q = eQt ·Q

To illustrate the use of Kolmogorov’s equations we will now consider some
examples. The simplest possible is

Example 4.7. Poisson process. Let X(t) be the number of arrivals up to
time t in a Poisson process with rate λ. In order to go from i arrivals at time
s to j arrivals at time t + s we must have j ≥ i and have exactly j − i arrivals
in t units of time, so

pt(i, j) = e−λt (λt)j−i

(j − i)!
(4.11)

To check the differential equation, we have to first figure out what it is. Using
the more explicit form of the backwards equation, (4.6), and plugging in our
rates, we have

p′t(i, j) = λpt(i + 1, j)− λpt(i, j)

To check this we have to differentiate the formula in (4.11).
When j > i we have that the derivative of (4.11) is

−λe−λt (λt)j−i

(j − i)!
+ e−λt (λt)j−i−1

(j − i− 1)!
λ = −λpt(i, j) + λpt(i + 1, j)

When j = i, pt(i, i) = e−λt, so the derivative is

−λe−λt = −λpt(i, i) = −λpt(i, i) + λpt(i + 1, i)

since pt(i + 1, i) = 0.

The second simplest example is:

Example 4.8. Two-state chains. For concreteness, we can suppose that the
state space is {1, 2}. In this case, there are only two flip rates q(1, 2) = λ and
q(2, 1) = µ, so when we fill in the diagonal with minus the sum of the flip rates
on that row we get

Q =
(
−λ λ
µ −µ

)
Writing out the backward equation in matrix form, (4.7), now we have(

p′t(1, 1) p′t(1, 2)
p′t(2, 1) p′t(2, 2)

)
=
(
−λ λ
µ −µ

)(
pt(1, 1) pt(1, 2)
pt(2, 1) pt(2, 2)

)
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Since pt(i, 2) = 1 − pt(i, 1) it is sufficeient to compute pt(i, 1). Doing the first
column of matrix multiplication on the right, we have

p′t(1, 1) = −λpt(1, 1) + λpt(2, 1) = −λ(pt(1, 1)− pt(2, 1))
p′t(2, 1) = µpt(1, 1)− µpt(2, 1) = µ(pt(1, 1)− pt(2, 1)) (4.12)

Taking the difference of the two equations gives

[pt(1, 1)− pt(2, 1)]′ = −(λ + µ)[pt(1, 1)− pt(2, 1)]

Since p0(1, 1) = 1 and p0(2, 1) = 0 we have

pt(1, 1)− pt(2, 1) = e−(λ+µ)t

Using this in (4.12) and integrating

pt(1, 1) = p0(1, 1) +
λ

µ + λ
e−(µ+λ)s

∣∣∣∣t
0

=
µ

λ + µ
+

λ

µ + λ
e−(µ+λ)t

pt(2, 1) = p0(2, 1) +
λ

µ + λ
e−(µ+λ)s

∣∣∣∣t
0

=
µ

µ + λ
− µ

µ + λ
e−(µ+λ)t

As a check on the constants note that p0(1, 1) = 1 and p0(2, 1) = 0. To prepare
for the developments in the next section note that the probability of being in
state 1 converges exponentially fast to the equilibrium value µ/(µ + λ).

There are not many examples in which one can write down solutions of the
Kolmogorov’s differential equation. A remarkable exception is:

Example 4.9. Yule process. In this model each particle splits into two at
rate β, so q(i, i+1) = βi. To find the transition probability of the Yule process
we will guess and verify that

pt(1, j) = e−βt(1− e−βt)j−1 for j ≥ 1 (4.13)

i.e., a geometric distribution with success probability e−βt and hence mean eβt.
To explain the mean we note that

d

dt
EX(t) = βEX(t) implies E1X(t) = eβt.

To check (4.13), we will use the forward equation (4.9) to conclude that if
j ≥ 1 then

p′t(1, j) = −βjpt(1, j) + β(j − 1)pt(1, j − 1) (4.14)

where pt(1, 0) = 0. The use of the forward equation here is dictated by the fact
that we are only writing down formulas for pt(i, j) when i = 1. To check the
proposed formula for j = 1 we note that

p′t(1, 1) = −βe−βt = −βpt(1, 1)

Things are not so simple for j > 1:

p′t(1, j) =− βe−βt(1− e−βt)j−1

+ e−βt(j − 1)(1− e−βt)j−2(βe−βt)
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Recopying the first term on the right and using βe−βt = −(1 − e−βt)β + β in
the second, we can rewrite the right-hand side of the above as

−βe−βt(1− e−βt)j−1 − e−βt(j − 1)(1− e−βt)j−1β

+ e−βt(1− e−βt)j−2(j − 1)β

Adding the first two terms then comparing with (4.14) shows that the above is

= −βjpt(1, j) + β(j − 1)pt(1, j − 1)

Having worked to find pt(1, j), it is fortunately easy to find pt(i, j). The
chain starting with i individuals is the sum of i copies of the chain starting from
1 individual. Using this one can easily compute that

pt(i, j) =
(

j − 1
i− 1

)
(e−βt)i(1− e−βt)j−i (4.15)

In words, the sum of i geometrics has a negative binomial distribution.

Proof. To begin we note that if N1, . . . Ni have the distribution given in (4.13)
and n1 + · · ·+ ni = j, then

P (N1 = n1, . . . , Ni = ni) =
i∏

k=1

e−βt(1− e−βt)nk−1 = (e−βt)i(1− e−βt)j−i

To count the number of possible (n1, . . . , ni) with nk ≥ 1 and sum j, we think of
putting j balls in a row. To divide the j balls into i groups of size n1, . . . , ni, we
will insert cards in the slots between the balls and let nk be the number of balls
in the kth group. Having made this transformation it is clear that the number
of (n1, . . . , ni) is the number of ways of picking i − 1 of the j − 1 slot to put
the cards or

(
j−1
i−1

)
. Multiplying this times the probability for each (n1, . . . , ni)

gives the result.

4.3 Limiting Behavior

Having worked hard to develop the convergence theory for discrete time chains,
the results for the continuous time case follow easily. In fact the study of
the limiting behavior of continuous time Markov chains is simpler than the
theory for discrete time chains, since the randomness of the exponential holding
times implies that we don’t have to worry about aperiodicity. We begin by
generalizing some of the previous definitions

The Markov chain Xt is irreducible, if for any two states i and j it is
possible to get from i to j in a finite number of jumps. To be precise, there is a
sequence of states k0 = i, k1, . . . kn = j so that q(km−1, km) > 0 for 1 ≤ m ≤ n.

Lemma 4.2. If Xt is irreducible and t > 0 then pt(i, j) > 0.

Proof. Since ps(i, j) ≥ exp(−λjs) > 0 and pt+s(i, j) ≥ pt(i, j)ps(j, j) it suffices
to show that this holds for small t. Since

lim
h→0

ph(km−1, km)/h = q(km−1, km) > 0

it follows that if h is small enough we have ph(km−1, km) > 0 for 1 ≤ m ≤ n
and hence pnh(i, j) > 0.
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In discrete time a stationary distribution is a solution of πp = π. Since
there is no first t > 0, in continuous time we need the stronger notion: π is said
to be a stationary distribution if πpt = π for all t > 0. The last condition
is difficult to check since it involves all of the pt, and as we have seen in the
previous section, the pt are not easy to compute. The next result solves these
problems by giving a test for stationarity in terms of the basic data used to
describe the chain, the matrix of transition rates

Q(i, j) =

{
q(i, j) j 6= i

−λi j = i

where λi =
∑

j 6=i q(i, j) is the total rate of transitions out of i.

Lemma 4.3. π is a stationary distribution if and only if πQ = 0.

Why is this true? Filling in the definition of Q and rearranging, the condition
πQ = 0 becomes ∑

k 6=j

π(k)q(k, j) = π(j)λj

If we think of π(k) as the amount of sand at k, the right-hand side represents
the rate at which sand leaves j, while the left gives the rate at which sand
arrives at j. Thus, π will be a stationary distribution if for each j the flow of
sand in to j is equal to the flow out of j.

More details. If πpt = π then

0 =
d

dt
πpt =

∑
i

π(i)p′t(i, j) =
∑

i

π(i)
∑

k

pt(i, k)Q(k, j)

=
∑

k

∑
i

π(i)pt(i, k)Q(k, j) =
∑

k

π(k)Q(k, j)

Conversely if πQ = 0

d

dt

(∑
i

π(i)pt(i, j)

)
=
∑

i

π(i)p′t(i, j) =
∑

i

π(i)
∑

k

Q(i, k)pt(k, j)

=
∑

k

∑
i

π(i)Q(i, k)pt(k, j) = 0

Since the derivative is 0, πpt is constant and must always be equal to π its value
at 0.

Lemma 4.2 implies that for any h > 0, ph is irreducible and aperiodic, so
by Theorem 1.19

lim
n→∞

pnh(i, j) = π(j).

From this we get

Theorem 4.4. If a continuous-time Markov chain Xt is irreducible and has a
stationary distribution π, then

lim
t→∞

pt(i, j) = π(j)

We will now consider some examples.
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Example 4.10. L.A. weather chain. There are three states: 1 = sunny, 2
= smoggy, 3 = rainy. The weather stays sunny for an exponentially distributed
number of days with mean 3, then becomes smoggy. It stays smoggy for an
exponentially distributed number of days with mean 4, then rain comes. The
rain lasts for an exponentially distributed number of days with mean 1, then
sunshine returns. Remembering that for an exponential the rate is 1 over the
mean, the verbal description translates into the following Q-matrix

1 2 3
1 −1/3 1/3 0
2 0 −1/4 1/4
3 1 0 −1

The relation πQ = 0 leads to three equations:

− 1
3π1 +π3 = 0

1
3π1 − 1

4π2 = 0
1
4π2 −π3 = 0

Adding the three equations gives 0=0 so we delete the third equation and add
π1 + π2 + π3 = 1 to get an equation that can be written in matrix form as

(
π1 π2 π3

)
A =

(
0 0 1

)
where A =

−1/3 1/3 1
0 −1/4 1
1 0 1


This is similar to our recipe in discrete time. To find the stationary distribution
of a k state chain, form A by taking the first k− 1 columns of Q, add a column
of 1’s and then (

π1 π2 π3

)
=
(
0 0 1

)
A−1

i.e., the last row of A−1. In this case we have

π(1) = 3/8, π(2) = 4/8, π(3) = 1/8

To check our answer, note that the weather cycles between sunny, smoggy,
and rainy spending independent exponentially distributed amounts of time with
means 3, 4, and 1, so the limiting fraction of time spent in each state is just
the mean time spent in that state over the mean cycle time, 8.

Example 4.11. Duke basketball. To “simulate” a basketball game we use
a four state Markov chain with four states

0 = Duke on offense 2 = UNC on offense
1 = Duke scores 3 = UNC scores

and transition rate matrix

0 1 2 3
0 −3 2 1 0
1 0 −5 5 0
2 1 0 −2.5 1.5
3 6 0 0 −6
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where the rates are per minute. To explain the rates:

The Duke offense keeps the ball for an exponential amount of time with mean
1/3 minute, ending with a score with probability 2/3, and turning the ball
over to UNC with probability 1/3. After a score UNC needs an average of 1/5
minute to take the ball down the court and then they are on offense.

The UNC offense keeps the ball for an exponential amount of time with mean
2/5 minute, ending with a score with probability 0.6, and turning the ball over
to Duke with probability 0.4. After a score Duke needs an average of 1/6 minute
to take the ball down the court and then they are on offense.

To find the stationary distribution we want to solve

(
π0 π1 π2 π3

)
−3 2 1 1
0 −5 5 1
1 0 −2.5 1
6 0 0 1

 =
(
0 0 0 1

)

The answer can be found by reading the fourth row of the inverse of the matrix:

10
29

4
29

12
29

3
29

Thus in the long run the chain spends a fraction 4/29 in state 1, and 6/29 in
state 3. To translate this into a more useful statistic, we note that the average
time in state 1 is 1/5 and the average time in state 3 is 1/6, so the number of
baskets per minute for the two teams are

4/29
1/5

=
20
29

= 0.6896
3/29
1/6

=
18
29

= 0.6206

Multiplying by 2 points per basket and 40 minutes per game yields 55.17 and
49.65 points per game respectively.

Detailed balance condition. Generalizing from discrete time we can
formulate this condition as:

π(k)q(k, j) = π(j)q(j, k) for all j 6= k (4.16)

The reason for interest in this concept is

Theorem 4.5. If (4.16) holds, then π is a stationary distribution.

Why is this true? The detailed balance condition implies that the flows of sand
between each pair of sites are balanced, which then implies that the net amount
of sand flowing into each vertex is 0, i.e., πQ = 0.

Proof. Summing 4.16 over all k 6= j and recalling the definition of λj gives∑
k 6=j

π(k)q(k, j) = π(j)
∑
k 6=j

q(j, k) = π(j)λj

Rearranging we have

(πQ)j =
∑
k 6=j

π(k)q(k, j)− π(j)λj = 0
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As in discrete time, (4.16) is much easier to check but does not always hold.
In Example 4.10

π(2)q(2, 1) = 0 < π(1)q(1, 2)

As in discrete time, detailed balance holds for

Example 4.12. Birth and death chains. Suppose that S = {0, 1, . . . , N}
with N ≤ ∞ and

q(n, n + 1) = λn for n < N

q(n, n− 1) = µn for n > 0

Here λn represents the birth rate when there are n individuals in the system,
and µn denotes the death rate in that case.

If we suppose that all the λn and µn listed above are positive then the birth
and death chain is irreducible, and we can divide to write the detailed balance
condition as

π(n) =
λn−1

µn
π(n− 1) (4.17)

Using this again we have π(n− 1) = (λn−2/µn−1)π(n− 2) and it follows that

π(n) =
λn−1

µn
· λn−2

µn−1
· π(n− 2)

Repeating the last reasoning leads to

π(n) =
λn−1 · λn−2 · · ·λ0

µn · µn−1 · · ·µ1
π(0) (4.18)

To check this formula and help remember it, note that (i) there are n terms
in the numerator and in the denominator, and (ii) if the state space was
{0, 1, . . . , n}, then µ0 = 0 and λn = 0, so these terms cannot appear in the
formula.

To illustrate the use of (4.18) we will consider several concrete examples.

Example 4.13. Two state chains. Suppose that the state space is {1, 2},
q(1, 2) = λ, and q(2, 1) = µ, where both rates are positive. The equations
πQ = 0 can be written as(

π1 π2

) (−λ λ
µ −µ

)
=
(
0 0

)
The first equation says −λπ1 + µπ2 = 0. Taking into account that we must
have π1 + π2 = 1, it follows that

π1 =
µ

λ + µ
and π2 =

λ

λ + µ

Example 4.14. Barbershop. A barber can cut hair at rate 3, where the units
are people per hour, i.e., each haircut requires an exponentially distributed
amount of time with mean 20 minutes. Suppose customers arrive at times of a
rate 2 Poisson process, but will leave if both chairs in the waiting room are full.
(a) Find the equilibrium distribution. (b) What fraction of customers enter
service? (c) What is the average amount of time in the system for a customer
who enters service?
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Solution. We define our state to be the number of customers in the system, so
S = {0, 1, 2, 3}. From the problem description it is clear that

q(i, i− 1) = 3 for i = 1, 2, 3
q(i, i + 1) = 2 for i = 0, 1, 2

The detailed balance conditions say

2π(0) = 3π(1), 2π(1) = 3π(2), 2π(2) = 3π(3)

Setting π(0) = c and solving, we have

π(1) =
2c

3
, π(2) =

2
3
· π(1) =

4c

9
, π(3) =

2
3
· π(2) =

8c

27

The sum of the π’s is (27 + 18 + 12 + 8)c/27 = 65c/27, so c = 27/65 and

π(0) = 27/65, π(1) = 18/65, π(2) = 12/65, π(3) = 8/65

From this we see that 8/65’s of the time someone is waiting, so that fraction of
the arrivals are lost and hence 57/65’s or 87.7% of the customers enter service.

Example 4.15. Machine repair model. A factory has three machines in use
and one repairman. Suppose each machine works for an exponential amount
of time with mean 60 days between breakdowns, but each breakdown requires
an exponential repair time with mean 4 days. What is the long-run fraction of
time all three machines are working?

Solution. Let Xt be the number of working machines. Since there is one
repairman we have q(i, i+1) = 1/4 for i = 0, 1, 2. On the other hand, the failure
rate is proportional to the number of machines working, so q(i, i − 1) = i/60
for i = 1, 2, 3. Setting π(0) = c and plugging into the recursion (4.17) gives

π(1) =
λ0

µ1
· π(0) =

1/4
1/60

· c = 15c

π(2) =
λ1

µ2
· π(1) =

1/4
2/60

· 15c =
225c

2

π(3) =
λ2

µ3
· π(2) =

1/4
3/60

· 225c

2
=

1125c

2

Adding up the π’s gives (1125 + 225 + 30 + 2)c/2 = 1382c/2 so c = 2/1480 and
we have

π(3) =
1125
1382

π(2) =
225
1382

π(1) =
30

1382
π(0) =

2
1382

Thus in the long run all three machines are working 1125/1382 = 0.8140 of the
time.

Example 4.16. M/M/∞ queue. In this case q(n, n+1) = λ and q(n, n−1) =
nµ so

π(n) = π(0)
(λ/µ)n

n!

If we take π(0) = e−λ/µ then this becomes the Poisson distriibution with mean
λ/µ.
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Example 4.17. M/M/s queue with balking. A bank has s tellers that
serve customers who need an exponential amount of service with rate µ nd
queue in a single line if all of the servers are busy. Customers arrive at times
of a Poisson process with rate λ but only join the queue with probability an if
there are n customers in line. Thus, the birth rate λn = λan for n ≥ 0, while
the death rate is

µn =

{
nµ 0 ≤ n ≤ s

sµ n ≥ s

for n ≥ 1. It is reasonable to assume that if the line is long the probability the
customer will join the queue is small. The next result shows that this is always
enough to prevent the queue length from growing out of control.

Theorem 4.6. If an → 0 as n→∞, then there is a stationary distribution.

Proof. It follows from (4.17) that if n ≥ s, then

π(n + 1) =
λn

µn+1
· π(n) = an ·

λ

sµ
· π(n)

If N is large enough and n ≥ N , then anλ/(sµ) ≤ 1/2 and it follows that

π(n + 1) ≤ 1
2
π(n) . . . ≤

(
1
2

)n−N

π(N)

This implies that
∑

n π(n) <∞, so we can pick π(0) to make the sum = 1.

Concrete example. Suppose s = 1 and an = 1/(n + 1). In this case

λn−1 · · ·λ0

µn · · ·µ1
=

λn

µn
· 1
1 · 2 · · ·n

=
(λ/µ)n

n!

To find the stationary distribution we want to take π(0) = c so that

c

∞∑
n=0

(λ/µ)n

n!
= 1

Recalling the formula for the Poisson distribution with mean λ/µ, we see that
c = e−λ/µ and the stationary distribution is Poisson.

4.4 Exit Distributions and Hitting Times

In this section we generalize results from Sections 1.8 and 1.9 to continuous
time. We will approach this first using the embedded jump chain with transition
probability

r(i, j) =
q(i, j)

λi
where λi =

∑
j 6=i q(i, j)

Let Vk = min{t ≥ 0 : Xt = k} be the time of the first visit to x and let
Tk = min{t ≥ 0 : Xt = k and Xs 6= k for some s < t } be the time of the first
return. The second definition is made complicated by the fact that is X0 = k
then the chain stays at k for an an amount of time that is exponential with rate
λk.
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Example 4.18. M/M/1 queue has jump rates q(i, i + 1) = λ for i ≥ 0 and
q(i, i− 1) = µ for n ≥ 1. The embedded chain has r(0, 1) = 1 and for i ≥ 1

r(i, i + 1) =
λ

λ + µ
r(i, i− 1) =

µ

λ + µ

From this we see that the embedded chain is a random walk, so the probabilities
Pi(VN < V0) are the same as those computed in (1.17) and (1.22). Using this
with results in Section 1.10 we see that the chain is

positive recurrent E0T0 <∞ if λ < µ
null recurrent E0T0 =∞ if λ = µ
transient P0(T0 <∞) < 1 if λ > µ

Example 4.19. Branching process has jump rates q(i, i + 1) = λi and
q(i, i− 1) = µi. 0 is an absorbing state but for i ≥ 1 the i’s cancel and we have

r(i, i + 1) =
λ

λ + µ
r(i, i− 1) =

µ

λ + µ

Thus absorption at 0 is certain if λ ≤ µ but if λ > µ then by (1.23) the
probability of avoiding extinction is

P1(T0 =∞) = 1− µ

λ

For another derivation let ρ = P1(T0 <∞). By considering what happens when
the chain leaves 0 we have

ρ =
µ

λ + µ
· 1 +

λ

λ + µ
· ρ2

since starting from state 2 extinction occurs if and only if each individual’s
family line dies out. Rearranging gives

0 = λρ2 − (λ + µ)ρ + µ = (λρ− λ)(ρ− µ/λ)

The root we want is µ/λ < 1.

As the last two examples show, if we work with the embedded chain then
we can use the approach of Section 1.8 to compute exit distributions. We
can also work directly with the Q-matrix. Let VA = min{t : Xt ∈ A} and
h(i) = Pi(X(TA) = a). Then h(a) = 1, h(b) = 0 for b ∈ A− {a}, and for i 6∈ A

h(i) =
∑
j 6=i

q(i, j)
λi

Multiplying each side by λi = −Q(i, i) we have

−Q(i, i)h(i) =
∑
j 6=i

Q(i, j)h(j)

which simplifies to ∑
j

Q(i, j)h(j) = 0 for i 6∈ A. (4.19)

Turning now to hitting times, we work the first two examples using the
embedded chain:
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Example 4.20. M/M/1 queue. This is particularly simple because the the
time in each state i > 0 is expoenential with rate λ+µ so the new result follows
from the one in discrete time given in (1.28)

E1T0 =
1

λ + µ
· λ + µ

µ− λ
=

1
µ− λ

(4.20)

Example 4.21. Barbershop chain. (continuation of Example 4.14) The
transition rates are

q(i, i− 1) = 3 for i = 1, 2, 3
q(i, i + 1) = 2 for i = 0, 1, 2

so the embedded chain is

0 1 2 3
0 0 1 0 0
1 3/5 0 2/5 0
2 0 3/5 0 2/5
3 0 0 1 0

Let g(i) = EiV0. g(0) = 0. Taking into account the rates at which jumps occur
we have

g(1) =
1
5

+
2/5
g

(2)

g(2) =
1
5

+
3
5
g(1) +

2/5
g

(3)

g(3) =
1
3

+ g(2)

Inserting the last equation in the second one:

g(2) =
1
5

+
3
5
g(1) +

2
15

+
2
5
g(2)

or (3/5)g(2) = (1/3)+(3/5)g(1). Multiplying by 2/3’s and inserting this in the
first equation we have

g(1) =
1
5

+
2
9

+
2
5
g(1)

so (3/5)g(1) = 19/45 and g(1) = 19/27.

To develop the analogue of (4.19) for exit times we note that if g(i) = EiVA

then g(i) = 0 for i ∈ A, and for i 6∈ A

g(i) =
1
λi

+
∑
j 6=i

q(i, j)
λi

g(j)

Multiplying each side by λi = −Q(i, i) we have

−Q(i, i)g(i) = 1 +
∑
j 6=i

Q(i, j)g(j)

which simplifies to ∑
j

Q(i, j)g(j) = −1 for i 6∈ A.
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Writing 1 for a vector of 1’s the solution, and writing R for the part of Q with
i, j,∈ Ac:

g = −R−11 (4.21)

In the barbershop example, the matrix R is

1 2 3
1 −5 2 0
2 3 −5 2
3 0 3 −3

which has

−R−1 =

1/3 2/9 4/27
1/3 5/9 10/27
1/3 5/9 19/27


Adding the entries on the first row we find g(1) = 1/3 + 2/9 + 4/27 = 19/27 in
agreement with the previous calculation.

Example 4.22. Return to office hours. With the machinery just developed
we can give a simple solution to one of the exercises in Chapter 2. Ron, Sue,
and Ted arrive at the beginning of a professor’s office hours. The amount of
time they will stay is exponentially distributed with means of 1, 1/2, and 1/3
hour, i.e., rates 1, 2, and 3. What is the expected time until all three students
are gone?

If we describe the state of the Markov chain by the rates of the students that
are left, with ∅ to denote an empty office, then the Q-matrix is

123 12 13 23 1 2 3 ∅
123 −6 3 2 1 0 0 0 0
12 0 −3 0 0 2 1 0 0
13 0 0 −4 0 3 0 1 0
23 0 0 0 −5 0 3 2 0
1 0 0 0 0 −1 0 0 1
2 0 0 0 0 0 −2 0 2
3 0 0 0 0 0 0 −3 3

Letting R be the previous matrix with the last column deleted, the first row of
−R−1 is

1/6 1/6 1/12 1/30 7/12 2/15 1/20

The sum is 63/60, or 1 hour and 3 minutes. The first term is the 1/6 hour until
the first student leaves. The next three are

1
2
· 1
3

1
3
· 1
4

1
6
· 1
5

which are the probability we visit the state times the amount of time we spend
there. Similarly the last three are

35
60
· 1 16

60
· 1
2

9
60
· 1
3

where again these are the probability we visit the state times the amount of
time we spend there.
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4.5 Markovian Queues

In this section we will take a systematic look at the basic models of queueing
theory that have Poisson arrivals and exponential service times. The arguments
in Section 3.2 explain why we can be happy assuming that the arrival process
is Poisson. The assumption of exponential services times is hard to justify, but
here, it is a necessary evil. The lack of memory property of the exponential is
needed for the queue length to be a continuous time Markov chain. We begin
with the simplest examples.

Single server queues

Example 4.23. M/M/1 queue. In this system customers arrive to a single
server facility at the times of a Poisson process with rate λ, and each requires an
independent amount of service that has an exponential distribution with rate
µ. From the description it should be clear that the transition rates are

q(n, n + 1) = λ if n ≥ 0
q(n, n− 1) = µ if n ≥ 1

so we have a birth and death chain with birth rates λn = λ and death rates
µn = µ. Plugging into our formula for the stationary distribution, (4.18), we
have

π(n) =
λn−1 · · ·λ0

µn · · ·µ1
· π(0) =

(
λ

µ

)n

π(0) (4.22)

To find the value of π(0), we recall that when |θ| < 1,
∑∞

n=0 θn = 1/(1 − θ).
From this we see that if λ < µ, then

∞∑
n=0

π(n) =
∞∑

n=0

(
λ

µ

)n

π(0) =
π(0)

1− (λ/µ)

So to have the sum 1, we pick π(0) = 1 − (λ/µ), and the resulting stationary
distribution is the shifted geometric distribution

π(n) =
(

1− λ

µ

)(
λ

µ

)n

for n ≥ 0 (4.23)

It is comforting to note that this agrees with the idle time formula, (3.5), which
says π(0) = 1− λ/µ.

Having determined the stationary distribution we can now compute various
quantities of interest concerning the queue. We might be interested, for exam-
ple, in the distribution of the time TQ spent waiting in the queue when the
system is in equilibrium. To do this we begin by noting that the only way to
wait 0 is for the number of people waiting in the queue Q to be 0 so

P (TQ = 0) = P (Q = 0) = 1− λ

µ

When there is at least one person in the system, the arriving customer will
spend a positive amount of time in the queue. Writing f(x) for the density
function of TQ on (0,∞), we note that if there are n people in the system when
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the customer arrives, then the amount of time he needs to enter service has a
gamma(n, µ) density, so using (2.12) in Chapter 2

f(x) =
∞∑

n=1

(
1− λ

µ

)(
λ

µ

)n

e−µx µnxn−1

(n− 1)!

Changing variables m = n− 1 and rearranging, the above becomes

=
(

1− λ

µ

)
e−µxλ

∞∑
m=0

λmxm

m!
=

λ

µ
(µ− λ)e−(µ−λ)x

Recalling that P (TQ > 0) = λ/µ, we can see that the last result says that
the conditional distribution of TQ given that TQ > 0 is exponential with rate
µ− λ. From this we see that

WQ = ETQ =
λ

µ
· 1
µ− λ

To compare with the Pollaczek-Khintchine formula, (3.7), we note that the
service times si have Es2

i /2 = 1/µ2 to conclude:

WQ =
λE(s2

i /2)
1− λEsi

=
λ/µ2

1− λ/µ
=

λ

µ
· 1
µ− λ

With the waiting time in the queue calculated, we can see that the average
waiting time in the system is

W = WQ + Esi =
λ

µ
· 1
µ− λ

+
1
µ
· µ− λ

µ− λ
=

1
µ− λ

To get this result using Little’s formula L = λW we note that the queue length
in equilibrium has a shifted geometric distribution so

L =
1

1− λ/µ
− 1 =

µ

µ− λ
− µ− λ

µ− λ
=

λ

µ− λ

By our fourth queueing equation, (3.6), the server’s busy periods have mean

EB =
1
λ

(
1

π(0)
− 1
)

=
1
λ

(
µ

µ− λ
− 1
)

=
1

µ− λ

which agrees with (4.20).

Example 4.24. M/M/1 queue with a finite waiting room. In this system
customers arrive at the times of a Poisson process with rate λ. Customers enter
service if there are < N individuals in the system, but when there are N
customers in the system, the new arrival leaves never to return. Once in the
system, each customer requires an independent amount of service that has an
exponential distribution with rate µ.

Lemma 4.7. Let Xt be a Markov chain with a stationary distribution π that
satisfies the detailed balance condition. Let Yt be the chain constrained to stay
in a subset A of the state space. That is, jumps which take the chain out of
A are not allowed, but allowed jumps occur at the original rates. In symbols,
q̄(x, y) = q(x, y) if x, y ∈ A and 0 otherwise. Let C =

∑
y∈A π(y). Then

ν(x) = π(x)/C is a stationary distribution for Yt.
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Proof. If x, y ∈ A then detailed balance for Xt implies π(x)q(x, y) = π(y)q(y, x).
From this it follows that ν(x)q̄(x, y) = ν(y)q̄(y, x) so ν satisfies the detailed
balance condition for Yt.

It follows from Lemma 4.7 that

π(n) =
(

λ

µ

)n

/C for 1 ≤ n ≤ N

To compute the normalizing constant, we recall that if θ 6= 1, then

N∑
n=0

θn =
1− θN+1

1− θ
(4.24)

Suppose now that λ 6= µ. Using (4.24), we see that

C =
1− (λ/µ)N+1

1− λ/µ

so the stationary distribution is given by

π(n) =
1− λ/µ

1− (λ/µ)N+1

(
λ

µ

)n

for 0 ≤ n ≤ N (4.25)

The new formula is similar to the old one in (4.23) and when λ < µ reduces
to it as N → ∞. Of course, when the waiting room is finite, the state space
is finite and we always have a stationary distribution, even when λ > µ. The
analysis above has been restricted to λ 6= µ. However, it is easy to see that
when λ = µ the stationary distribution is π(n) = 1/(N + 1) for 0 ≤ n ≤ N .

To check formula (4.25), we note that the barbershop chain, Example 4.14,
has this form with N = 3, λ = 2, and µ = 3, so plugging into (4.25) and
multiplying numerator and denominator by 34 = 81, we have

π(0) =
1− 2/3

1− (2/3)4
=

81− 54
81− 16

= 27/65

π(1) =
2
3
π(0) = 18/65

π(2) =
2
3
π(1) = 12/65

π(3) =
2
3
π(2) = 8/65

From the equation for the equilibrium we have that the average queue length

L = 1 · 18
65

+ 2 · 12
65

+ 3 · 8
65

=
66
65

Customers will only enter the system if there are < 3 people, so

λa = 2(1− π(3)) = 114/65

and using the idle time formula (3.5)

π(0) = 1− λa

3
= 1− 114

195
=

81
195
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Using Little’s formula, Theorem 3.6, we see that the average waiting time for
someone who enters the system is

W =
L

λa
=

66/65
114/65

=
66
114

= 0.579 hours

To check this we note that

W =
1

1− π(3)

[
π(0)

1
3

+ π(1) · 2
3

+ π(2) · 1
]

=
27
57
· 1
3

+
18
57
· 2
3

+
12
57
· 3
3

=
9 + 12 + 12

57
=

33
57

=
66
114

From the last computation we see that WQ = W − 1/3 = 14/57. We do not
compare this result with the Pollaczek-Khintchine formula (3.7), since a key
ingredient in the derivation is false: arriving customers who enter the system
do not see the time average queue length.

By our fourth queueing equation, (3.6), the server’s busy periods have mean

EB =
1
λ

(
1

π(0)
− 1
)

=
1
2

(
65
27
− 1
)

=
19
27

which agrees with the computation in Example 4.21.

Multiple servers

Our next example is queue with s servers with an unlimited waiting room, a
system described more fully in Example 4.3.

Example 4.25. M/M/s queue. Imagine a bank with s ≥ 1 tellers that
serve customers who queue in a single line if all servers are busy. We imagine
that customers arrive at the times of a Poisson process with rate λ, and each
requires an independent amount of service that has an exponential distribution
with rate µ. As explained in Example 1.3, the flip rates are q(n, n+1) = λ and

q(n, n− 1) =

{
µn if n ≤ s

µs if n ≥ s

The conditions that result from using the detailed balance condition are

λπ(j − 1) = µjπ(j) for j ≤ s,

λπ(j − 1) = µjπ(j) for j ≥ s.

From this we conclude that

π(k) =


c

k!

(
λ

µ

)k

k ≤ s

c

s!sk−s

(
λ

µ

)k

k ≥ s

(4.26)

where c is a constant that makes the sum equal to 1. From the last formula we
see that if λ < sµ then

∑∞
j=0 π(j) <∞ and it is possible to pick c to make the

sum equal to 1. From this it follows that
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If λ < sµ, then the M/M/s queue has as stationary distribution.

The condition λ < sµ for the existence of a stationary distribution is natural
since it says that the service rate of the fully loaded system is larger than the
arrival rate, so the queue will not grow out of control. Conversely,

If λ > sµ, the M/M/s queue is transient.

Why is this true? An M/M/s queue with s rate µ servers is less efficient than
an M/M/1 queue with 1 rate sµ server, since the single server queue always
has departures at rate sµ, while the s server queue sometimes has departures
at rate nµ with n < s. An M/M/1 queue is transient if its arrival rate is larger
than its service rate.

Formulas for the stationary distribution π(n) for the M/M/s queue are
unpleasant to write down for a general number of servers s, but it is not hard
to use (4.26) to find the stationary distribution in a concrete cases: If s = 3,
λ = 2 and µ = 1, then

∞∑
k=2

π(k) =
c

2
· 22

∞∑
j=0

(2/3)j = 6c

so
∑∞

k=0 π(k) = 9c and we have

π(0) =
1
9
, π(1) =

2
9
, π(k) =

2
9

(
2
3

)k−2

for k ≥ 2

Our next result is a remarkable property of the M/M/s queue.

Theorem 4.8. If λ < µs, then the output process of the M/M/s queue in
equilibrium is a rate λ Poisson process.

Your first reaction to this should be that it is crazy. Customers depart at rate
0, µ, 2µ, . . ., sµ, depending on the number of servers that are busy and it is
usually the case that none of these numbers = λ. To further emphasize the
surprising nature of Theorem 4.8, suppose for concreteness that there is one
server, λ = 1, and µ = 10. If, in this situation, we have just seen 30 departures
in the last 2 hours, then it seems reasonable to guess that the server is busy
and the next departure will be exponential(10). However, if the output process
is Poisson, then the number of departures in disjoint intervals are independent.

Proof for s = 1. Our first step in making the result in Theorem 4.8 seem
reasonable is to check by hand that if there is one server and the queue is
in equilibrium, then the time of the first departure, D, has an exponential
distribution with rate λ. There are two cases to consider.

Case 1. If there are n ≥ 1 customers in the queue, then the time to the next
departure has an exponential distribution with rate µ, i.e.,

fD(t) = µe−µt

Case 2. If there are n = 0 customers in the queue, then we have to wait an
exponential(λ) amount of time until the first arrival, and then an independent
exponential(µ) for that customer to depart. If we let T1 and T2 be the waiting
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times for the arrival and for the departure, then breaking things down according
to the value of T1 = s, the density of D = T1 + T2 in this case is

fD(t) =
∫ t

0

λe−λs · µe−µ(t−s) ds = λµe−µt

∫ t

0

e−(λ−µ)s ds

=
λµe−µt

λ− µ

(
1− e−(λ−µ)t

)
=

λµ

λ− µ

(
e−µt − e−λt

)
The probability of 0 customers in equilibrium is 1 − (λ/µ) by (4.23). This

implies the probability of ≥ 1 customer is λ/µ, so combining the two cases:

fD(t) =
µ− λ

µ
· λµ

λ− µ

(
e−µt − e−λt

)
+

λ

µ
· µe−µt

At this point cancellations occur to produce the answer we claimed:

−λ
(
e−µt − e−λt

)
+ λe−µt = λe−λt

We leave it to the adventurous reader to try to repeat the last calculation for the
M/M/s queue with s > 1 where there is not a neat formula for the stationary
distribution.

Proof of Theorem 4.8. By repeating the proof of (1.13) one can show

Lemma 4.9. Fix T and let Ys = XT−s for 0 ≤ s ≤ T . Then Ys is a Markov
chain with transition probability

p̂t(i, j) =
π(j)pt(j, i)

π(i)

Proof. If s + t ≤ T then

P (Ys+t = j|Ys = i) =
P (Ys+t = j, Ys = i)

P (Ys = i)
=

P (XT−(s+t) = j, XT−s = i)
P (XT−s = i)

=
P (XT−(s+t) = j)P (XT−s = i|XT−(s+t) = j)

π(i)
=

π(j)pt(j, i)
π(i)

which is the desired result.

If π satisfies the detailed balance condition π(i)q(i, j) = π(j)q(j, i), then the
reversed chain has transition probability p̂t(i, j) = pt(i, j).

As we learned in Example 4.25, when λ < µs the M/M/s queue is a birth
and death chain with a stationary distribution π that satisfies the detailed
balance condition. Lemma 4.9 implies that if we take the movie of the Markov
chain in equilibrium then we see something that has the same distribution as the
M/M/s queue. Reversing time turns arrivals into departures, so the departures
must be a Poisson process with rate λ.

It should be clear from the proof just given that we also have:

Theorem 4.10. Consider a queue in which arrivals occur according to a Pois-
son process with rate λ and customers are served at rate µn when there are n
in the system. Then as along as there is a stationary distribution the output
process will be a rate λ Poisson process.
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A second refinement that will be useful in the next section is

Theorem 4.11. Let N(t) be the number of departures between time 0 and time
t for the M/M/1 queue X(t) started from its equilibrium distribution. Then
{N(s) : 0 ≤ s ≤ t} and X(t) are independent.

Why is this true? At first it may sound deranged to claim that the output
process up to time t is independent of the queue length. However, if we reverse
time, then the departures before time t turn into arrivals after t, and these are
obviously independent of the queue length at time t, X(t).

4.6 Queueing Networks*

In many situations we are confronted with more than one queue. For example,
when you go to the Department of Motor Vehicles to renew your driver’s license
you must (i) take a test on the driving laws, (ii) have your test graded, (iii)
pay your fees, and (iv) get your picture taken. A simple model of this type of
situation with only two steps is:

Example 4.26. Two-station tandem queue. In this system customers at
times of a Poisson process with rate λ arrive at service facility 1 where they
each require an independent exponential amount of service with rate µ1. When
they complete service at the first site, they join a second queue to wait for an
exponential amount of service with rate µ2.

-
λ

- -µ1 µ2

Our main problem is to find conditions that guarantee that the queue sta-
bilizes, i.e., has a stationary distribution. This is simple in the tandem queue.
The first queue is not affected by the second, so if λ < µ1, then (4.23) tells us
that the equilibrium probability of the number of customers in the first queue,
X1

t , is given by the shifted geometric distribution

P (X1
t = m) =

(
λ

µ1

)m(
1− λ

µ1

)
In the previous section we learned that the output process of an M/M/1

queue in equilibrium is a rate λ Poisson process. This means that if the first
queue is in equilibrium, then the number of customers in the queue, X2

t , is itself
an M/M/1 queue with arrivals at rate λ (the output rate for 1) and service rate
µ2. Using the results in (4.23) again, the number of individuals in the second
queue has stationary distribution

P (X2
t = n) =

(
λ

µ2

)n(
1− λ

µ2

)
To specify the stationary distribution of the system, we need to know the

joint distribution of X1
t and X2

t . The answer is somewhat remarkable: in
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equilibrium the two queue lengths are independent.

P (X1
t = m,X2

t = n) =
(

λ

µ1

)m(
1− λ

µ1

)
·
(

λ

µ2

)n(
1− λ

µ2

)
(4.27)

Why is this true? Theorem 4.11 implies that the queue length and the departure
process are independent.

Since there is more than a little hand-waving going on in the proof of The-
orem 4.11 and its application here, it is comforting to note that one can simply
verify from the definitions that

Lemma 4.12. If π(m,n) = cλm+n/(µm
1 µn

2 ), where c = (1 − λ/µ1)(1 − λ/µ2)
is a constant chosen to make the probabilities sum to 1, then π is a stationary
distribution.

Proof. The first step in checking πQ = 0 is to compute the rate matrix Q. To
do this it is useful to draw a picture which assumes m,n > 0

(m− 1, n + 1) (m, n + 1)

(m− 1, n) (m, n) (m + 1, n)

(m, n− 1) (m + 1, n− 1)

-λ -λ
?

µ2

?

µ2

@
@
@
@

@I
µ1

@
@

@
@

@I
µ1

@
@
@
@
@

(a)

(b)

(c)

The rate arrows plus the ordinary lines on the picture, make three triangles.
We will now check that the flows out of and into (m,n) in each triangle balance.
In symbols we note that

(a) µ1π(m,n) =
cλm+n

µm−1
1 µn

2

= λπ(m− 1, n)

(b) µ2π(m,n) =
cλm+n

µm
1 µn−1

2

= µ1π(m + 1, n− 1)

(c) λπ(m,n) =
cλm+n+1

µm
1 µn

2

= µ2π(m,n + 1)

This shows that πQ = 0 when m,n > 0. There are three other cases to
consider: (i) m = 0, n > 0, (ii) m > 0, n = 0, and (iii) m = 0, n = 0. In these
cases some of the rates are missing: (i) those in (a), (ii) those in (b), and (iii)
those in (a) and (b). However, since the rates in each group balance we have
πQ = 0.
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Example 4.27. General two-station queue. Suppose that at station i:
arrivals from outside the system occur at rate λi, service occurs at rate µi, and
departures go to the other queue with probability pi and leave the system with
probability 1− pi.

? ?

? ?

λ1 λ2

1− p1 1− p2

-
�

p1

p2

µ1 µ2

Our question is: When is the system stable? That is, when is there a stationary
distribution? To get started on this question suppose that both servers are busy.
In this case work arrives at station 1 at rate λ1 + p2µ2, and work arrives at
station 2 at rate λ2 + p1µ1. It should be intuitively clear that:

(i) if λ1 + p2µ2 < µ1 and λ2 + p1µ1 < µ2, then each server can handle their
maximum arrival rate and the system will have a stationary distribution.

(ii) if λ1 + p2µ2 > µ1 and λ2 + p1µ1 > µ2, then there is positive probability
that both servers will stay busy for all time and the queue lengths will tend to
infinity.

Not covered by (i) or (ii) is the situation in which server 1 can handle her worst
case scenario but server 2 cannot cope with his:

λ1 + p2µ2 < µ1 and λ2 + p1µ1 > µ2

In some situations in this case, queue 1 will be empty often enough to reduce
the arrivals at station 2 so that server 2 can cope with his workload. As we will
see, a concrete example of this phenomenon occurs when

λ1 = 1, µ1 = 4, p1 = 1/2 λ2 = 2, µ2 = 3.5, p2 = 1/4

To check that for these rates server 1 can handle the maximum arrival rate but
server 2 cannot, we note that

λ1 + p2µ2 = 1 +
1
4
· 3.5 = 1.875 < 4 = µ1

λ2 + p1µ1 = 2 +
1
2
· 4 = 4 > 3.5 = µ2

To derive general conditions that will allow us to determine when a two-
station network is stable, let ri be the long-run average rate that customers
arrive at station i. If there is a stationary distribution, then ri must also be
the long run average rate at which customers leave station i or the queue would
grow linearly in time. If we want the flow in and out of each of the stations to
balance, then we need

r1 = λ1 + p2r2 and r2 = λ2 + p1r1 (4.28)
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Plugging in the values for this example and solving gives

r1 = 1 +
1
4
r2 and r2 = 2 +

1
2
r1 = 2 +

1
2

(
1 +

1
4
r2

)
So (7/8)r2 = 5/2 or r2 = 20/7, and r1 = 1 + 20/28 = 11/7. Since

r1 = 11/7 < 4 = µ1 and r2 = 20/7 < 3.5 = µ2

this analysis suggests that there will be a stationary distribution.
To prove that there is one, we return to the general situation and suppose

that the ri we find from solving (4.28) satisfy ri < µi. Thinking of two inde-
pendent M/M/1 queues with arrival rates ri, we let αi = ri/µi and guess:

Theorem 4.13. If π(m,n) = cαm
1 αn

2 where c = (1 − α1)(1 − α2) then π is a
stationary distribution.

Proof. The first step in checking πQ = 0 is to compute the rate matrix Q. To
do this it is useful to draw a picture. Here, we have assumed that m and n are
both positive. To make the picture slightly less cluttered, we have only labeled
half of the arrows and have used qi = 1− pi.

(m− 1, n + 1) (m, n + 1)

(m− 1, n) (m, n) (m + 1, n)

(m, n− 1) (m + 1, n− 1)

�
-

�
-

?

6

?

6@
@
@
@
@R@
@
@

@
@I

@
@
@
@
@R@
@

@
@

@I @
@
@
@
@

(a)

(b)

(c)

λ1

µ1q1

µ2p2

λ2

µ1p1

µ2q2

The rate arrows plus the dotted lines in the picture make three triangles. We
will now check that the flows out of and into (m,n) in each triangle balance.
In symbols we need to show that

(a) µ1π(m,n) = µ2p2π(m− 1, n + 1) + λ1π(m− 1, n)
(b) µ2π(m,n) = µ1p1π(m + 1, n− 1) + λ2π(m,n− 1)
(c) (λ1 + λ2)π(m,n) = µ2(1− p2)π(m,n + 1) + µ1(1− p1)π(m + 1, n)

Filling in π(m,n) = cαm
1 αn

2 and canceling out c, we have

µ1α
m
1 αn

2 = µ2p2α
m−1
1 αn+1

2 + λ1α
m−1
1 αn

2

µ2α
m
1 αn

2 = µ1p1α
m+1
1 αn−1

2 + λ2α
m
1 αn−1

2

(λ1 + λ2)αm
1 αn

2 = µ2(1− p2)αm
1 αn+1

2 + µ1(1− p1)αm+1
1 αn

2
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Canceling out the highest powers of α1 and α2 common to all terms in each
equation gives

µ1α1 = µ2p2α2 + λ1

µ2α2 = µ1p1α1 + λ2

(λ1 + λ2) = µ2(1− p2)α2 + µ1(1− p1)α1

Filling in µiαi = ri, the three equations become

r1 = p2r2 + λ1

r2 = p1r1 + λ2

(λ1 + λ2) = r2(1− p2) + r1(1− p1)

The first two equations hold by (4.28). The third is the sum of the first two, so
it holds as well.

This shows that πQ = 0 when m,n > 0. As in the proof for the tandem
queue, there are three other cases to consider: (i) m = 0, n > 0, (ii) m > 0,
n = 0, and (iii) m = 0, n = 0. In these cases some of the rates are missing.
However, since the rates in each group balance we have πQ = 0.

Example 4.28. Network of M/M/1 queues. Assume now that there are
stations 1 ≤ i ≤ K. Arrivals from outside the system occur to station i at
rate λi and service occurs there at rate µi. Departures go to station j with
probability p(i, j) and leave the system with probability

q(i) = 1−
∑

j

p(i, j) (4.29)

To have a chance of stability we must suppose

(A) For each i it is possible for a customer entering at i to leave the system. That
is, for each i there is a sequence of states i = j0, j1, . . . jn with p(jm−1, jm) > 0
for 1 ≤ m ≤ n and q(jn) > 0.

Generalizing (4.28), we investigate stability by solving the system of equa-
tions for the rj that represent the arrival rate at station j. As remarked earlier,
the departure rate from station j must equal the arrival rate, or a linearly grow-
ing queue would develop. Thinking about the arrival rate at j in two different
ways, it follows that

rj = λj +
K∑

i=1

rip(i, j) (4.30)

This equation can be rewritten in matrix form as r = λ + rp and solved as

r = λ(I − p)−1 (4.31)

By reasoning in Section 1.9, where unfortunately r is what we are calling p here:

r =
∞∑

n=0

λpn =
∞∑

n=0

K∑
i=1

λip
n(i, j)

The answer is reasonable: pn(i, j) is the probability a customer entering at i is
at j after he has completed n services. The sum then adds the rates for all the
ways of arriving at j.
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Having found the arrival rates at each station, we can again be brave and
guess that if rj < µj , then the stationary distribution is given by

π(n1, . . . , nK) =
K∏

j=1

(
rj

µj

)nj
(

1− rj

µj

)
(4.32)

This is true, but the proof is more complicated than for the two station exam-
ples, so we omit it.

Example 4.29. At a government agency entering customers always go to server
1. After completing service there, 30% leave the system while 70% go to server
2. At server 2, 50% go to server 3, 20% of the customers have to return to
server 1, and 30% leave the system. From server 3, 20% go back to server 2 but
the other 80% can go. That is, the routing matrix is

p =

1 2 3
1 0 .7 0
2 .2 0 .5
3 0 .2 0

Suppose that arrivals from outside only occur at server 1 and at rate λ1 = 3.8
per hour. Find the stationary distribution if the service rates are µ1 = 9,
µ2 = 7, and µ3 = 7.

The first step is to solve the equations

rj = λj +
3∑

i=1

rip(i, j)

By (4.30) the solution is r = λ(I − p)−1, where

(I − p)−1 =

45/38 35/38 35/76
5/19 25/19 25/38
1/19 5/19 43/38


so multiplying the first row by λ1, we have r1 = 9/2, r2 = 7/2, and r3 = 7/4.
Since each ri < µi the stationary distribution is:

π(n1, n2, n3) =
3
16

(1/2)n1(1/2)n2(1/4)n3

It is easy to see that Little’s formula also applies to queueing networks. In
this case the average number of people in the system is

L =
3∑

i=1

1
1− (ri/µi)

− 1 = 1 + 1 +
1
3

=
7
3

so the average waiting time for a customer entering the system is

W =
L

λ
=

7/3
19/5

=
35
57

= 0.6140.
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4.7 Chapter Summary

In principle continuous time Markov chains are defined by giving their transition
probabilities pt(i, j), which satisfy the Chapman-Kolmogorov equation.∑

k

ps(i, k)pt(k, j) = ps+t(i, j)

In practice, the basic data to describe the chain are the rates q(i, j) at which
jumps occur from i to j 6= i. If we let λi =

∑
j 6=i q(i, j) be the total rate of

jumps out of i and let

Q(i, j) =

{
q(i, j) i 6= j

−λi i = j

then the transition probability satisfies the Kolmogorov differential equations:

p′t(i, j) =
∑

k

Q(i, k)pt(k, j) =
∑

k

pt(i, k)Q(k, j)

These equations can only be solved explicitly in a small number of examples,
but they are essential for developing the theory.

Embedded Markov chain. The discrete time chain with transition proba-
bility

r(i, j) =
q(i, j)

λi

goes through the same sequence of states as Xt but stays in each one for on
unit of time. Let VA = min{t : Xt ∈ A} be the time of the first visit to A.
Then h(i) = Pi(X(VA) = a) satisfies h(a) = 1, h(b) = 0 for b ∈ A− {a} and

h(i) =
∑

j

r(i, j)h(j) for i 6∈ A.

The expected hitting time g(i) = EiVA satsifies g(a) = 0 for a ∈ A and

g(i) =
1
λi

+
∑

j

r(i, j)g(j) for i 6∈ A.

One can also work directly with the transition rates. In the first case the
equation with the same boundary conditions (h(a) = 1, h(b) = 0 for b ∈ A−{a}
and for i 6∈ A) is ∑

i

Q(i, j)h(j) = 0 for i 6∈ A

In the second case, if if we let R be the part of the Q-matrix where i, j 6∈ A
then

g = −R−11

where 1 is a column vector of all 1’s.

Stationary distributions. A stationary distribution has
∑

i π(i) = 1 and
satisfies πpt = π for all t > 0, which is equivalent to πQ = 0. To solve these
equations mechanically, we replace the last column of Q by all 1’s to define a
matrix A and then π will be the last row of A−1.
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If Xt is irreducible and has stationary distribution π then

pt(i, j)→ π(j) as t→∞

Detailed balance condition. A sufficient condition to be stationary is that

π(i)q(i, j) = π(j)q(j, i)

There may not be a stationary distribution with this property, but there is one
if we have a birth and death chain: i.e., the state space is {0, 1, . . . r}, where r
may be ∞, and we have q(i, j) = 0 when |i− j| > 1. In this case we have

π(n) =
λn−1 · · ·λ0

µn · · ·µ1
· π(0)

Queues provide a number of interesting examples of birth and death chains.

4.8 Exercises

4.1. A salesman flies around between Atlanta, Boston, and Chicago as follows.

A B C
A −4 2 2
B 3 −4 1
C 5 0 −5

(a) Find the limiting fraction of time she spends in each city. (b) What is her
average number of trips each year from Boston to Atlanta?

4.2. A small computer store has room to display up to 3 computers for sale.
Customers come at times of a Poisson process with rate 2 per week to buy
a computer and will buy one if at least 1 is available. When the store has
only 1 computer left it places an order for 2 more computers. The order takes
an exponentially distributed amount of time with mean 1 week to arrive. Of
course, while the store is waiting for delivery, sales may reduce the inventory
to 1 and then to 0. (a) Write down the matrix of transition rates Qij and solve
πQ = 0 to find the stationary distribution. (b) At what rate does the store
make sales?

4.3. Consider two machines that are maintained by a single repairman. Ma-
chine i functions for an exponentially distributed amount of time with rate λi

before it fails. The repair times for each unit are exponential with rate µi.
They are repaired in the order in which they fail. (a) Formulate a Markov
chain model for this situation with state space {0, 1, 2, 12, 21}. (b) Suppose
that λ1 = 1, µ1 = 2, λ2 = 3, µ2 = 4. Find the stationary distribution.

4.4. Consider the set-up of the previous problem but now suppose machine 1
is much more important than 2, so the repairman will always service 1 if it is
broken. (a) Formulate a Markov chain model for the this system with state
space {0, 1, 2, 12} where the numbers indicate the machines that are broken at
the time. (b) Suppose that λ1 = 1, µ1 = 2, λ2 = 3, µ2 = 4. Find the stationary
distribution.
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4.5. Two people are working in a small office selling shares in a mutual fund.
Each is either on the phone or not. Suppose that salesman i is on the phone
for an exponential amount of time with rate µi and then off the phone for an
exponential amount of time with rate λi. (a) Formulate a Markov chain model
for this system with state space {0, 1, 2, 12} where the state indicates who is on
the phone. (b) Find the stationary distribution.

4.6. (a) Consider the special case of the previous problem in which λ1 = λ2 = 1,
and µ1 = µ2 = 3, and find the stationary probabilities. (b) Suppose they
upgrade their telephone system so that a call to one line that is busy is forwarded
to the other phone and lost if that phone is busy. Find the new stationary
probabilities.

4.7. Two people who prepare tax forms are working in a store at a local mall.
Each has a chair next to his desk where customers can sit and be served. In
addition there is one chair where customers can sit and wait. Customers arrive
at rate λ but will go away if there is already someone sitting in the chair waiting.
Suppose that server i requires an exponential amount of time with rate µi and
that when both servers are free an arriving customer is equally likely to choose
either one. (a) Formulate a Markov chain model for this system with state space
{0, 1, 2, 12, 3} where the first four states indicate the servers that are busy while
the last indicates that there is a total of three customers in the system: one
at each server and one waiting. (b) Consider the special case in which λ = 2,
µ1 = 3 and µ2 = 3. Find the stationary distribution.

4.8. Two queues in series. Consider a two station queueing network in which
arrivals only occur at the first server and do so at rate 2. If a customer finds
server 1 free he enters the system; otherwise he goes away. When a customer is
done at the first server he moves on to the second server if it is free and leaves
the system if it is not. Suppose that server 1 serves at rate 4 while server 2
serves at rate 2. Formulate a Markov chain model for this system with state
space {0, 1, 2, 12} where the state indicates the servers who are busy. In the long
run (a) what proportion of customers enter the system? (b) What proportion
of the customers visit server 2?

Detailed balance

4.9. A hemoglobin molecule can carry one oxygen or one carbon monoxide
molecule. Suppose that the two types of gases arrive at rates 1 and 2 and
attach for an exponential amount of time with rates 3 and 4, respectively.
Formulate a Markov chain model with state space {+, 0,−} where + denotes
an attached oxygen molecule, − an attached carbon monoxide molecule, and 0 a
free hemoglobin molecule and find the long-run fraction of time the hemoglobin
molecule is in each of its three states.

4.10. A machine is subject to failures of types i = 1, 2, 3 at rates λi and a failure
of type i takes an exponential amount of time with rate µi to repair. Formu-
late a Markov chain model with state space {0, 1, 2, 3} and find its stationary
distribution.

4.11. Solve the previous problem in the concrete case λ1 = 1/24, λ2 = 1/30,
λ3 = 1/84, µ1 = 1/3, µ2 = 1/5, and µ3 = 1/7.
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4.12. Three frogs are playing near a pond. When they are in the sun they get
too hot and jump in the lake at rate 1. When they are in the lake they get too
cold and jump onto the land at rate 2. Let Xt be the number of frogs in the sun
at time t. (a) Find the stationary distribution for Xt. (b) Check the answer to
(a) by noting that the three frogs are independent two-state Markov chains.

4.13. There are 15 lily pads and 6 frogs. Each frog at rate 1 gets the urge to
jump and when it does, it moves to one of the 9 vacant pads chosen at random.
Find the stationary distribution for the set of occupied lily pads.

4.14. A computer lab has three laser printers, two that are hooked to the net-
work and one that is used as a spare. A working printer will function for an
exponential amount of time with mean 20 days. Upon failure it is immediately
sent to the repair facility and replaced by another machine if there is one in
working order. At the repair facility machines are worked on by a single repair-
man who needs an exponentially distributed amount of time with mean 2 days
to fix one printer. In the long run how often are there two working printers?

4.15. A computer lab has three laser printers that are hooked to the network.
A working printer will function for an exponential amount of time with mean 20
days. Upon failure it is immediately sent to the repair facility. There machines
are worked on by two repairman who can each repair one printer in an expo-
nential amount of time with mean 2 days. However, it is not possible for two
people to work on one printer at once. (a) Formulate a Markov chain model for
the number of working printers and find the stationary distribution. (b) How
often are both repairmen busy? (c) What is the average number of machines
in use?

4.16. A computer lab has 3 laser printers and 5 toner cartridges. Each ma-
chine requires one toner cartridges which lasts for an exponentially distributed
amount of time with mean 6 days. When a toner cartridge is empty it is sent
to a repairman who takes an exponential amount of time with mean 1 day to
refill it. (a) Compute the stationary distribution. (b) How often are all three
printers working?

4.17. Customers arrive at a full-service one-pump gas station at rate of 20 cars
per hour. However, customers will go to another station if there are at least
two cars in the station, i.e., one being served and one waiting. Suppose that the
service time for customers is exponential with mean 6 minutes. (a) Formulate
a Markov chain model for the number of cars at the gas station and find its
stationary distribution. (b) On the average how many customers are served per
hour?

4.18. Solve the previous problem for a two-pump self-serve station under the
assumption that customers will go to another station if there are at least four
cars in the station, i.e., two being served and two waiting.

4.19. Consider a barbershop with two barbers and two waiting chairs. Cus-
tomers arrive at a rate of 5 per hour. Customers arriving to a fully occupied
shop leave without being served. Find the stationary distribution for the num-
ber of customers in the shop, assuming that the service rate for each barber is
2 customers per hour.

4.20. Consider a barbershop with one barber who can cut hair at rate 4 and
three waiting chairs. Customers arrive at a rate of 5 per hour. (a) Argue that
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this new set-up will result in fewer lost customers than the previous scheme.
(b) Compute the increase in the number of customers served per hour.

4.21. There are two tennis courts. Pairs of players arrive at rate 3 per hour
and play for an exponentially distributed amount of time with mean 1 hour. If
there are already two pairs of players waiting new arrivals will leave. Find the
stationary distribution for the number of courts occupied.

4.22. A taxi company has three cabs. Calls come in to the dispatcher at
times of a Poisson process with rate 2 per hour. Suppose that each requires an
exponential amount of time with mean 20 minutes, and that callers will hang
up if they hear there are no cabs available. (a) What is the probability all three
cabs are busy when a call comes in? (b) In the long run, on the average how
many customers are served per hour?

4.23. Detailed balance for three state chains. Consider a chain with state space
{1, 2, 3} in which q(i, j) > 0 if i 6= j and suppose that there is a stationary
distribution that satisfies the detailed balance condition. (a) Let π(1) = c. Use
the detailed balance condition between 1 and 2 to find π(2) and between 2 and
3 to find π(3). (b) What conditions on the rates must be satisfied for there to
be detailed balance between 1 and 3?

4.24. Kolmogorov cycle condition. Consider an irreducible Markov chain with
state space S. We say that the cycle condition is satisfied if given a cycle of
states x0, x1, . . . , xn = x0 with q(xi−1, xi) > 0 for 1 ≤ i ≤ n, we have

n∏
i=1

q(xi−1, xi) =
n∏

i=1

q(xi, xi−1)

(a) Show that if q has a stationary distribution that satisfies the detailed balance
condition, then the cycle condition holds. (b) To prove the converse, suppose
that the cycle condition holds. Let a ∈ S and set π(a) = c. For b 6= a in S let
x0 = a, x1 . . . xk = b be a path from a to b with q(xi−1, xi) > 0 for 1 ≤ i ≤ k let

π(b) =
k∏

j=1

q(xi−1, xi)
q(xi, xi−1)

Show that π(b) is well defined, i.e., is independent of the path chosen. Then
conclude that π satisfies the detailed balance condition.

Hitting times and exit distributions

4.25. Consider the salesman from Problem 4.1. She just left Atlanta. (a) What
is the expected time until she returns to Atlanta? (b) Find the answer to (a)
by computing the stationary distribution.

4.26. Consider the two queues in series in Problem 4.8. (a) Use the methods
of Section 4.4 to compute the expected duration of a busy period. (b) calculate
this from the stationary distribution.

4.27. We now take a different approach to analyzing the Duke Basketball chain,
Example 4.11.
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0 1 2 3
0 −3 2 1 0
1 0 −5 5 0
2 1 0 −2.5 1.5
3 6 0 0 −6

(a) Find g(i) = Ei(V1) for i = 0, 2, 3. (b) Use the solution to (a) to show that
the number of Duke scores (visits to state 1) by time t has N1(t)/t → 0.6896
as computed previously. (c) Compute h(i) = Pi(V3 < V1) for i = 0, 2. (d)
Use this to compute the distribution of X = the number of time UNC scores
between successive Duke baskets. (e) Use the solution of (d) to conclude that
the number of UNC scores (visits to state 3) by time t has N3(t)/t → 0.6206
as computed previously.

4.28. Brad’s relationship with his girl friend Angelina changes between Amorous,
Bickering, Confusion, and Depression according to the following transition rates
when t is the time in months.

A B C D
A −4 3 1 0
B 4 −6 2 0
C 2 3 −6 1
D 0 0 2 −2

(a) Find the long run fraction of time he spends in these four states? (b) Does
the chain satisfy the detailed balance condition? (c) They are amorous now.
What is the expected amount of time until depression sets in?

4.29. A small company maintains a fleet of four cars to be driven by its workers
on business trips. Requests to use cars are a Poisson process with rate 1.5 per
day. A car is used for an exponentially distributed time with mean 2 days.
Forgetting about weekends, we arrive at the following Markov chain for the
number of cars in service.

0 1 2 3 4
0 −1.5 1.5 0 0 0
1 0.5 −2.0 1.5 0 0
2 0 1.0 −2.5 1.5 0
3 0 0 1.5 −3 1.5
4 0 0 0 2 −2

(a) Find the stationary distribution. (b) At what rate do unfulfilled requests
come in? How would this change if there were only three cars? (c) Let
g(i) = EiT4. Write and solve equations to find the g(i). (d) Use the stationary
distribution to compute E3T4.

4.30. A submarine has three navigational devices but can remain at sea if at
least two are working. Suppose that the failure times are exponential with
means 1 year, 1.5 years, and 3 years. Formulate a Markov chain with states 0
= all parts working, 1,2,3 = one part failed, and 4 = two failures. Compute
E0T4 to determine the average length of time the boat can remain at sea.

4.31. Excited by the recent warm weather Jill and Kelly are doing spring
cleaning at their apartment. Jill takes an exponentially distributed amount of
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time with mean 30 minutes to clean the kitchen. Kelly takes an exponentially
distributed amount of time with mean 40 minutes to clean the bath room. The
first one to complete their task will go outside and start raking leaves, a task
that takes an exponentially distributed amount of time with a mean of one hour.
When the second person is done inside, they will help the other and raking will
be done at rate 2. (Of course the other person may already be done raking in
which case the chores are done.) What is the expected time until the chores
are all done?

Markovian queues

4.32. Consider a taxi station at an airport where taxis and (groups of) cus-
tomers arrive at times of Poisson processes with rates 2 and 3 per minute.
Suppose that a taxi will wait no matter how many other taxis are present.
However, if an arriving person does not find a taxi waiting he leaves to find
alternative transportation. (a) Find the proportion of arriving customers that
get taxis. (b) Find the average number of taxis waiting.

4.33. Queue with impatient customers. Customers arrive at a single server at
rate λ and require an exponential amount of service with rate µ. Customers
waiting in line are impatient and if they are not in service they will leave at
rate δ independent of their position in the queue. (a) Show that for any δ > 0
the system has a stationary distribution. (b) Find the stationary distribution
in the very special case in which δ = µ.

4.34. Customers arrive at the Shortstop convenience store at a rate of 20 per
hour. When two or fewer customers are present in the checkout line, a single
clerk works and the service time is 3 minutes. However, when there are three
or more customers are present, an assistant comes over to bag up the groceries
and reduces the service time to 2 minutes. Assuming the service times are
exponentially distributed, find the stationary distribution.

4.35. Customers arrive at a carnival ride at rate λ. The ride takes an expo-
nential amount of time with rate µ, but when it is in use, the ride is subject to
breakdowns at rate α. When a breakdown occurs all of the people leave since
they know that the time to fix a breakdown is exponentially distributed with
rate β. (i) Formulate a Markov chain model with state space {−1, 0, 1, 2, . . .}
where −1 is broken and the states 0, 1, 2, . . . indicate the number of people
waiting or in service. (ii) Show that the chain has a stationary distribution of
the form π(−1) = a, π(n) = bθn for n ≥ 0.

4.36. Customers arrive at a two-server station according to a Poisson process
with rate λ. Upon arriving they join a single queue to wait for the next available
server. Suppose that the service times of the two servers are exponential with
rates µa and µb and that a customer who arrives to find the system empty
will go to each of the servers with probability 1/2. Formulate a Markov chain
model for this system with state space {0, a, b, 2, 3, . . .} where the states give the
number of customers in the system, with a or b indicating there is one customer
at a or b respectively. Show that this system is time reversible. Set π(2) = c
and solve to find the limiting probabilities in terms of c.

4.37. At present the Economics department and the Sociology department each
have one typist who can type 25 letters a day. Economics requires an average
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of 20 letters per day, while Sociology requires only average of 15. Assuming
Poisson arrival and exponentially distributed typing times find (a) the average
queue length and average waiting time in each departments (b) the average
overall waiting time if they merge their resources to form a typing pool.

4.38. Consider an M/M/s queue with no waiting room. In words, requests for
a phone line occur at a rate λ. If one of the s lines is free, the customer takes
it and talks for an exponential amount of time with rate µ. If no lines are free,
the customer goes away never to come back. Find the stationary distribution.
You do not have to evaluate the normalizing constant.

Queueing networks

4.39. Consider a production system consisting of a machine center followed
by an inspection station. Arrivals from outside the system occur only at the
machine center and follow a Poisson process with rate λ. The machine center
and inspection station are each single-server operations with rates µ1 and µ2.
Suppose that each item independently passes inspection with probability p.
When an object fails inspection it is sent to the machine center for reworking.
Find the conditions on the parameters that are necessary for the system to have
a stationary distribution.

4.40. Consider a three station queueing network in which arrivals to servers
i = 1, 2, 3 occur at rates 3, 2, 1, while service at stations i = 1, 2, 3 occurs at
rates 4, 5, 6. Suppose that the probability of going to j when exiting i, p(i, j) is
given by p(1, 2) = 1/3, p(1, 3) = 1/3, p(2, 3) = 2/3, and p(i, j) = 0 otherwise.
Find the stationary distribution.

4.41. Feed-forward queues. Consider a k station queueing network in which
arrivals to server i occur at rate λi and service at station i occurs at rate µi.
We say that the queueing network is feed-forward if the probability of going from
i to j < i has p(i, j) = 0. Consider a general three station feed-forward queue.
What conditions on the rates must be satisfied for a stationary distribution to
exist?

4.42. Queues in series. Consider a k station queueing network in which arrivals
to server i occur at rate λi and service at station i occurs at rate µi. In
this problem we examine the special case of the feed-forward system in which
p(i, i + 1) = pi for 1 ≤ i < k. In words the customer goes to the next station
or leaves the system. What conditions on the rates must be satisfied for a
stationary distribution to exist?

4.43. At registration at a very small college, students arrive at the English
table at rate 10 and at the Math table at rate 5. A student who completes
service at the English table goes to the Math table with probability 1/4 and
to the cashier with probability 3/4. A student who completes service at the
Math table goes to the English table with probability 2/5 and to the cashier
with probability 3/5. Students who reach the cashier leave the system after
they pay. Suppose that the service times for the English table, Math table, and
cashier are 25, 30, and 20, respectively. Find the stationary distribution.

4.44. At a local grocery store there are queues for service at the fish counter
(1), meat counter (2), and café (3). For i = 1, 2, 3 customers arrive from outside
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the system to station i at rate i, and receive service at rate 4 + i. A customer
leaving station i goes to j with probabilities p(i, j) given the following matrix

1 2 3
1 0 1/4 1/2
2 1/5 0 1/5
3 1/3 1/3 0

In equilibrium what is the probability no one is in the system, i.e., π(0, 0, 0).

4.45. Three vendors have vegetable stands in a row. Customers arrive at
the stands 1, 2, and 3 at rates 10, 8, and 6. A customer visiting stand 1 buys
something and leaves with probability 1/2 or visits stand 2 with probability 1/2.
A customer visiting stand 3 buys something and leaves with probability 7/10 or
visits stand 2 with probability 3/10. A customer visiting stand 2 buys something
and leaves with probability 4/10 or visits stands 1 or 3 with probability 3/10
each. Suppose that the service rates at the three stands are large enough so that
a stationary distribution exists. At what rate do the three stands make sales.
To check your answer note that since each entering customers buys exactly once
the three rates must add up to 10+8+6=24.

4.46. Four children are playing two video games. The first game, which takes
an average of 4 minutes to play, is not very exciting, so when a child completes
a turn on it they always stand in line to play the other one. The second one,
which takes an average of 8 minutes, is more interesting so when they are done
they will get back in line to play it with probability 1/2 or go to the other
machine with probability 1/2. Assuming that the turns take an exponentially
distributed amount of time, find the stationary distribution of the number of
children playing or in line at each of the two machines.
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Chapter 5

Martingales

In this chapter we will introduce a class of process that can be thought of as the
fortune of a gambler betting on a fair game. These results will be important
when we consider applications to finance in the next chapter. In addition, they
will allow us to give more transparent proofs of some facts from Chapter 1
concerning exit distributions and exit times for Markov chains.

5.1 Conditional Expectation

Our study of martingales will rely heavily on the notion of conditional expec-
tation and involve some formulas that may not be familiar, so we will review
them here. We begin with several definitions. Given an event A we define its
indicator function

1A =

{
1 x ∈ A

0 x ∈ Ac

In words, 1A is “1 on A” (and 0 otherwise). Given a random variable Y , we
define the integral of Y over A to be

E(Y ;A) = E(Y 1A)

Note that multiplying Y by 1A sets the product = 0 on Ac and leaves the values
on A unchanged. Finally, we define the conditional expectation of Y given
A to be

E(Y |A) = E(Y ;A)/P (A)

This is the expected value for the conditional probability defined by

P (·|A) = P (· ∩A)/P (A)

Example 5.1. A simple but important special case arises when the random
variable Y and the set A are independent, i.e., for any set B we have

P (Y ∈ B,A) = P (Y ∈ B)P (A)

Noticing that this implies that P (Y ∈ B,Ac) = P (Y ∈ B)P (Ac) and comparing
with the definition of independence of random variables in (A.13), we see that
this holds if and only Y and 1A are independent, so Theorem A.1 implies

E(Y ;A) = E(Y 1A) = EY · E1A

159



160 CHAPTER 5. MARTINGALES

and we have
E(Y |A) = EY (5.1)

It is easy to see from the definition that the integral over A is linear:

E(Y + Z;A) = E(Y ;A) + E(Z;A) (5.2)

so dividing by P (A), conditional expectation also has this property

E(Y + Z|A) = E(Y |A) + E(Z|A) (5.3)

Here and in later formulas and theorems, we always assume that all
of the indicated expected values exist.

In addition, as in ordinary integration one can take constants outside of the
integral.

Lemma 5.1. If X is a constant c on A, then E(XY |A) = cE(Y |A).

Proof. Since X = c on A, XY 1A = cY 1A. Taking expected values and pulling
the constant out front, E(XY 1A) = E(cY 1A) = cE(Y 1A). Dividing by P (A)
now gives the result.

Being an expected value E(·|A) it has all of the usual properties, in partic-
ular:

Lemma 5.2. Jensen’s inequality. If φ is convex then

E(φ(X)|A) ≥ φ(E(X|A))

Our next two properties concern the behavior of E(Y ;A) and E(Y |A) as a
function of the set A.

Lemma 5.3. If B is the disjoint union of A1, . . . , Ak, then

E(Y ;B) =
k∑

j=1

E(Y ;Aj)

Proof. Our assumption implies Y 1B =
∑k

j=1 Y 1Aj , so taking expected values,
we have

E(Y ;B) = E(Y 1B) = E

 k∑
j=1

Y 1Aj

 =
k∑

j=1

E(Y 1Aj ) =
k∑

j=1

E(Y ;Aj)

Lemma 5.4. If B is the disjoint union of A1, . . . , Ak, then

E(Y |B) =
k∑

j=1

E(Y |Aj) ·
P (Aj)
P (B)

In particular when B = Ω we have EY =
∑k

j=1 E(Y |Aj) · P (Aj).
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Proof. Using the definition of conditional expectation, Lemma 5.3, then doing
some arithmetic and using the definition again, we have

E(Y |B) = E(Y ;B)/P (B) =
k∑

j=1

E(Y ;Aj)/P (B)

=
k∑

j=1

E(Y ;Aj)
P (Aj)

· P (Aj)
P (B)

=
k∑

j=1

E(Y |Aj) ·
P (Aj)
P (B)

which proves the desired result.

In the discussion in this section we have concentrated on the properties of
conditional expectation given a single set A. To connect with more advanced
treatments, we note that given a partitionA = {A1, . . . An} of the sample space,
(i.e., disjoint sets whose union in Ω) then the conditional expectation given the
partition is a random variable:

E(X|A) = E(X|Ai) on Ai

In this setting, Lemma 5.4 says

E[E(X|A)] = EX

i.e., the random variable E(X|A) has the same expected value as X. Lemma
5.1 says that if X is constant on each part of the partition then

E(XY |A) = XE(Y |A)

5.2 Examples, Basic Properties

We begin by giving the definition of a martingale. Thinking of Mn as the
amount of money at time n for a gambler betting on a fair game, and Xn as
the outcomes of the gambling game we say that M0,M1, . . . is a martingale
with respect to X0, X1, . . . if for any n ≥ 0 we have E|Mn| < ∞ and for any
possible values xn, . . . , x0

E(Mn+1 −Mn|Xn = xn, Xn−1 = xn−1, . . . X0 = x0,M0 = m0) = 0 (5.4)

The first condition, E|Mn| < ∞, is needed to guarantee that the conditional
expectation makes sense. The second, defining property, says that conditional
on the past up to time n, the average profit from the bet on the nth game is 0.

It will take several examples to explain why this is a useful definition. In
many of our examples Xn will be a Markov chain and Mn = f(Xn, n). The
conditioning event is formulated in terms of Xn because in passing from the
random variables Xn that are driving the process the martingale to Mn, there
may be a loss of information. E.g., in Example 5.4 Mn = X2

n − n.
To explain the reason for our interest in martingales, we will now give a

number of examples. In what follows we will often be forced to write the
conditioning event, so we introduce the short hand

Av = {Xn = xn, Xn−1 = xn−1, . . . , X0 = x0,M0 = m0} (5.5)

where v is short for the vector (xn, . . . , x0,m0)
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Example 5.2. Random walks. Let X1, X2, . . . be i.i.d. with EXi = µ. Let
Sn = S0 + X1 + · · · + Xn be a random walk. Mn = Sn − nµ is a martingale
with respect to Xn.

Proof. To check this, note that Mn+1 − Mn = Xn+1 − µ is independent of
Xn, . . . , X0,M0, so the conditional mean of the difference is just the mean:

E(Mn+1 −Mn|Av) = EXn+1 − µ = 0

In most cases, casino games are not fair but biased against the player. We
say that Mn is a supermartingale with respect to Xn if a gambler’s expected
winnings on one play are negative:

E(Mn+1 −Mn|Av) ≤ 0

To help remember the direction of the inequality, note that there is nothing
“super” about a supermartingale. The definition traces its roots to the notion
of superharmonic functions whose values at a point exceed the average value
on balls centered around the point. If we reverse the sign and suppose

E(Mn+1 −Mn|Av) ≥ 0

then Mn is called a submartingale with respect to Xn. A simple modifi-
cation of the proof for Example 5.2 shows that if µ ≤ 0, then Sn defines a
supermartingale, while if µ ≥ 0, then Sn is a submartingale.

The next result will lead to a number of examples.

Theorem 5.5. Let Xn be a Markov chain with transition probability p and let
f(x, n) be a function of the state x and the time n so that

f(x, n) =
∑

y

p(x, y)f(y, n + 1)

Then Mn = f(Xn, n) is a martingale with respect to Xn. In particular if
h(x) =

∑
y p(x, y)h(y) then h(Xn) is a martingale.

Proof. By the Markov property and our assumption on f

E(f(Xn+1, n + 1)|Av) =
∑

y

p(xn, y)f(y, n + 1) = f(xn, n)

which proves the desired result.

The next two examples begin to explain our interest in Theorem 5.5.

Example 5.3. Gambler’s ruin. Let X1, X2, . . . be independent with

P (Xi = 1) = p and P (Xi = −1) = 1− p

where p ∈ (0, 1) and p 6= 1/2. Let Sn = S0 + X1 + · · ·+ Xn. Mn =
(

1−p
p

)Sn

is
a martingale with respect to Xn.
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Proof. Using Theorem 5.5 with h(x) = ((1 − p)/p)x, we need only check that
h(x) =

∑
y p(x, y)h(y). To do this we note that

∑
y

p(x, y)h(y) = p ·
(

1− p

p

)x+1

+ (1− p) ·
(

1− p

p

)x−1

= (1− p) ·
(

1− p

p

)x

+ p ·
(

1− p

p

)x

=
(

1− p

p

)x

which proves the desired result.

Example 5.4. Symmetric simple random walk. Let Y1, Y2, . . . be inde-
pendent with

P (Yi = 1) = P (Yi = −1) = 1/2

and let Xn = X0 + Y1 + · · · + Yn. Then Mn = X2
n − n is a martingale with

respect to Xn. By Theorem 5.5 with f(x, n) = x2−n it is enough to show that

1
2
(x + 1)2 +

1
2
(x− 1)2 − 1 = x2

To do this we work out the squares to conclude the left-hand side is

1
2
[x2 + 2x + 1 + x2 − 2x + 1]− 1 = x2

Example 5.5. Products of independent random variables. To build a
discrete time model of the stock market we let X1, X2, . . . be independent ≥ 0
with EXi = 1. Then Mn = M0X1 · · ·Xn is a martingale with respect to Xn.
To prove this we note that

E(Mn+1 −Mn|Av) = MnE(Xn+1 − 1|Av) = 0

The reason for a multiplicative model is that changes in stock prices are thought
to be proportional to its value. Also, in contrast to an additive model, we are
guaranteed that prices will stay positive.

The last example generalizes easily to give:

Example 5.6. Exponential martingale. Let Y1, Y2, . . . be independent and
identically distributed with φ(θ) = E exp(θY1) <∞. Let Sn = S0+Y1+· · ·+Yn.
Then Mn = exp(θSn)/φ(θ)n is a martingale with respect to Yn. In particular,
if φ(θ) = 1 then φ(θSn) is a martingale.

Proof. If we let Xi = exp(θYi)/φ(θ) then Mn = M0X1 · · ·Xn with EXi = 1
and this reduces to the previous example.

Having introduced a number of examples, we will now derive some basic
properties.

Lemma 5.6. If Mn is a martingale and φ is a convex function then φ(Mn)
is a submartingale. If Mn is a submartingale and φ is a nondecreasing convex
function then φ(Mn) is a submartingale.

Proof. Using Lemma 5.2 and the definition of a martingale, we have

E(φ(Mn+1)|Av) ≥ φ(E(Mn+1|Av)) = φ(Mn)

In the proof of the second statement, the submartingale property of Mn and
the fact that φ is nondecreasing imply that the = for martingales is now ≥.
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Since x2 is convex this implies that if Mn is a martingale then M2
n is a

submartingale. The next result gives another proof of this, and provides a useful
formula that is the analogue of E(Y 2)− (EY )2 = var (Y ) for martingales.

Lemma 5.7. If Mn is a martingale then

E(M2
n+1|Av)−M2

n = E((Mn+1 −Mn)2|Av)

Proof. Expanding out the square on the right-hand side, then using (5.3) and
Lemma 5.3 gives

E(M2
n+1 − 2Mn+1Mn + M2

n|Av)

= E(M2
n+1|Av)− 2MnE(Mn+1|Av) + M2

n

= E(M2
n+1|Av)−M2

n

since E(Mn+1|Av) = Mn.

Using ideas from the last proof we get

Lemma 5.8. Othogonality of martingale increments. If Mn is a mar-
tingale and 0 ≤ i ≤ j ≤ k < n then

E[(Mn −Mk)Mj ] = 0

and E[(Mn −Mk)(Mj −Mi)] = 0.

Proof. The second result follows by subtracting the result for j = i from the
one for j. Let Av = {Xk = xk, . . . , X0 = x0,M0 = m}. Using Lemma 5.4 then
Lemma 5.1 and the martingale property

E[(Mn −Mk)Mj ] =
∑

x

E[(Mn −Mk)Mj |Av]

= Mj

∑
x

E[(Mn −Mk)|Av] = 0

proves the desired formula.

The last result has the following useful corollary

E(Mn −M0)2 =
n∑

k=1

E(Mk −Mk−1)2 (5.6)

Proof. Expanding out the square of the sum

E

(
n∑

k=1

Mk −Mk−1

)2

=
n∑

k=1

E(Mk −Mk−1)2

+ 2
∑

1≤j<k≤n

E[(Mk −Mk−1)(Mj −Mj−1)]

and the second sum vanishes by Lemma 5.8.
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5.3 Gambling Strategies, Stopping Times

The first result should be intuitive if we think of supermartingale as betting on
an unfavorable game: the expected value of our fortune will decline over time.

Theorem 5.9. If Mm is a supermartingale and m ≤ n then EMm ≥ EMn.

Proof. It is enough to show that the expected value decreases with each time
step, i.e., EMk ≥ EMk+1. To do this, we will again use the notation from (5.5)

Av = {Xn = xn, Xn−1 = xn−1, . . . , X0 = x0,M0 = m}

and note that linearity in the conditioning set (Lemma 5.3) and the definition
of conditional expectation imply

E(Mk+1 −Mk) =
∑

v

E(Mk+1 −Mk;Av)

=
∑

v

P (Av)E(Mk+1 −Mk|Av) ≤ 0

since supermartingales have E(Mk+1 −Mk|Av) ≤ 0.

The result in Theorem 5.9 generalizes immediately to our other two types
of processes. Multiplying by −1 we see:

Theorem 5.10. If Mm is a submartingale and 0 ≤ m < n, then EMm ≤ EMn.

Since a process is a martingale if and only if it is both a supermartingale and
submartingale, we can conclude that:

Theorem 5.11. If Mm is a martingale and 0 ≤ m < n then EMm = EMn.

The most famous result of martingale theory (see Theorem 5.12) is that

“you can’t beat an unfavorable game.” (5.7)

To lead up to this result, we will analyze a famous gambling system and show
why it doesn’t work.

Example 5.7. Doubling strategy. Suppose you are playing a game in which
you will win or lose $1 on each play. If you win you bet $1 on the next play
but if you lose then you bet twice the previous amount. The idea behind the
system can be seen by looking at what happens if we lose four times in a row
and then win:

outcome L L L L W
bet 1 2 4 8 16
net profit −1 −3 −7 −15 1

In this example our net profit when we win is $1. Since 1+2+· · ·+2k = 2k+1−1,
this is true if we lose k times in a row before we win. Thus every time we win
our net profit is up by $1 from the previous time we won.

This system will succeed in making us rich as long as the probability of
winning is positive, so where’s the catch? Suppose for simplicity we play 6
times. Let L be the time of the last win L (with L = 0 if there were six losses)
and N be the total number of wins in the first six plays. The number of the 64
outcomes that lead to the possible values of (L,N) are
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L N = 0 1 2 3 4 5 6
6 0 1 5 10 10 5 1
5 0 1 4 6 4 1
4 0 1 3 3 1
3 0 1 2 1
2 0 1 1
1 0 1
0 1

If we lost six times in a row then our total losses are −63. If the last loss was
at 1, 2, 3, 4, 5, or 6 then our losses after that win are −31, −15, −7, −3, −1
and 0. Taking into account that N wins means a total winning of $N up to
and including the last win we see that the distribution for positive values is
(omitting the denominator which is always 64):

6 5 4 3 2 1 0
1 5 10+1 10+4 5+6 1+4+1 3+1

so our net winnings are ≥ 0 with probability 52/64 = 0.8125. The negative
values, though less frequent, are larger

−1 −2 −4 −5 −6 −13 −14 −30 −63
3 1 1 2 1 1 1 1 1

Adding everything up we see that our expected winnings = 145/64−145/64 = 0.

To formulate and prove (5.7) we will introduce a family of betting strategies
that generalize the doubling strategy. The amount of money we bet on the nth
game, Hn, clearly, cannot depend on the outcome of that game, nor is it sensible
to allow it to depend on the outcomes of games that will be played later. We
say that Hn is an admissible gambling strategy or predictable process if for
each n the value of Hn can be determined from Xn−1, Xn−2, . . . , X0,M0.

To motivate the next definition, think of Hm as the amount of stock we hold
between time m− 1 and m. Then our wealth at time n is

Wn = W0 +
n∑

m=1

Hm(Mm −Mm−1) (5.8)

since the change in our wealth from time m − 1 to m is the amount we hold
times the change in the price of the stock: Hm(Mm −Mm−1). To formulate
the doubling strategy in this setting, let Xm = 1 if the mth coin flip is heads
and −1 if the mth flip is tails, and let Mn = X1 + · · ·+ Xn as the net profit of
a gambler who bets 1 unit every time.

Theorem 5.12. Suppose that Mn is a supermartingale with respect to Xn, Hn

is predictable, and 0 ≤ Hn ≤ cn where cn is a constant that may depend on n.
Then

Wn = W0 +
n∑

m=1

Hm(Mm −Mm−1) is a supermartingale

We need the condition Hn ≥ 0 to prevent the bettor from becoming the
house by betting a negative amount of money. The upper bound Hn ≤ cn is a
technical condition that is needed to have expected values make sense. In the
gambling context this assumption is harmless: even if the bettor wins every
time there is an upper bound to the amount of money he can have at time n.
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Proof. The change in our wealth from time n to time n + 1 is

Wn+1 −Wn = Hn+1(Yn+1 − Yn)

As in the proof of Theorem 5.9 let

Av = {Xn = xn, Xn−1 = xn−1, . . . , X0 = x0,M0 = m0}.

Hn+1 is constant on the event Av, so Lemma 5.1 implies

E(Hn+1(Mn+1 −Mn)|Av) = Hn+1E(Mn+1 −Mn|Av) ≤ 0

verifying that Wn is a supermartingale.

Arguing as in the discussion after Theorem 5.9 the same result holds for sub-
martingales and for martingales with only the assumption that |Hn| ≤ cn.

Though Theorem 5.12 may be depressing for gamblers, a simple special case
gives us an important computational tool. To introduce this tool, we need one
more notion. We say that T is a stopping time with respect to Xn if the
occurrence (or nonoccurrence) of the event {T = n} can be determined from
the information known at time n, Xn, Xn−1 . . . X0,M0.

Example 5.8. Constant betting up to a stopping time. One possible
gambling strategy is to bet $1 each time until you stop playing at time T . In
symbols, we let Hm = 1 if T ≥ m and 0 otherwise. To check that this is an
admissible gambling strategy we note that the set on which Hm is 0 is

{T ≥ m}c = {T ≤ m− 1} = ∪m−1
k=1 {T = k}

By the definition of a stopping time, the event {T = k} can be determined from
the values of M0, X0, . . . , Xk. Since the union is over k ≤ m − 1, Hm can be
determined from the values of M0, X0, X1, . . . , Xm−1.

Having introduced the gambling strategy “Bet $1 on each play up to time
T” our next step is to compute the payoff we receive when W0 = M0. Letting
T ∧ n denote the minimum of T and n, i.e., it is T if T < n and n if T ≥ n, we
can give the answer as:

Wn = M0 +
n∑

m=1

Hm(Mm −Mm−1) = MT∧n (5.9)

To check the last equality, consider two cases:

(i) if T ≥ n then Hm = 1 for all m ≤ n, so

Wn = M0 + (Mn −M0) = Mn

(ii) if T ≤ n then Hm = 0 for m > T , so the sum in (5.9) stops at T . In this
case,

Wn = M0 + (MT −M0) = MT

Combining (5.9) with Theorem 5.12 and using Theorem 5.9 we have

Theorem 5.13. If Mn is a supermartingale with respect to Xn and T is a
stopping time then the stopped process MT∧n is a supermartingale with respect
to Xn. In particular, EMT∧n ≤M0

As in the discussion after Theorem 5.9, the analogous results are true for sub-
martingales (EMT∧n ≥M0) and for martingales (EMT∧n = M0).
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5.4 Applications

In this section we will apply the results from the previous section to rederive
some of the results from Chapter 1 about hitting probabilities and exit times for
random walks. To motivate the developments we begin with a simple example.
Let X1, X2, . . . Xn be independent with P (Xi = 1) = P (Xi = −1) = 1/2, let
Sn = S0 + X1 + · · · + Xn, and let τ = min{n : Sn 6∈ (a, b)}. To quickly derive
the exist distribution it is tempting to argue that since Sn is a martingale and
τ is a stopping time

x = ExSτ = aPx(Sτ = a) + b(1− P (Sτ = a))

and then solve to conclude

Px(Sτ = a) =
b− x

b− a
(5.10)

This formula is correct, but as the next example shows, we have to be careful.

Example 5.9. Bad Martingale. Suppose x = 1, let Va = min{n : Sn = 0}
and T = V0. We know that P1(T <∞) but

E1ST = 0 6= 1

The trouble is that
P1(VN < V0) = 1/N

so the random walk can visit some very large values before returning to 0.

The fix for this problem is the same in all the examples we consider. We have
a martingale Mn and a stopping time T . We use Theorems 5.13 and 5.11 to
conclude EM0 = EMT∧n then we let n→∞ and argue that EMT∧n → EMT .

Example 5.10. Gambler’s ruin. Let X1, X2, . . . Xn be independent with

P (Xi = 1) = p and P (Xi = −1) = q = 1− p

Suppose 1/2 < p < 1 and let h(x) = (q/p)x. Example 5.3 implies that Mn =
h(Sn) is a martingale. Let τ = min{n : Sn 6∈ (a, b)}. It is easy to see that τ
is a stopping time. Lemma 1.3 implies that P (τ < ∞) = 1. Again if we argue
casually then

(q/p)x = Ex(q/x)S(τ) = (q/p)aP (Sτ = a) + (q/p)b[1− P (Sτ = a)] (5.11)

Solving gives

Px(Sτ = a) =
(q/p)b − (q/p)x

(q/p)b − (q/p)a
(5.12)

generalizing (1.22).
To provide a proof for (5.11), we use Theorems 5.13 and 5.11, to conclude

that

(q/p)x = ExMτ∧n = (q/p)aP (τ ≤ n, Sτ = a) + (q/p)bP (τ ≤ n, Sτ = b)

+ E((q/p)Sn ; τ > n)
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Since P (τ < ∞) = 1 we have P (τ ≤ n, Sτ = c) → P (Sτ = c) for c = a, b.
To handle the third term, we note that since p > 1/2, (q/p)x ≤ (q/p)a for
a < x < b and hence

E((q/p)Sn ; τ > n) ≤ (q/p)aPx(τ > n)

Letting n→∞ we have established (5.11).

We can save ourselves some work by abstracting the last argument.

Theorem 5.14. Suppose Mn is a martingale and T a stopping time with P (T <
∞) = 1 and |MT∧n| ≤ K for some constant K. Then EMT = EM0.

Proof. Theorem 5.13 implies

EM0 = EMT∧n = E(MT ;T ≤ n) + E(Mn;T > n).

The second term ≤ KP (T > n) and

|E(MT ;T ≤ n)− E(MT )| ≤ KP (T > n)

Since P (T > n)→ 0 as n→∞ the desired result follows.

Example 5.11. Duration of fair games. Let Sn = S0 + X1 + · · · + Xn

where X1, X2, . . . are independent with P (Xi = 1) = P (Xi = −1) = 1/2. Let
τ = min{n : Sn 6∈ (a, b)} where a < 0 < b. Our goal here is to prove a close
relative of (1.26):

E0τ = −ab

Example 5.4 implies that S2
n − n is a martingale. Let τ = min{n : Sn 6∈ (a, b)}.

From the previous example we have that τ is a stopping time with P (τ <∞) =
1. Again if we argue casually 0 = E0(S2

τ − τ) so using (5.10)

E0(τ) = E0(S2
τ ) = a2P0(Sτ = a) + b2P0(Sτ = b)

= a2 b

b− a
+ b2 −a

b− a
= ab

a− b

b− a
= −ab

To give a rigorous proof now, we use Theorems 5.13 and 5.11 to conclude

0 = E0(S2
τ∧n − τ ∧ n) = a2P (Sτ = a, τ ≤ n) + b2P (Sτ = b, T ≤ n)

+ E(S2
n; τ > n)− E0(τ ∧ n)

P (τ <∞) = 1 and on {τ > n} we have S2
τ∧n ≤ max{a2, b2} so the third term

tends to 0. To handle the fourth term we note that by (1.6)

E0(τ ∧ n) =
n∑

m=0

P (τ ≥ m) ↑
∞∑

m=0

P (τ ≥ m) = E0τ. (5.13)

Putting it all together, we have

0 = a2P0(Sτ = a) + b2P0(Sτ = b)− E0τ

and we have proved the result.

Consider now a random walk Sn = S0 + X1 + · · · + Xn where X1, X2, . . .
are i.i.d. with mean µ. From Example 5.2, Mn = Sn − nµ is a martingale with
respect to Xn.
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Theorem 5.15. Wald’s equation. If T is a stopping time with ET < ∞,
then

E(ST − S0) = µET

Recalling Example 5.9, which has µ = 0 and S0 = 1, but ST = 1 shows that for
symmetric simple random walk E1V0 =∞.

Why is this true? Theorems 5.13 and 5.11 give

ES0 = E(ST∧n)− µE(T ∧ n)

As n ↑ ∞, E0(T ∧ n) ↑ E0T by (5.13). To pass to the limit in the other term,
we note that

E|ST − ST∧n| ≤ E

(
T∑

m=n

|Xm|;T > n

)
Using the assumptions ET < ∞ and E|X| < ∞ one can prove that the right-
hand side tends to 0 and complete the proof. However the details are somewhat
complicated and are not enlightening so they are omitted.

Our next two examples are applications of the exponential martingale in
Example 5.6:

Example 5.12. Left-continuous random walk. Suppose that X1, X2, . . .
are independent integer-valued random variables with EXi > 0, P (Xi ≥ −1) =
1, and P (Xi = −1) > 0. These walks are called left-continuous since they
cannot jump over any integers when they are decreasing, which is going to the
left as the number line is usually drawn. Let φ(θ) = exp(θXi) and define α < 0
by the requirement that φ(α) = 1. To see that such an α exists, note that (i)
φ(0) = 1 and

φ′(θ) =
d

dθ
Eeθxi = E(xie

θxi) so φ′(0) = Exi > 0

and it follows that φ(θ) < 1 for small negative θ. (ii) If θ < 0, then φ(θ) ≥
e−θP (xi = −1) → ∞ as θ → −∞. Our choice of α makes exp(αSn) a martin-
gale. Having found the martingale it is easy now to conclude:

Theorem 5.16. Consider a left continuous random walk with positive mean.
Let a < x and Va = min{n : Sn = a}.

Px(Va <∞) = eα(x−a)

Proof. Again if one argues casually

eαx = Ex(exp(αVa)) = eαaPx(Va <∞)

but we have to prove that there is no contribution from {Va =∞}. To do this
note that Theorems 5.13 and 5.11 give

eαx = E0 exp(αSVa∧n) = eαaP0(Va ≤ n) + E0(exp(αSn);Va > n)

exp(αSn) ≤ eαa on Va > n but since P (Va = ∞) > 0 this is not enough to
make the last term vanish. The strong law of large numbers implies that on
Va =∞, Sn/n→ µ > 0, so the second term → 0 as n→∞ and it follows that
eαx = eαaP0(Va <∞).
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When the random walk is not left continuous we cannot get exact results
on hitting probabilities but we can still get a bound.

Example 5.13. Cramér’s estimate of ruin. Let Sn be the total assets of
an insurance company at the end of year n. During year n, premiums totaling
c dollars are received, while claims totaling Yn dollars are paid, so

Sn = Sn−1 + c− Yn

Let Xn = c−Yn and suppose that X1, X2, . . . are independent random variables
that are normal with mean µ > 0 and variance σ2. That is the density function
of Xi is

(2πσ2)−1/2 exp(−(x− µ)2/2σ2)

Let B for bankrupt be the event that the wealth of the insurance company is
negative at some time n. We will show

P (B) ≤ exp(−2µS0/σ2) (5.14)

In words, in order to be successful with high probability, µS0/σ2 must be
large, but the failure probability decreases exponentially fast as this quantity
increases.

Proof. We begin by computing φ(θ) = E exp(θXi). To do this we need a little
algebra

− (x− µ)2

2σ2
+ θ(x− µ) + θµ = − (x− µ− σ2θ)2

2σ2
+

σ2θ2

2
+ θµ

and a little calculus

φ(θ) =
∫

eθx(2πσ2)−1/2 exp(−(x− µ)2/2σ2) dx

= exp(σ2θ2/2 + θµ)
∫

(2πσ2)−1/2 exp
(
− (x− µ− σ2θ)2

2σ2

)
dx

Since the integrand is the density of a normal with mean µ + σ2θ and variance
σ2 it follows that

φ(θ) = exp(σ2θ2/2 + θµ) (5.15)

If we pick θ = −2µ/σ2, then

σ2θ2/2 + θµ = 2µ2/σ2 − 2µ2/σ2 = 0

So Example 5.6 implies exp(−2µSn/σ2) is a martingale. Let T = min{n : Sn ≤
0}. Theorems 5.13 and 5.11 gives

exp(−2µS0/σ2) = E exp(−2µST∧n) ≥ P (T ≤ n)

since exp(−2µST /σ2) ≥ 1 and the contribution to the expected value from
{T > n} is ≥ 0. Letting n→∞ now and noticing P (T ≤ n)→ P (B) gives the
desired result.
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5.5 Convergence

This section is devoted to the proof of the following remarkable result and some
of its applications.

Theorem 5.17. If Xn ≥ 0 is a supermartingale then X∞ = limn→∞Xn exists
and EX∞ ≤ EX0.

The bad martingale in Example 5.9 shows that we can have X0 = 1 and X∞ = 0.
The key to the proof of this is the following maximal inequality.

Lemma 5.18. Let Xn ≥ 0 be a supermartingale and λ > 0.

P

(
max
n≥0

Xn > λ

)
≤ EX0/λ

Proof. Let T = min{n ≥ 0 : Xn > λ}. Theorem 5.13 implies that

EX0 ≥ E(XT∧n) ≥ λP (T ≤ n)

i.e., P (T ≤ n) ≤ EX0/λ. Since this holds for all n the desired result follows.

Proof of Theorem 5.17. Let a < b, let S0 = 0 and define stopping times for
k ≥ 1 by

Rk = min{n ≥ Sk−1 : Xn ≤ a}
Sk = min{n ≥ Rk : Xn ≥ b}

Using the reasoning that led to Lemma 5.18

P (Sk <∞|Rk <∞) ≤ a/b

Iterating we see that P (Sk < ∞) ≤ (a/b)k. Since this tends to 0 as k → ∞
Xn crosses from below a to above b only finitely many times. To conclude from
this that limn→∞Xn exists, let

Y = lim inf
n→∞

Xn and Z = lim sup
n→∞

Xn.

If P (Y < Z) > 0 then there are numbers a < b so that P (Y < a < b < Z) > 0
but in this case Xn crosses from below a to above b infinitely many times with
positive probability, a contradiction.

To prove EX∞ ≤ EX0 note that for any time n and positive real number
M

EX0 = EXn ≥ E(Xn ∧M)→ E(X∞ ∧M)

where the last conclusion follows from the reasoning in the proof of Theorem
5.14. The last conclusion implies EX0 ≥ E(X∞ ∧M) ↑ EX∞ as M ↑ ∞.

Example 5.14. Polya’s urn. Consider an urn that contains red and green
balls. At time 0 there are k balls with at least one ball of each color. At time
n we draw out a ball chosen at random. We return it to the urn and add one
more of the color chosen. Let Xn be the fraction of red balls at time n. To
check that Xn is a martingale note that at time n there are n + k balls, so if
Rn = (n + k)Xn is the number of red balls then

P (Rn+1 = Rn + 1) = Xn P (Rn+1 = Rn) = 1−Xn
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Letting Av = {Xn = xn, . . . X0 = x0} we have

E(Xn+1|Av) =
Rn + 1

n + k + 1
· Rn

n + k
+

Rn

n + k + 1

(
1− Rn

n + k

)
=

1
n + k + 1

· Rn

n + k
+

Rn

n + k
· n + k

n + k + 1
= Xn

Since Xn ≥ 0, Theorem 5.17 implies that Xn → X∞.
Suppose that initially there is one ball of each color. To find the distribution

of X∞ we note that There are 2 balls at time 0, . . . n + 1 at time n− 1 so the
probability the probability that red balls are drawn on the first j draws and
then green balls are drawn on the next n− j is

1 · · · j · 1 · · · (n− j)
2 · · · j + 1 · j + 2 · · ·n + 1

=
j!(n− j)!
(n + 1)!

A little thought shows that each outcome with j red and n− j balls drawn has
the same probability. (The denominator is the same, while the numerator is
rearranged.) Since there are

(
n
j

)
ways to choose the j draws on which we get

red,

P

(
Xn =

j

n + 2

)
=

1
n + 1

for 1 ≤ j ≤ n + 1

and it follows that the distribution of the limit X∞ is uniform.

Example 5.15. Branching Processes. In this system introduced in Example
1.8, Zn is the number of individuals in generation n and each gives rise to
an independent and identically distributed number of individuals with mean
0 < µ < ∞ in generation n + 1. If p(x, y) is the transition probability of the
Markov chain∑

y

p(x, y)f(y, n + 1) =
1

µn+1

∑
y

p(x, y)y =
µx

µn+1
= h(x, n)

so using Theorem 5.5 we see that Wn = Zn/µn is a martingale.
Using this we can rederive some of the facts proved in Example 1.52, and

prove at least one new one.

Subcritical. If µ < 1 then P (Zn > 0) ≤ µnEZ0 → 0 as n→∞

Proof. Since Zn/µn is a martingale, EZn = µnEZ0. Using this with P (Zn ≥
1) ≤ EZn gives the desired result.

Critical. Let pk be the probability an individual has k children. If µ = 1 and
p1 < 1 then P (Zn > 0)→ 0.

Proof. When µ = 1, Zn is martingale and hence by Theorem 5.17 converges to
a limit. Since Zn is integer valued, if Zn(ω)→ j then we must have Zn(ω) = j
for n ≥ N(ω) but this has probability 0 if p1 < 1.

Supercritical. If µ > 1 then Zn/µn →W as n→∞.

If we can show that P (W > 0) > 0 then we can conclude that the pop-
ulation grows exponentially. The first step is to show that if µ > 1 then
P (Zn > 0 for all n) > 0. To approach this problem, we will consider a version of
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the branching process in which at each time only one individual is chosen to re-
produce. In this case as long as the population size Sn > 0, Sn+1 = Sn−1+Yn+1

where P (Yn+1 = k) = pk. Since Yn+1 ≥ 0 this is a left-continuous random walk
with steps Xm = −1 + Ym run until T0 = min : Sn = 0}. EXn = µ − 1 so if
µ > 1, it follows from Theorem 5.16 that

P1(T0 <∞) = eα

where α < 0 is the solution of E exp(αXi) = 1. Letting ρ = eα this means

1 =
∑

k

pkρk−1 or
∑

k

pkρk = ρ

which is the result we found in Lemma 1.30: the extinction probability is the
fixed point of the generating function in [0, 1).

P (Zn > 0 for all n) > 0 is necessary for P (W > 0) > 0 but it is not
sufficient. Kesten and Stigum (1966) have shown:

P (W > 0) > 0 if and only if
∑
k≥1

pk(k log k) <∞.

That result has a sophisticated proof, but it is not hard to show that

Theorem 5.19. If
∑

k kpk > 1 and
∑

k k2pk <∞ then P (W = 0) = ρ.

Proof. We begin with the easy part: if P (W = 0) < 1 the P (W = 0) = ρ. If
we have Zn/µn → 0 then this must be true for the branching processes started
by the Z1 individuals in generation 1. Breaking things down according to the
value of Z1 and letting θ = P (W = 0) we have

θ =
∑

k

pkθk

so θ < 1 must be a fixed point of the generating function.
To show that

∑
k kpk > 1 and

∑
k k2pk < ∞ are sufficient for P (W >

0) > 0, we will let Wn = Zn/µn, and compute EW 2
n . Noting that Zn is

the sum of Zn−1 independent random variables with the same distribution
so E(Zn|Zn−1) = µZn−1, E((Zn − Zn−1)2|Zn−1) = σ2Zn−1. It follows from
Lemma 5.7 that

E(Z2
n|Zn−1) = σ2Zn−1 + (µZn−1)2

Taking expected values in the last equation and dividing both sides by µ2n we
conclude that

EW 2
n = EW 2

n−1 + σ2/µn+1

Iterating that we have EW 2
1 = 1+σ2/µ2, EW 2

2 = 1+σ2/µ2+σ2/µ3, and hence

EW 2
n = 1 + σ2

n+1∑
k=2

µ−k.

Thus if µ > 1,

EW 2
N ≤ CW = 1 + σ2

∞∑
k=2

µ−k
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To complete the proof now, we note that if V ≥ 0 then

E(V ;V > M) ≤ 1
M

E(V 2;V > M) ≤ 1
M

EV 2 (5.16)

The argument for the last inequality in Theorem 5.17 shows that

EW 2 ≤ lim
n→∞

EW 2
n ≤ CW

Thus using (5.16)

|EWn − EW | ≤ E|Wn −W | ≤ E|Wn ∧M −W ∧M |+ 2CW /M

As n→∞ the first term tends to 0. If M is large the second one is < ε. This
shows that

lim sup
n→∞

|EWn − EW | ≤ ε

Since ε is arbitrary we have 1 = EWn → EW .

5.6 Exercises

Throughout the exercises we will use our standard notion for hitting times.
Ta = min{n ≥ 1 : Xn = a} and Va = min{n ≥ 0 : Xn = a}.

5.1. Brother–sister mating. Consider the six state chain defined in Exercise
1.66. Show that the total number of A’s is a martingale and use this to compute
the probability of getting absorbed into the 2,2 (i.e., all A’s state) starting from
each initial state.

5.2. Let Xn be the Wright–Fisher model with no mutation defined in Example
1.9. (a) Show that Xn is a martingale and use Theorem 5.14 to conclude that
Px(VN < V0) = x/N . (b) Show that Yn = Xn(N − Xn)/(1 − 1/N)n is a
martingale. (c) Use this to conclude that

(N − 1) ≤ x(N − x)(1− 1/N)n

Px(0 < Xn < N)
≤ N2

4

5.3. Lognormal stock prices. Consider the special case of Example 5.5 in which
Xi = eηi where ηi = normal(µ, σ2). For what values of µ and σ is Mn =
M0 ·X1 · · ·Xn a martingale?

5.4. Suppose that in Polya’s urn there is one ball of each color at time 0. Let
Xn be the fraction of red balls at time n. Use Theorem 5.13 to conclude that
P (Xn ≥ 0.9 for some n) ≤ 5/9.

5.5. Suppose that in Polya’s urn there are r red balls and g green balls at time
0. show that X = limn→∞Xn has a beta distribution

(g + r − 1)!
(g − 1)!(r − 1)!

xg−1(1− x)r−1

5.6. An unfair fair game. Define random variables recursively by Y0 = 1 and
for n ≥ 1, Yn is chosen uniformly on (0, Yn−1). If we let U1, U2, . . . be uniform
on (0, 1), then we can write this sequence as Yn = UnUn−1 · · ·U0. (a) Use
Example 5.5 to conclude that Mn = 2nYn is a martingale. (b) Use the fact that
log Yn = log U1 + · · · + log Un to show that (1/n) log Xn → −1. (c) Use (b) to
conclude Mn → 0, i.e., in this “fair” game our fortune always converges to 0 as
time tends to ∞.
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5.7. General birth and death chains. The state space is {0, 1, 2, . . .} and the
transition probability has

p(x, x + 1) = px

p(x, x− 1) = qx for x > 0
p(x, x) = 1− px − qx for x ≥ 0

while the other p(x, y) = 0. Let Vy = min{n ≥ 0 : Xn = y} be the time of the
first visit to y and let hN (x) = Px(VN < V0). Let φ(z) =

∑z
y=1

∏y−1
x=1 qx/px.

Show that

Px(Vb < Va) =
φ(x)− φ(a)
φ(b)− φ(a)

From this it follows that 0 is recurrent if and only if φ(b) → ∞ as b → ∞,
giving another solution of Exercise 9.46 from Chapter 1.

5.8. Let Sn = X1 + · · ·+ Xn where the Xi are independent with EXi = 0 and
var (Xi) = σ2. (a) Show that S2

n − nσ2 is a martingale. (b) Let τ = min{n :
|Sn| > a}. Use Theorem 5.13 to show that Eτ ≥ a2/σ2. For simple random
walk σ2 = 1 and we have equality.

5.9. Wald’s second equation. Let Sn = X1+· · ·+Xn where the Xi are indepen-
dent with EXi = 0 and var (Xi) = σ2. Use the martingale from the previous
problem to show that if T is a stopping time with ET <∞ then ES2

T = σ2ET .

5.10. Mean time to gambler’s ruin. Let Sn = S0 + X1 + · · · + Xn where
X1, X2, . . . are independent with P (Xi = 1) = p < 1/2 and P (Xi = −1) = 1−p.
Let V0 = min{n ≥ 0 : Sn = 0}. Use Wald’s equation to conclude that if x > 0
then ExV0 = x/(1− 2p).

5.11. Variance of the time of gambler’s ruin. Let ξ1, ξ2, . . . be independent
with P (ξi = 1) = p and P (ξi = −1) = q = 1 − p where p < 1/2. Let Sn =
S0 + ξ1 + · · ·+ ξn. In Example 4.3 we showed that if V0 = min{n ≥ 0 : Sn = 0}
then ExV0 = x/(1 − 2p). The aim of this problem is to compute the variance
of V0. (a) Show that (Sn− (p− q)n)2−n(1− (p− q)2) is a martingale. (b) Use
this to conclude that when S0 = x the variance of V0 is

x · 1− (p− q)2

(p− q)3

(c) Why must the answer in (b) be of the form cx?

5.12. Generating function of the time of gambler’s ruin. Continue with the
set-up of the previous problem. (a) Use the exponential martingale and our
stopping theorem to conclude that if θ ≤ 0, then eθx = Ex(φ(θ)−V0). (b) Let
0 < s < 1. Solve the equation φ(θ) = 1/s, then use (a) to conclude

Ex(sV0) =

(
1−

√
1− 4pqs2

2ps

)x

(c) Why must the answer in (b) be of the form f(s)x?

5.13. Consider a favorable game in which the payoffs are −1, 1, or 2 with prob-
ability 1/3 each. Use the results of Example 5.12 to compute the probability
we ever go broke (i.e, our winnings Wn reach $0) when we start with $i.
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5.14. A branching process can be turned into a random walk if we only allow
one individual to die and be replaced by its offspring on each step. If the
offspring distributions is pk and the generating function is φthen the random
walk increments have P (Xi = k − 1) = pk. Let Sk = 1 + X1 + . . . + Xn and
T0 = min{n : Sn = 0}. Suppose µ =

∑
k kpk > 1. Use Example 5.12 to show

that P (T0 <∞) = ρ, the solution < 1 of φ(ρ) = ρ.

5.15. Let Zn be a branching process with offspring distribution pk with p0 > 0
and µ =

∑
k kpk > 1. Let φ(θ) =

∑∞
k=0 pkθk. (a) Show that E(θZn+1 |Zn) =

φ(θ)Zn . (b) Let ρ be the solution < 1 of φ(ρ) = ρ and conclude that Pk(T0 <
∞) = ρk

5.16. Hitting probabilities. Consider a Markov chain with finite state space S.
Let a and b be two points in S, let τ = Va∧Vb, and let C = S−{a, b}. Suppose
h(a) = 1, h(b) = 0, and for x ∈ C we have

h(x) =
∑

y

p(x, y)h(y)

(a) Show that h(Xn) is a martingale. (b) Conclude that if Px(τ < ∞) > 0 for
all x ∈ C, then h(x) = Px(Va < Vb) giving a proof of Theorem 1.27.

5.17. Expectations of hitting times. Consider a Markov chain state space S.
Let A ⊂ S and suppose that C = S − A is a finite set. Let VA = min{n ≥ 0 :
Xn ∈ A} be the time of the first visit to A. Suppose that g(x) = 0 for x ∈ A,
while for x ∈ C we have

g(x) = 1 +
∑

y

p(x, y)g(y)

(a) Show that g(XVA∧n) + (VA ∧ n) is a martingale. (b) Conclude that if
Px(VA < ∞) > 0 for all x ∈ C then g(x) = ExVA, giving a proof of Theorem
1.28.

5.18. Lyapunov functions. Let Xn be an irreducible Markov chain with state
space {0, 1, 2, . . .} and let φ ≥ 0 be a function with limx→∞ φ(x) = ∞, and
Exφ(X1) ≤ φ(x) when x ≥ K. Then Xn is recurrent. This abstract result is
often useful for proving recurrence in many chains that come up in applications
and in many cases it is enough to consider φ(x) = x.

5.19. GI/G/1 queue. Let ξ1, ξ2, . . . be independent with distribution F and
Let η1, η2, . . . be independent with distribution G. Define a Markov chain by

Xn+1 = (Xn + ξn − ηn+1)+

where y+ = max{y, 0}. Here Xn is the workload in the queue at the time of
arrival of the nth customer, not counting the service time of the nth customer,
ηn. The amount of work in front of the (n + 1)th customer is that in front of
the nth customer plus his service time, minus the time between the arrival of
customers n and n + 1. If this is negative the server has caught up and the
waiting time is 0. Suppose Eξ<Eηi and let ε = (Eηi − Eξi)/2. (a) Show that
there is a K so that Ex(X1 − x) ≤ −ε for x ≥ K. (c) Let Uk = min{n : Xn ≤
K}. (b) Use the fact that XUk∧n + ε(Uk ∧ n) is a supermartingale to conclude
that ExUk ≤ x/ε.
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Chapter 6

Mathematical Finance

6.1 Two Simple Examples

To warm up for the developments in the next section we will look at two simple
concrete examples under the unrealistic assumption that the interest rate is 0.

One period case. In our first scenario the stock is at 90 at time 0 and may
be 80 or 120 at time 1.

90 �
���

��

XXXXXX

120

80

Suppose now that you are offered a European call option with strike price
100 and expiry 1. This means that after you see what happened to the stock,
you have an option to buy the stock (but not an obligation to do so) for 100
at time 1. If the stock price is 80, you will not exercise the option to purchase
the stock and your profit will be 0. If the stock price is 120 you will choose to
buy the stock at 100 and then immediately sell it at 120 to get a profit of 20.
Combining the two cases we can write the payoff in general as (X1 − 100)+,
where z+ = max{z, 0} denotes the positive part of z.

Our problem is to figure out the right price for this option. At first glance
this may seem impossible since we have not assigned probabilities to the various
events. However, it is a miracle of “pricing by the absence of arbitrage”
that in this case we do not have to assign probabilities to the events to compute
the price. To explain this we start by noting that X1 will be 120 (“up”) or 80
(“down”) for a profit of 30 or a loss of 10, respectively. If we pay c for the
option, then when X1 is up we make a profit of 20− c, but when it is down we
make −c. The last two sentences are summarized in the following table

stock option
up 30 20− c
down −10 −c

179
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Suppose we buy x units of the stock and y units of the option, where negative
numbers indicate that we sold instead of bought. One possible strategy is to
choose x and y so that the outcome is the same if the stock goes up or down:

30x + (20− c)y = −10x + (−c)y

Solving, we have 40x + 20y = 0 or y = −2x. Plugging this choice of y into
the last equation shows that our profit will be (−10 + 2c)x. If c > 5, then we
can make a large profit with no risk by buying large amounts of the stock and
selling twice as many options. Of course, if c < 5, we can make a large profit
by doing the reverse. Thus, in this case the only sensible price for the option is
5.

A scheme that makes money without any possibility of a loss is called an
arbitrage opportunity. It is reasonable to think that these will not exist
in financial markets (or at least be short-lived) since if and when they exist
people take advantage of them and the opportunity goes away. Using our new
terminology we can say that the only price for the option which is consistent
with absence of arbitrage is c = 5, so that must be the price of the option.

To find prices in general, it is useful to look at things in a different way. Let
ai,j be the profit for the ith security when the jth outcome occurs.

Theorem 6.1. Exactly one of the following holds:

(i) There is an investment allocation xi so that
∑m

i=1 xiai,j ≥ 0 for each j and∑m
i=1 xiai,k > 0 for some k.

(ii) There is a probability vector pj > 0 so that
∑n

j=1 ai,jpj = 0 for all i.

Here an x satisfying (i) is an arbitrage opportunity. We never lose any
money but for at least one outcome we gain a positive amount. Turning to (ii),
the vector pj is called a martingale measure since if the probability of the jth
outcome is pj , then the expected change in the price of the ith stock is equal
to 0. Combining the two interpretations we can restate Theorem 6.2 as:

Theorem 6.2. There is no arbitrage if and only if there is a strictly positive
probability vector so that all the stock prices are martingale.

Proof. One direction is easy. If (i) is true, then for any strictly positive proba-
bility vector

∑m
i=1

∑n
j=1 xiai,jpj > 0, so (ii) is false.

Suppose now that (i) is false. The linear combinations
∑m

i=1 xiai,j when
viewed as vectors indexed by j form a linear subspace of n-dimensional Eu-
clidean space. Call it L. If (i) is false, this subspace intersects the positive
orthant O = {y : yj ≥ 0 for all j} only at the origin. By linear algebra we
know that L can be extended to an n − 1 dimensional subspace H that only
intersects O at the origin. (Repeatedly find a line not in the subspace that only
intersects O at the origin and add it to the subspace.)

�
�
�
���

p

PP
PP

PP
PP

PP
PH O
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Since H has dimension n− 1, it can be written as H = {y :
∑n

j=1 yjpj = 0}
where p is a vector with at least one positive component. Since for each fixed
i the vector ai,j is in L ⊂ H, (ii) holds. To see that all the pj > 0 we leave it
to the reader to check that if not, there would be a non-zero vector in O that
would be in H.

To apply Theorem 6.2 to our simplified example, we begin by noting that
in this case ai,j is given by

j = 1 j = 2
stock i = 1 30 −10
option i = 2 20− c −c

By Theorem 6.2 if there is no arbitrage, then there must be an assignment of
probabilities pj so that

30p1 − 10p2 = 0 (20− c)p1 + (−c)p2 = 0

From the first equation we conclude that p1 = 1/4 and p2 = 3/4. Rewriting
the second we have

c = 20p1 = 20 · (1/4) = 5

To prepare for the general case note that the equation 30p1−10p2 = 0 says that
under pj the stock price is a martingale (i.e., the average value of the change
in price is 0), while c = 20p1 + 0p2 says that the price of the option is then the
expected value under the martingale probabilities.

Two-period binary tree. Suppose that a stock price starts at 100 at time 0.
At time 1 (one day or one month or one year later) it will either be worth 120
or 90. If the stock is worth 120 at time 1, then it might be worth 140 or 115 at
time 2. If the price is 90 at time 1, then the possibilities at time 2 are 120 and
80. The last three sentences can be simply summarized by the following tree.

100
�
�
�
�

Q
Q
Q
Q

120 �
���

��

XXXXXX

140

115

90 �
���

��

XXXXXX

120

80

Using the idea that the value of an option is its expected value under the
probability that makes the stock price a martingale, we can quickly complete
the computations in our example. When X1 = 120 the two possible scenarios
lead to a change of +20 or −5, so the probabilities of these two events should
be 1/5 and 4/5. When X1 = 90 the two possible scenarios lead to a change
of +30 or −10, so the probabilities of these two events should be 1/4 and 3/4.
When X0 = 0 the possible price changes on the first step are +20 and −10, so
their probabilities are 1/3 and 2/3. Making a table of the possibilities, we have
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X1 X2 probability (X2 − 100)+

120 140 (1/3) · (1/5) 40
120 115 (1/3) · (4/5) 15
90 120 (2/3) · (1/4) 20
90 80 (2/3) · (3/4) 0

so the value of the option is

1
15
· 40 +

4
15
· 15 +

1
6
· 20 =

80 + 120 + 100
30

= 10

The last derivation may seem a little devious, so we will now give a second
derivation of the price of the option based on absence of arbitrage. In the
scenario described above, our investor has four possible actions:

A0. Put $1 in the bank and end up with $1 in all possible scenarios.

A1. Buy one share of stock at time 0 and sell it at time 1.

A2. Buy one share at time 1 if the stock is at 120, and sell it at time 2.

A3. Buy one share at time 1 if the stock is at 90, and sell it at time 2.

These actions produce the following payoffs in the indicated outcomes

X1 X2 A0 A1 A2 A3 option
120 140 1 20 20 0 40
120 115 1 20 −5 0 15
90 120 1 −10 0 30 20
90 80 1 −10 0 −10 0

Noting that the payoffs from the four actions are themselves vectors in four-
dimensional space, it is natural to think that by using a linear combination of
these actions we can reproduce the option exactly. To find the coefficients zi

for the actions Ai we write four equations in four unknowns,

z0 + 20z1 + 20z2 = 40
z0 + 20z1 − 5z2 = 15
z0 − 10z1 + 30z3 = 20
z0 − 10z1 − 10z3 = 0

Subtracting the second equation from the first and the fourth from the third
gives 25z2 = 25 and 40z3 = 20 so z2 = 1 and z3 = 1/2. Plugging in these
values, we have two equations in two unknowns:

z0 + 20z1 = 20 z0 − 10z1 = 5

Taking differences, we conclude 30z1 = 15, so z1 = 1/2 and z0 = 10.
The reader may have already noticed that z0 = 10 is the option price. This

is no accident. What we have shown is that with $10 cash we can buy and
sell shares of stock to produce the outcome of the option in all cases. In the
terminology of Wall Street, z1 = 1/2, z2 = 1, z3 = 1/2 is a hedging strategy
that allows us to replicate the option. Once we can do this it follows that
the fair price must be $10. To do this note that if we could sell it for $12 then
we can take $10 of the cash to replicate the option and have a sure profit of $2.
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6.2 Binomial Model

In this section we consider the Binomial model in which at each time the stock
price the stock is multiplied by u (for ‘up’). or multiplied by d (for ‘down’). As
in the previous section we begin with the

One period case

There are two possible outcomes for the stock called heads (H) and tails (T ).

S0
��

��
��

XXXXXX

S1(H) = S0u

S1(T ) = S0d

We assume that there is an interest rate r, which means that $1 at time 0 is
the same as $(1 + r) at time 1. For the model to be sensible, we need

0 < d < 1 + r < u. (6.1)

Consider now an option that pays off V1(H) or V1(T ) at time 1. This could
be a call option (S1 −K)+, a put (K − S1)+, or something more exotic, so we
will consider the general case. To find the “no arbitrage price” of this option
we suppose we have V0 in cash and ∆0 shares of the stock at time 0, and want
to pick these to match the option price exactly:

V0 + ∆0

(
1

1 + r
S1(H)− S0

)
=

1
1 + r

V1(H) (6.2)

V0 + ∆0

(
1

1 + r
S1(T )− S0

)
=

1
1 + r

V1(T ) (6.3)

Notice that here we have to discount money at time 1 (i.e., divide it by 1 + r)
to make it comparable to dollars at time 0.

To find the values of V0 and ∆0 we define the risk neutral probability p∗ so
that

1
1 + r

(p∗S0u + (1− p∗)S0d) = S0 (6.4)

Solving we have

p∗ =
1 + r − d

u− d
1− p∗ =

u− (1 + r)
u− d

(6.5)

The conditions in (6.1) imply 0 < p∗ < 1.
Taking p∗(6.2) + (1− p∗)(6.3) and using (6.4) we have

V0 =
1

1 + r
(p∗V1(H) + (1− p∗)V1(T )) (6.6)

i.e., the value is the discounted expected value under the risk neutral probabil-
ities. Taking the difference (6.2)− (6.3) we have

∆0

(
1

1 + r
(S1(H)− S1(T ))

)
=

1
1 + r

(V1(H)− V1(T ))
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which implies that

∆0 =
V1(H)− V1(T )
S1(H)− S1(T )

(6.7)

To explain the notion of hedging we consider a concrete example.

Example 6.1. A stock is selling at $60 today. A month from now it will either
be at $80 or $50, i.e., u = 4/3 and d = 5/6. We assume an interest rate of
r = 1/18 so the risk neutral probability is

19/18− 5/6
4/3− 5/6

=
4
9

Consider now a call option (S1 − 65)+. By 6.6) the value is

V0 =
18
19
· 4
9
· 15 =

120
19

= 6.3158

Being a savy businessman you offer to sell this for $6.50. You are delighted
when a customer purchases 10,000 calls for $65,000, but then become worried
about the fact that if the stock goes up you will lose $85,000. By (6.7) the
hedge ratio

∆0 =
15
30

= 1/2

so you borrow $300,000 - $65,000 = $235,000 and buy 5,000 shares of stock.

Case 1. The stock goes up to $80. Your stock is worth $400,000. You have to
pay $150,000 for the calls and (19/18)$235,000 = $248,055 to redeem the loan
so you make $1,945 (in time 1 dollars).

Case 2. The stock drops to $50. Your stock is worth $250,000. You owe nothing
for the calls but have to pay $248,055 to redeem the loan so again you make
$1,945.

The equality of the profits in the two cases may look like a miracle but it is not.
By buying the correct amount of stock you replicated the option. This means
you made a sure profit of the $1,842 difference (in time 0 dollars) between the
selling price and fair price of the option, which translates into $1,945 time 1
dollars.

N period model

To solve the problem in general we work backwards from the end, repeatedly
applying the solution of the one period problems. Let a be a string of H’s and
T ’s of length n− 1 which represents the outcome of the first n− 1 events. The
value of the option at time n after the events in a have occurred, Vn(a), and the
amount of stock we need to hold in this situation, ∆n(a), in order to replicate
the option payoff satisfy:

Vn(a) + ∆n(a)
(

1
1 + r

Sn+1(aH)− Sn(a)
)

=
1

1 + r
Vn+1(aH) (6.8)

Vn(a) + ∆n(a)
(

1
1 + r

Sn+1(aT )− Sn(a)
)

=
1

1 + r
Vn+1(aT ) (6.9)
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Define the risk neutral probability p∗n(a) so that

Sn(a) =
1

1 + r
[p∗n(a)Sn+1(aH) + (1− p∗n(a))Sn+1(aT )] (6.10)

A little algebra shows that

p∗n(a) =
(1 + r)Sn(a)− Sn+1(aT )
Sn+1(aH)− Sn+1(aT )

(6.11)

In the binomial model one has p∗n(a) = (1 + r − d)/(u − d). However, stock
prices are not supposed to follow the binomial model, but are subject only to
the no arbitrage restriction that 0 < p∗n(a) < 1. Notice that these probabilities
depend on the time n and the history a.

Taking p∗n(a)(6.8) + (1− p∗n(a))(6.9) and using (6.10) we have

Vn(a) =
1

1 + r
[p∗n(a)Vn+1(aH) + (1− p∗n(a))Vn+1(aT )] (6.12)

i.e., the value is the discounted expected value under the risk neutral probabil-
ities. Taking the difference (6.8)− (6.9) we have

∆n(a)
(

1
1 + r

(Sn+1(aH)− Sn+1(aT ))
)

=
1

1 + r
(Vn+1(aH)− Vn+1(aT ))

which implies that

∆n(a) =
Vn+1(aH)− Vn+1(aT )
Sn+1(aH)− Sn+1(aT )

(6.13)

In words, ∆n(a) is the ratio of the change in price of the option to the change
in price of the stock. Thus for a call or put |∆n(a)| ≤ 1.

The option prices we have defined were motivated by the idea that by trading
in the stock we could replicate the option exactly and hence they are the only
price consistent with the absence of arbitrage. We will now go through the
algebra needed to demonstrate this for the general n period model. Suppose
we start with W0 dollars and hold ∆n(a) shares of stock between time n and
n + 1 when the otucome of the first n events is a. If we invest the money not
in the stock in the money market account which pays interest r per period our
wealth satisfies the recursion:

Wn+1 = ∆nSn+1 + (1 + r)(Wn −∆nSn) (6.14)

Theorem 6.3. If W0 = V0 and we use the investment strategy in (6.13) then
we have Wn = Vn.

In words, we have a trading strategy that replicates the option payoffs.

Proof. We proceed by induction. By assumption the result is true when n = 0.
Let a be a string of H and T of length n. (6.14) implies

Wn+1(aH) = ∆n(a)Sn+1(aH) + (1 + r)(Wn(a)−∆n(a)Sn(a))
= (1 + r)Wn(a) + ∆n(a)[Sn+1 − (1 + r)Sn(a)]

By induction the first term = (1 + r)Vn(a). Letting q∗n(a) = 1 − p∗n(a), (6.10)
implies

(1 + r)Sn(a) = p∗n(a)Sn+1(aH) + q∗n(a)Sn+1(aT )
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Subtracting this equation from Sn+1(aH) = Sn+1(aH) we have

Sn+1(aH)− (1 + r)Sn(a) = q∗n(a)[Sn+1(aH)− Sn+1(aT )]

Using (6.13) now, we have

∆n(a)[Sn+1 − (1 + r)Sn(a)] = q∗n(a)[Vn(aH)− Vn+1(aT )]

Combining our results then using (6.12)

Wn+1(aH) = (1 + r)Vn(a) + q∗n(a)[Vn(aH)− Vn+1(aT )]
= p∗n(a)Vn(aH) + q∗nVn(aT ) + q∗n(a)[Vn(aH)− Vn+1(aT )]
= Vn+1(aH)

The proof that Wn+1(aT ) = Vn+1(aT ) is almost identical.

Our next goal is to prove that the value of the option is its expected value
under the risk neutral probability discounted by the interest rate (Theorem
6.5). The first step is:

Theorem 6.4. In the binomial model, under the risk neutral probability mea-
sure Mn = Sn/(1 + r)n is a martingale with respect to Sn.

Proof. Let p∗ and 1 − p∗ be defined by (6.5). Given a string a of heads and
tails of length n

P ∗(a) = (p∗)H(a)(1− p∗)T (a)

where H(a) and T (a) are the number of heads and tails in a. To check the
martingale property we need to show that

E∗
(

Sn+1

(1 + r)n+1

∣∣∣∣Sn = sn, . . . S0 = s0

)
=

Sn

(1 + r)n

where E∗ indicates expected value with respect to P ∗. Letting Xn+1 = Sn+1/Sn

which is independent of Sn and is u with probability p∗ and d with probability
1− p∗ we have

E∗
(

Sn+1

(1 + r)n+1

∣∣∣∣Sn = sn, . . . S0 = s0

)
=

Sn

(1 + r)n
E∗
(

Xn+1

1 + r

∣∣∣∣Sn = sn, . . . S0 = s0

)
=

Sn

(1 + r)n

since E∗Xn+1 = 1 + r by (6.10).

Notation. To make it easier to write computations like the last one we will let

En(Y ) = E(Y |Sn = sn, . . . S0 = s0) (6.15)

or in words, the conditional expectation of Y given the information at time n.

A second important martingale result is

Theorem 6.5. Assume that the holdings ∆n(a) can be determined from the
outcomes of the first n stock movements and let Wn be the wealth process defined
by (6.14). Under P ∗, Wn/(1 + r)n is a martingale, and hence the value has
V0 = E∗(Vn/(1 + r)n).
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Proof. The second conclusion follows from the first and Theorem 6.3. A little
arithmetic with (6.14) shows that

Wn+1

(1 + r)n+1
=

Wn

(1 + r)n
+ ∆n

(
Sn+1

(1 + r)n+1
− Sn

(1 + r)n

)

Since ∆n(a) is an admissible gambling strategy and Sn/(1+r)n is a martingale,
the desired result follows from Theorem 5.12.

6.3 Concrete Examples

Turning to examples, we will often use the following binomial model because it
leads to easy arithmetic

u = 2, d = 1/2, r = 1/4 (6.16)

The risk neutral probabilities

p∗ =
1 + r − d

u− d
=

5/4− 1/2
2− 1/2

=
1
2

and by (6.12) the option prices follow the recursion:

Vn(a) = .4[Vn+1(aH) + Vn+1(aT )] (6.17)

Example 6.2. Callback options. In this option you can buy the stock at
time 3 at its current price and then sell it at the highest price seen in the past
for a profit of

V3 = max
0≤m≤3

Sm − S3

Our goal is to compute the value Vn(a) and the replicating strategy ∆n(a) for
this option in the binomial model given in (6.16) with S0 = 4. Here the numbers
above the nodes are the stock price, while those below are the values of Vn(a)
and ∆n(a). Starting at the right edge, S3(HTT ) = 2 but the maximum in the
past is 8 = S1(H) so V3(HTT ) = 8− 2 = 6.
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.5

0

8

0

6

0

2

2

3.5

16

4

4

1

3.2

2.4

0.8

2.2

−.25

−1

−.333

−1

8

2

2.24

1.2

.0666

−.466

4

1.376
.1733

On the tree, stock prices are above the nodes and option prices below. To
explain the computation of the option price note that by (6.17).

V2(HH) = 0.4(V3(HHH) + V3(HHT )) = 0.4(0 + 8) = 3.2
V2(HT ) = 0.4(V3(HTH) + V3(HTT )) = 0.4(0 + 6) = 2.4

V1(H) = 0.4(V2(HH) + V2(HT )) = 0.4(3.2 + 2.4) = 2.24

If one only wants the option price then Theorem 6.5 which says that V0 =
E∗(VN/(1 + r)N ) is much quicker:

V0 = (4/5)3 · 1
8
· [0 + 8 + 0 + 6 + 0 + 2 + 2 + 2 + 3.5] = 1.376

Example 6.3. Put option. We will use the binomial model in (6.16) but
now suppose S0 = 8 and consider the put option with value V3 = (10 − S3)+.
The value of this option depends only on the price so we can reduce the tree
considered above to:
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64

16

4

1

0

0

6

9

32

8

2

0

2.4

6

0

−1/2

−1

16

4

0.96

3.2

−0.1

−0.6

8

1.728
−0.1866

On the tree itself stock prices are above the nodes and option prices below. To
explain the computation of the option price note that by (6.17).

V2(2) = 0.4[V3(4) + V3(1)] = 0.4 · [8 + 9] = 6.8
V2(8) = 0.4[V3(16) + V3(2)] = 0.4 · [0 + 6] = 2.4 V2(32) = 0
V1(4) = 0.4[V2(8) + V2(2)] = 0.4 · [2.4 + 6] = 3.36

V1(16) = 0.4[V2(32) + V2(8)] = 0.4 · [0 + 2.4] = 0.96
V0(8) = 0.4[V1(16) + V1(40] = 0.4 · [0.96 + 3.36] = 1.728

Again if one only wants the option price then Theorem 6.5 is much quicker:

V0 = (4/5)3 ·
[
6 · 3

8
+ 9 · 1

8

]
= 1.728

However if we want to compute the replicating strategy

∆n(a) =
Vn+1(aH)− Vn+1(aT )
Sn+1(aH)− Sn+1(aT )

one needs all of the information generated by the recursion.

∆2(HH) = 0
∆2(HT ) = (0− 6)/(16− 4) = −0.5
∆2(TT ) = (6− 9)/(4− 1) = 1
∆1(H) = (0− 2.4)/(32− 8) = −0.1
∆1(T ) = (2.4− 6)/(8− 2) = −0.6
∆0(T ) = (0.96− 3.2)/(16− 4)

Notice that Vn(aH) ≤ Vn(aT ) and the change in the price of the option is
always smaller than the change in the price of the stock so −1 ≤ ∆n(a) ≤ 0.
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Example 6.4. Put-call parity. Consider the binomial model with S0 = 32,
u = 3/2, d = 2/3 and r = 1/6. By (6.5) the risk neutral probability

p∗ =
1 + r − d

u− d
=

7/6− 2/3
3/2− 2/3

=
3/6
5/6

= 0.6

so by (6.12) the value satisfies

Vn(a) =
1
7
(3.6Vn+1(aH) + 2.4Vn+1(aT ))

We will now compute the values for the call and put with strike 49 and expiry
2. In the diagrams below the numbers above the line are the value of the stock
and the ones below are the value of the option, and the replicating strategy.
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call 32

36

0

16

0
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A
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A
A
A
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A
A
A

81

put 0

36

13

16

33

54

31.2
7

24

126
7

36

414.72
49

We have written the values as fractions to make it clear that the value at
time 0 of these two options are exactly the same. Once you realize this it is
easy to prove.

Theorem 6.6. The values VP and VC of the put and call options with the same
strike K and expiration N are related by

VP − VC =
K

(1 + r)N
− S0

In particular if K = (1 + r)NS0 then VP = VC .

Proof. The key observation is that

SN + (K − SN )+ − (SN −K)+ = K

Consider the two cases SN ≥ K and SN ≤ K. Dividing by (1 + r)N , taking E∗

expected value and using the fact that Sn/(1 + r)n is a martingale

S0 + E∗ (K − SN )+

(1 + r)N
− E∗ (K − SN )+

(1 + r)N
=

K

(1 + r)N

Since the second term on the left is VP and the third is VC the desired result
follows.
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It is important to note that the last result can be used to compute the value
of any put from the corresponding call. Returning to the previous example and
looking at the time 1 node where the price is 54, the formula above says

31.2
7
− 115.2

7
=

84
7

= 12 =
6
7
49− 54

Example 6.5. Knockout options. In these options when the price falls
below a certain level the option is worthless no matter what the value of the
stock is at the end. To illustrate consider the binomial model from Example
6.4: u = 3/2, d = 2/3, and r = 1/6. This time we suppose S0−24 and consider
a call (S3 − 28)+ with a knockout barrier at 20, that is if the stock price drops
below 20 the option becomes worthless. As we have computed the risk neutral
probability is p∗ = 0.6 and the value recursion is

Vn(a) =
6
7
[.6Vn(aH) + .4Vn(aT )],

with the extra boundary condition that if the price is ≤ 20 the value is 0.
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81

36

16

53

8

0

54

24

30

4.114

36

16

16.839

0

24

8.660

To check the answer note that the knockout feature eliminates one of the paths
to 36 so

V0 = (6/7)3[(.6)3 · 53 + 2(.6)2(.4) · 8] = 8.660

From this we see that the knockout barrier reduced the value of the option by
(6/7)3(0.6)2(0.4) · 8 = 0.7255.

6.4 Capital Asset Pricing Model

In this section, we will explore an approach to option pricing which is more
in keeping with traditional economic thinking. Our hidden agenda here is to
show how ideas from Section 6.2 can be used to simplify a complicated looking
problem.

Each investor is assumed to have a utility function that nondecreasing and
concave. If 0 ≤ λ ≤ 1 and x < y then

U(λx + (1− λ)y) ≥ λU(x) + (1− λ)U(y) (6.18)
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Geometrically, the line segment from (x,U(x)) to (y, U(y)) lies below the graph
of the function.

In economic terms investors are risk averse. They prefer a sure pay-off of
λx+(1−λ)y to a lottery ticket that pays x with probability λ and pays y with
probability 1− λ.

Lemma 6.7. If U is smooth then U is concave if U ′′ ≤ 0.

Proof. U ′′ ≤ 0 implies that the U ′ is decreasing, so if x > y

1
λ(x− y)

∫ λx+(1−λ)y

y

U ′(z) dz ≥ 1
x− y

∫ x

y

U ′(z) dz

In words, the average slope over [y, λx+(1−λ)y], and intervalof length λ(x−y)
is larger than that over [y, x]. Doing the integrals and a little algebra gives

U(λx + (1− λy))− U(y) ≥ λ(U(x)− U(y))

which after a little more algebra is (6.18).

Some concrete examples of utility functions are:

Up(x) = xp/p with 0 < p < 1 for x ≥ 0 and U(x) = −∞ for x < 0.

U0(x) = lnx for x > 0 and U(x) = −∞ for x ≤ 0.

Up(x) = xp/p with p < 0 for x ≥ 0 and U(x) = −∞ for x ≤ 0.

Dividing by p is useful here because in all three cases U ′
p(x) = xp−1 and U ′′

p (x) =
(p− 1)xp−2 ≤ 0 for x ≥ 0. The second half of the definition is forced on us. In
the second and third cases Up(x)→ −∞ as x ↓ 0, while in the first U ′

p(x)→ +∞
as x ↓ 0.

An optimal investment problem. Given a utility function U and an
initial wealth, find an admissible trading strategy ∆n to maximize EU(WN ),
where the wealth Wn satisfies the recursion (6.14)

Wn+1 = ∆nSn+1 + (1 + r)(Wn −∆nSn)

Example 6.6. Consider now the concrete example of maximizing U(x) = lnx
for a two-period binomial model with S0 = 4, u = 2, d = 1/2, and r = 1/4
where the probability of up and down are 2/3 and 1/3 respectively. Note that
we are optimizing under the real world or physical measure rather than the risk
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neutral probabilities p∗ = q∗ = 1/2 which are a fiction used to compute option
prices.

Our wealth at time 1 satisfies

W1(H) = 8∆0 +
5
4
(W0 − 4∆0) =

5
4
W0 + 3∆0

W1(T ) = 2∆0 +
5
4
(W0 − 4∆0) =

5
4
W0 + 3∆0

Writing δ1 = ∆1(H), δ2 = ∆1(T ), and δ0 = ∆0 our wealth at time 2 is

W2(HH) = 16δ1 +
5
4
(W1(H)− 8δ1) = 6δ1 +

15
4

δ0 +
25
16

W0

W2(HT ) = 4δ1 +
5
4
(W1(H)− 8δ1) = −6δ1 +

15
4

δ0 +
25
16

W0

W2(TH) = 4δ2 +
5
4
(W1(H)− 2δ2) =

3
2
δ2 −

15
4

δ0 +
25
16

W0

W2(TT ) = δ2 +
5
4
(W1(H)− 2δ2) = −3

2
δ2 −

15
4

δ0 +
25
16

W0

Let y0, y1, y2, and y3 be our wealth at time 2 under outcomes HH, HT , TH,
and TT . To see the correspondence think of binary digits H = 0 and T = 1.
With this notation we want to maximize

V = E lnW2 =
4
9

ln y0 +
2
9

ln y1 +
2
9

ln y2 +
1
9

ln y3

Differentiating and using the formulas for the yi we have

∂V

∂δ0
=

15
4

(
4
9
· 1
y0

+
2
9
· 1
y1
− 2

9
· 1
y2
− 1

9
· 1
y3

)
∂V

∂δ1
= 6

(
4
9
· 1
y0
− 2

9
· 1
y1

)
∂V

∂δ2
=

3
2

(
2
9
· 1
y2
− 1

9
· 1
y3

)
The second and third equations imply that 2y1 = y0 and 2y3 = y2. The first
equation implies

4
y0

+
2
y1

=
2
y2

+
1
y3

or 4/y1 = 2/y3, i.e., 2y3 = y1. Thus if y3 = c, y1 = y2 = 2c, and y3 = 4c.
Adding the equations for the W2 we have

9c = y0 + y1 + y2 + y3 =
25
4

W0

and it follows that

y3 =
4
9
· 25

4
W0 y2 = y1 =

2
9
· 25

4
W0 y0 =

1
9
· 25

4
W0 (6.19)

Once we have the yi’s we have

y0 − y1 = 12δ1 y2 − y3 = 3δ2 y0 + y1 − y2 − y3 = 15δ0
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Turing to the two=period case for a general binomial model, the previous
calculation suggests that what we really want to solve for are the terminal
values yi. We cannot achieve any yi. Theorem 6.5 implies that our discounted
wealth Wn/(1 + r)n is a martingale under P ∗, so letting p∗m be the risk neutral
probabilities of outcomes m = 0, 1, 2, 3, we must have

1
(1 + r)2

3∑
m=0

p∗mym = W0

Conversely, given a vector that satisfies the last condition, the option with these
payoffs has value W0 and there is a trading strategy that allows us to replicate
the option. Letting pm be the physical probabilities of outcomes m = 0, 1, 2, 3,
our problem m is to

Maximize
∑3

m=0 pm ln ym subject to (1 + r)−2
∑3

m=0 p∗mym = W0.

Consider the unconstrained optimization problem of maximizing

L =
3∑

m=0

pmU(ym)− λ

(1 + r)2

(
3∑

m=0

p∗mym −W0(1 + r)2
)

Differentiating we have
∂L

∂ym
=

pm

ym
− λp∗m

(1 + r)2

Setting these equal to 0 we have

ym =
pm(1 + r)2

λp∗m

The final detail is to pick λ to satisfy the constraint, i.e.,

(1 + r)2

λ

3∑
m=0

pm = W0

or since the pm sum to 1, λ = 1/W0 and

ym = W0(1 + r)2
pm

p∗m

Since 1 + r = 5/4, p3 = 4/9, p2 = p1 = 2/9, p0 = 1/9, and all the p∗m = 1/4
this agrees with (6.19). However from the new solution we can easily see the
nature of the solution in general.

6.5 American Options

European option contracts specify an expiration date, and if the option is to be
exercised at all, this must occur at the expiration date. An option whose owner
can choose to exercise it at any time is called an American option. We will
mostly be concerned with call and put options where the value at exercise is a
function of the stock price, but it is no more difficult to consider path dependent
options, so we derive the basic formulas in that generality.

Given a sequence a of heads and tails of length n let gn(a) be the value if
we exercise at time n. Our first goal is to compute the value function Vn(a)
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for the N -period problem. To simplify some statements, we will suppose with
essentially no loss of generality that gN (a) ≥ 0, so VN (a) = gN (a). To work
backwards in time note that at time n we can exercise the option or let the
game proceed for one more step. Since we will stop or continue depending on
which choice gives the better payoff:

Vn(a) = max
{

gn(a),
1

1 + r
[p∗n(a)Vn+1(aH) + q∗n(a)Vn+1(aT )]

}
(6.20)

where p∗n(a) and q∗n(a) = 1−p∗n(a) are the risk-neutral probabilities which make
the underlying stock a martingale.
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Example 6.7. For a concrete example, suppose as we did in Example 6.3 that
the stock price follows the binomial model with S0 = 8, u = 2, d = 1/2, r = 1/4
and consider a put option with strike 10, that is gn = (10 − sn)+. The risk
neutral probability p∗ = 0.5 and the recursion is

Vn−1(a) = 0.4[Vn(aH) + Vn(aT )]

On the drawing above, the two numbers above each line are the price of the
stock and the value of the option. Below the line are the value of the option if
exercised, and the value computed by the recursion if we continue for one more
period. A star indicates the large of the two, which is the value of the option at
that time. To explain the solution, note that working backwards from the end.

V2(2) = max{8, 0.4(6 + 9) = 6} = 8
V2(8) = max{2, 0.4(0 + 6) = 2.4} = 2.4

V2(32) = max{0, 0} = 0
V1(4) = max{6, 0.4(2.4 + 8) = 4.16} = 6

V1(16) = max{0, 0.4(0 + 2.4) = 0.96} = 0.96
V0(8) = max{2, 0.4(0.96 + 6) = 2.784} = 2.784
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This computes the value and the optimal strategy: stop or continue at each node
depending on which value is larger. Notice that this is larger than the value
1.728 we computed for the European version. It certainly cannot be strictly
less since one possibility in the American option is to continue each time and
this turns it into a European option.

For some of the theoretical results it is useful to notice that

V0 = max
τ

E∗
(

gτ

(1 + r)τ

)
(6.21)

where the maximum is taken over all stopping times τ with 0 ≤ τ ≤ N . In
Example 6.7 τ(T ) = 1 and τ(H) = 3, i.e., if the stock goes down on the first
step we stop. Otherwise we continue until the end.

V0 =
1
2
· 6 · 4

5
+

1
8
· 6 ·

(
4
5

)3

= 2.4 + 0.384

Proof. The key to prove the stronger statement

Vn(a) = max
τ≥n

E∗
n(gτ/(1 + r)τ−n)

where E∗
n is the conditional expectation given the events that have occurred up

to time n. Let Wn(a) denote the right-hand side. If we condition on the first n
outcomes being a then P (τ = n) is 1 or 0. In the first case we get gn(a). In the
second case Wn(a) = [p∗n(a)Wn+1(aH) + q∗n(a)Wn+1(aT )]/(1 + r), so Wn and
Vn satisfy the same recursion.

Example 6.8. Continue now the set-up of the previous example but consider
the call option (Sn − 10)+. The computations are the same but the result is
boring: the optimal strategy is to always continue, so there is no difference
between the American and the European option.
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To spare the reader the chore of doing the arithmetic we give the recursion:

V2(2) = max{0, 0} = 0
V2(8) = max{0, 0.4(0 + 6) = 2.4} = 2.4

V2(32) = max{22, 0.4(54 + 60 = 24} = 24
V1(4) = max{0, 0.4(0 + 2.4) = 0.96} = 0.96

V1(16) = max{6, 0.4(24 + 2.4) = 10.56} = 10.56
V0(8) = max{0, 0.4(10.56 + 0.96) = 4.608} = 4.608

Our next goal is to prove that it is always optimal to continue in the case
of the American call option. To explain the reason for this we formulate an
abstract result. We say that g is convex if whenever 0λ ≤ 1 and s1, s2 are real
numbers

g(λs1 + (1− λ)s2) ≤ λg(s1) + (1− λ)g(s2) (6.22)

Geometrically the line segment from (s1, g1(s)) to (s2, g2(s)) always lies above
the graph of the function g. This is true for the call g(x) = (x−K)+ and the
put g(x) = (K−x)+. However only the call satisfies all of the conditions in the
following result.

Theorem 6.8. If g is a nonnegative convex function with g(0) = 0 then for
the American option with payoff g(Sn) it is optimal to wait until the end to
exercise.

Proof. Since Sn/(1 + r)n is a martingale under P ∗

g(Sn) = g

(
E∗

n

(
Sn+1

1 + r

))
Under the risk neutral probability

Sn(a) = p∗n(a)
Sn+1(aH)

1 + r
+ (1− p∗n(a))

Sn+1(aH)
1 + r

Using (6.22) with λ = p∗n(a) it follows that

g

(
E∗

n

(
Sn+1

1 + r

))
≤ E∗

n

(
g

(
Sn+1

1 + r

))
Using (6.22) with s2 = 0 and g(0) = 0 we have g(λs1) ≤ λg(s1), so we have

E∗
n

(
g

(
Sn+1

1 + r

))
≤ 1

1 + r
E∗

ng(Sn+1)

Combining three of the last four equations we have

g(Sn) ≤ 1
1 + r

E∗
ng(Sn+1)

This shows that if we were to stop at time n for some outcome a, it would be
better to continue. Using (6.21) now the desired result follows.
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6.6 Black-Scholes formula

Many options take place over a time period of one or more months, so it is
natural consider St to be the stock price after t years. We could use a binomial
model in which prices change at the end of each day but it would also be
natural to update prices several times during the day. Let h be the amount of
time measured in years between updates of the stock price. This h will be very
small e.g., 1/365 for daily updates so it is natural to let h→ 0. Knowing what
will happen when we take the limit we will let

Snh = S(n−1)h exp(µh + σ
√

hXn)

where P (Xn = 1) = P (Xn = −1) = 1/2. This is binomial model with

u = exp(µh + σ
√

h) d = exp(µh− σ
√

h) (6.23)

Iterating we see that

Snh = S0 exp

(
µnh + σ

√
h

n∑
m=1

Xm

)
(6.24)

If we let t = nh the first term is just µt. Writing h = t/n the second term
becomes

σ
√

t · 1√
n

n∑
m=1

Xm

To take the limit as n→∞, we use the

Theorem 6.9. Central Limit Theorem. Let X1, X2, . . . be i.i.d. with EXi =
0 and var (Xi) = 1 Then for all x we have

P

(
1√
n

n∑
m=1

Xm ≤ x

)
→ P (χ ≤ x) (6.25)

where χ has a standard normal distribution. That is,

P (χ ≤ x) =
∫ x

−∞

1√
2π

e−y2/2 dy

The conclusion in (6.25) is often written as

1√
n

n∑
m=1

Xm ⇒ χ

where ⇒ is read “converges in distribution to.” Recalling that if we multiply
a standard normal χ by a constant c then the result has a normal distribution
with mean 0 and variance σ2, we see that

√
t · 1√

n

n∑
m=1

Xm ⇒
√

tχ

and the limit is a normal with mean 0 and variance t.
This motivates the following definition:
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Definition. B(t) is a standard Brownian motion if B(0) = 0 and it satisfies
the following conditions:

(a) Independent increments. Whenever 0 = t0 < t1 < . . . < tk

B(t1)−B(t0), . . . , B(tk)−B(tk−1) are independent.

(b) Stationary increments. The distribution of Bt −Bs is normal (0, t− s).

(c) t→ Bt is continuous.

To explain (a) note that if ni = ti/h then the sums∑
ni−1<m≤ni

Xm i = 1, . . . k

are independent. For (b) we note that that the distribution of the sum only
depends on the number of terms and use the previous calculation. Condition (c)
is a natural assumption for the physical system which motivated this definition:
the erratic movement of a pollen grain in water as seen under a microscope by
Brown in 1825.

Using the new definition, our stock price model can be written as

St = S0 · exp(µt + σBt) (6.26)

where Bt is a standard Brownian motion Here µ is the exponential growth
rate of the stock, and σ is its volatility. If we also assume that the per period
interest rate in the approximating model is rh, and recall that(

1
1 + rh

)t/h

=
1

(1 + rh)t/h
→ 1

ert
= e−rt

then the discounted stock price is

e−rtSt = S0 · exp((µ− r)t + σBt)

By the formula for the moment generating function for the normal with
mean 0 and variance σ2t, see (5.15),

E exp(−(σ2/2)t + σBt) = 1

Since Bt has independent increments, if we let

µ = r − σ2/2 (6.27)

then reasoning as for the exponential martingale, Example 5.6, the discounted
stock price, e−rtSt is a martingale.

Extrapolating wildly from discrete time, we can guess that the option price
is its expected value after changing the probabilities to make the stock price a
martingale.

Theorem 6.10. Write E∗ for expected values when µ = r − σ2/2 in (6.26).
The value of a European option g(ST ) is given by E∗e−rT g(ST ).
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Proof. We prove this by taking limits of the discrete approximation. The risk
neutral probabilities, p∗h, are given by

p∗h =
1 + rh− d

u− d
. (6.28)

Using the formulas for u and d in (6.23 and recalling that ex = 1+x+x2/2+· · · ,

u = 1 + µh + σ
√

h +
1
2
(µh + σ

√
h)2 + . . .

= 1 + σ
√

h + (σ2/2 + µ)h + . . . (6.29)

d = 1 + µh− σ
√

h + (σ2/2 + µ)h + . . .

so from (6.28) we have

p∗h ≈
σ
√

h + (r − µ− σ2/2)h
2σ
√

h
=

1
2

+
r − µ− σ2/2

2σ

√
h

If Xh
1 , Xh

2 , . . . are i.i.d. with

P (Xh
1 = 1) = p∗h P (Xh

1 = −1) = 1− p∗h

then the mean and variance are

EXh
i = 2p∗h =

(r − µ− σ2/2)
σ

√
h

var (Xh
i ) = 1− (EXh

i )2 → 1

To apply the central limit theorem we note that

σ
√

h

t/h∑
m=1

Xh
m = σ

√
h

t/h∑
m=1

(Xh
m − EXh

m) + σ
√

h

t/h∑
m=1

EXh
m

→ σBt + (r − µ + σ2/2)t

so under the risk neutral measure, P ∗,

St = S0 · exp((r − σ2/2)t + σBt)

The value of the option g(ST ) in the discrete approximation is given by the
expected value under its risk neutral measure. Ignoring the detail of proving
that the limit of expected values is the expected value of the limit, we have
proved the desired result.

The Black-Scholes partial differential equation

We continue to suppose that the option payoff at time T is g(ST ). Let V (t, s)
be the value of the option at time t < T when the stock price is s. Reasoning
with the discrete time approximation and ignoring the fact that the value in
this case depends on h,

V (t− h, s) =
1

1 + rh
[p∗V (t, su) + (1− p∗)V (t, sd)]
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Doing some algebra we have

V (t, s)− (1 + rh)V (t− s, h) = p∗[V (t, s)− V (t, su)]
+ (1− p∗)[V (t, s)− V (t, sd)]

Dividing by h we have

V (t, s)− V (t− h, s)
h

− rV (t− h, s) (6.30)

= p∗
[
V (t, s)− V (t, su)

h

]
+ (1− p∗)

[
V (t, s)− V (t, sd)

h

]
Letting h→ 0 the left-hand side of (6.30) converges to

∂V

∂t
(t, s)− rV (t, s) (6.31)

Expanding V (t, s) in a power series in s

V (t, s′)− V (t, s) ≈ ∂V

∂x
(t, s)(s′ − s) +

∂2V

∂x2
(t, s)

(s′ − s)2

2

Using the last equations with s′ = su and s′ = sd, the right-hand side of (6.30)
is

≈ ∂V

∂x
(t, s)s[(1− u)p∗ + (1− d)(1− p∗)]/h

− 1
2

∂2V

∂x2
(t, s)s2[p∗(1− u)2 + (1− p∗)(1− d)2]/h

From (6.28)

(1− u)p∗ + (1− d)(1− p∗)
h

≈ −
(

σ2

2
+ µ

)
= −r

(1− u)2p∗ + (1− d)2(1− p∗)
h

≈ σ2

so taking the limit, the right-hand side of (6.30) is

∂V

∂x
(t, s)s[−rh] +

1
2

∂2V

∂x2
(t, s)s2σ2h

Combining the last equation with (6.31) and (6.30) we have that the value
function satisfies

∂V

∂t
− rV (t, s) + rs

∂V

∂x
(t, s) +

1
2
σ2s2 ∂2V

∂x2
(t, s) = 0 (6.32)

for 0 ≤ t < T with boundary condition V (T, s) = g(s).

6.7 Calls and Puts

We will now apply the theory developed in the previous section to the concrete
examples of calls and puts. At first glance the formula in the first result may
look complicated, but given that the value is defined by soolving a PDE, it is
remarkable that such a simple formula exists.
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Theorem 6.11. The price of the European call option (St −K)+ is given by

S0Φ(d1)− e−rtKΦ(d2)

where the constants

d1 =
ln(S0/K) + (r + σ2/2)t

σ
√

t
d2 = d1 − σ

√
t.

Proof. Using the fact that log(St/S0) has a normal(µt, σ2t) distribution with
µ = r − σ2/2, we see that

E∗(e−rt(St −K)+) = e−rt

∫ ∞

log(K/S0)

(S0e
y −K)

1√
2πσ2t

e−(y−µt)2/2σ2t dy

Splitting the integral into two and then changing variables y = µt + wσ
√

t,
dy = σ

√
t dw the integral is equal to

= e−rtS0e
µt 1√

2π

∫ ∞

α

ewσ
√

te−w2/2 dw − e−rtK
1√
2π

∫ ∞

α

e−w2/2 dw (6.33)

where α = (log(K/S0)− µt)/σ
√

t. The handle the first term, we note that

1√
2π

∫ ∞

α

ewσ
√

te−w2/2 dw = etσ2/2

∫ ∞

α

1√
2π

e−(w−σ
√

t)2/2 dw

= etσ2/2 P (normal(σ
√

t, 1) > α)

The last probability can be written in terms of the distribution function Φ of a
normal(0,1) χ, i.e., Φ(t) = P (χ ≤ t), by noting

P (normal(σ
√

t, 1) > α) = P (χ > α− σ
√

t)

= P (χ ≤ σ
√

t− α) = Φ(σ
√

t− α)

where in the middle equality we have used the fact that χ and −χ have the
same distribution. Using the last two computations in (6.33) converts it to

e−rtS0e
µteσ2t/2Φ(σ

√
t− α)− e−rtKΦ(−α)

Now e−rteµteσ2t/2 = 1 since µ = r − σ2/2. As for the argument of the first
normal

d1 = σ
√

t− α =
log(S0/K) + (r − σ2/2)t

σ
√

t
+ σ
√

t

which agrees with the formula given in the theorem. The second one is much
easier to see: d2 = d1 − σ

√
t.

Example 6.9. A Google call options. On the morning of December 5,
2011 Google stock was selling for $620 a share and a March 12 call option with
strike K = 635 was selling for $33.10. To compare this with the prediction
of the Black-Scholes formula we assume an interest rate of r = 0.01 per year
and assume a volatility σ = 0.3. The 100 days until expiration of the option
are t = 0.27393 years. With the help of a little spreadsheet we find that the
formula predcits a price of $32.93.
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Example 6.10. Put-call parity allows us to compute the value of the put-
option, VP from the value of the call option VC by the formula:

VP − VC = e−rT K − S0

In the example for March 12 Google options, exp(−rt) = 0.9966 so we might
as well ignore that factor. As the next table shows the formula works well in
practice

strike VP VC S0 + VP − VC

600 28.00 55.60 598.20
640 45.90 32.70 638.20
680 74.16 17.85 681.31

6.8 Exercises

6.1. A stock is now at $110. In a year its price will either be $121 or $99. (a)
Assuming that the interest rate is r = 0.04 find the price of a call (S1 − 113)+.
(b) How much stock ∆0 do we need to buy to replicate the option. (c) Verify
that having V0 in cash and ∆0 in stock replicates the option exactly.

6.2. A stock is now at $60. In a year its price will either be $75 or $45. (a)
Assuming that the interest rate is r = 0.05 find the price of a put (60−S1−)+.
(b) How much stock ∆0 do we need to sell to replicate the option. (c) Verify
that having V0 in cash and ∆0 in stock replicates the option exactly.

6.3. It was crucial for our no arbitrage computations that there were only two
possible values of the stock. Suppose that a stock is now at 100, but in one
month my be at 130, 110 or 80 in outcomes that we call 1, 2 and 3. (a) Find all
the (nonnegative) probabilities p1, p2 and p3 = 1− p1− p2 that make the stock
proce a martingale. (b) Find the maximum and minimum values, v1 and v0,
of the expected value of the the call option (S1 − 105)+ among the martingale
probabilities. (c) Show that we can start with v1 in cash, buy x1 shares of stock
and we have v1 +x1(S1−S0) ≥ (S1−105)+ in all three outcomes with equality
for 1 and 3. (d) If we start with v0 in cash, buy x0 shares of stock and we have
v0 + x0(S1−S0) ≤ (S1− 105)+ in all three outcomes with equality for 2 and 3.
(e) Use (c) and (d) to argue that the only prices for the option consistent with
absence of arbitrage are those in [v0, v1].

6.4. The Cornell hockey team is playing a game against Harvard that it will
either win, lose, or draw. A gambler offers you the following three payoffs, each
for a $1 bet

win lose draw
Bet 1 0 1 1.5
Bet 2 2 2 0
Bet 3 .5 1.5 0

(a) Assume you are able to buy any amounts (even negative) of these bets.
Is there an arbitrage opportunity? (b) What if only the first two bets are
available?

6.5. Suppose Microsoft stock sells for 100 while Netscape sells for 50. Three
possible outcomes of a court case will have the following impact on the two
stocks.
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Microsoft Netscape
1 (win) 120 30
2 (draw) 110 55
3 (lose) 84 60

What should we be willing to pay for an option to buy Netscape for 50 after
the court case is over? Answer this question two ways: (i) find a probability
distribution so that the two stocks are martingales, (ii) show that by using cash
and buying Microsoft and Netscape stock one can replicate the option.

6.6. Consider the two-period binomial model with u = 2, d = 1/2 and interest
rate r = 1/4. and suppose S0 = 100. What is the value of the European call
option with strike price 80, i.e., the option with payoff (S2 − 80)+. Find the
stock holdings ∆0, ∆1(H) and ∆1(T ) need to replicate the option exactly.

6.7. Consider the two-period binomial model with u = 3/2, d = 2/3, interest
rate r = 1/6. and suppose S0 = 45. What is the value of the European call
option with strike price 50, i.e., the option with payoff (50 − S2)+. Find the
stock holdings ∆0, ∆1(H) and ∆1(T ) need to replicate the option exactly.

6.8. The payoff of the Asian option is based on the average price: An = (S0 +
· · · + Sn)/(n + 1). Suppose that the stock follows the binomial model with
S0 = 4, u = 2, d = 1/2, and r = 1/4. (a) Compute the value function Vn(a)
and the replicating portfolio ∆n(a) for the three period call option with strike
4. (b) Check your answer for V0 by using V0 = E∗(V3/(1 + r)3).

6.9. In the putback option at time 3 you can buy the stock for the lowest price
seen in the past and the sell it at its current price for a profit of

V3 = S3 − min
0≤m≤3

Sm

Suppose that the stock follows the binomial model with S0 = 4, u = 2, d = 1/2,
and r = 1/4. (a) Compute the value function Vn(a) and the replicating portfolio
∆n(a) for the three period call option with strike 4. (b) Check your answer for
V0 by using V0 = E∗(V3/(1 + r)3).

6.10. Consider the three-period binomial model with u = 3, d = 1/2 and
r = 1/3 and S0 = 16. The European prime factor option pays off $1 for each
factor in the prime factorization of the stock price at time 3 (when the option
expires). For example, if the stock price is 24 = 2331 then the payoff is 4 = 3+1.
Find the no arbitrage price of this option.

6.11. Suppose S0 = 27, u = 4/3, d = 2/3 and interest rate r = 1/9. The
European “cash-or-nothing option” pays $1 if S3 > 27 and 0 otherwise. Find
the value of the option Vn and for the hedge ∆n.

6.12. Assume the binomial model with S0 = 54, u = 3/2, d = 2/3, and r = 1/6.
and consider a put (50−S3)+ with a knockout barrier at 70. Find the value of
the option.

6.13. Consider now a four period binomial model with S0 = 32, u = 2, d = 1/2,
and r = 1/4, and suppose we have a put (50 − S4)+ with a knockout barrier
at 100. Show that the knockout option as the same value as an option that
pays off (50 − S4)+ when S4 = 2, 8, or 32, 0 when S4 = 128, and −18 when
S4 = 512. (b) Compute the value of the option in (a).
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6.14. Consider the binomial model with S0 = 64, u = 2, d = 1/2, and r = 1/4.
(a) Find the value Vn(a) of the call option (S3−125)+ and the hedging strategy
∆n(a). (b) Check your answer to (a) by computing V0 = E∗(V3/(1 + r)3). (c)
Find the value at time 0 of the put option.

6.15. Consider the binomial model with S0 = 27, u = 4/3, d = 2/3, and
r = 1/9. (a) Find the risk neutral probability p∗. (b) Find value Vn(a) of the
put option (30− S3)+ and the hedging strategy ∆n(a). (c) Check your answer
to (b) by computing V0 = E∗(V3/(1 + r)3).

6.16. Consider the binomial model of Problem 6.15 S0 = 27, u = 4/3, d = 2/3,
and r = 1/9 but now (a) find value and the optimal exercise strategy for the
American put option (30 − S3)+, and (b) find the value of the American call
option (S3 − 30)+.

6.17. Continuing with the model of previous problem S0 = 27, u = 4/3, d =
2/3, and r = 1/9, we are now interested in finding value VS of the American
straddle |S3 − 30|. Comparing with the values VP and VC of the call and the
put computed in the previous problem we see that VS ≤ VP +VC . Explain why
this should be true.

6.18. Consider the three-period binomial model with S0 = 16, u = 3, d = 1/2
and r = 1/3 An American limited liability call option pays min{(Sn−10)+, 60}
if exercised at time 0 ≤ n ≤ 3. In words it is a call option but your profit is
limited to $60. Find the value and the optimal exercise strategy.

6.19. In the American version of the callback option, you can buy the stock at
time n at its current price and then sell it at the highest price seen in the past
for a profit of Vn = max0≤m≤n Sm−Sn. Compute the value of the three period
version of this option when the stock follows the binomial model with S0 = 8,
u = 2, d = 1/2, and r = 1/4.

6.20. The payoff of the Asian option is based on the average price: An =
(S0 + · · ·+Sn)/(n+1). Suppose that the stock follows the binomial model with
S0 = 4, u = 2, d = 1/2, and r = 1/4. Find the value of the American version of
the three period Asian option, (Sn−4)+, i.e., when you can exercise the option
at any time.

6.21. Show that for any a and b, V (s, t) = as + bert satisfies the Black-Scholes
differential equation. What investment does this correspond to?

6.22. Find a formula for the value (at time 0) of cash-or-nothing option that
pays off $1 if St > K and 0 otherwise. What is the value when the strike is
the initial value, the option is for 1/4 year, the volatility is σ = 0.3, and for
simplicity we suppose that the interest rate is 0.

6.23. On May 22, 1998 Intel was selling at 74.625. Use the Black-Scholes
formula to compute the value of a Janaury 2000 call (t = 1.646 years) with
strike 100, assuming the interest rate was r = 0.05 and the volatility σ = 0.375.

6.24. On December 20, 2011, stock in Kraft Foods was selling at 36.83. (a) Use
the Black-Scholes formula to compute the value of a March 12 call (t = 0.227
years) with strike 33, assuming an interest rate of r = 0.01 and the volatility
σ = 0.15. The volatility here has been chosen to make the price consistent with
the bid-ask spread of (3.9,4.0). (b) Is the price of 0.4 for a put with strike 33
consistent with put-call parity.
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6.25. On December 20, 2011, stock in Exxon Mobil was selling at 81.63. (a) Use
the Black-Scholes formula to compute the value of an April 12 call (t = 0.3123
years) with strike 70, assuming an interest rate of r = 0.01 and the volatility
σ = 0.26. The volatility here has been chosen to make the price consistent with
the bid-ask spread of (12.6,12.7). (b) Is the price of 1.43 for a put with strike
70 consistent with put-call parity.



Appendix A

Review of Probability

Here we will review some of the basic facts usually taught in a first course in
probability, concentrating on the ones that are important in the book.

A.1 Probabilities, Independence

The term experiment is used to refer to any process whose outcome is not
known in advance. Two simple experiments are flip a coin, and roll a die. The
sample space associated with an experiment is the set of all possible outcomes.
The sample space is usually denoted by Ω, the capital Greek letter Omega.

Example A.1. Flip three coins. The flip of one coin has two possible out-
comes, called “Heads” and “Tails,” and denoted by H and T . Flipping three
coins leads to 23 = 8 outcomes:

HHT HTT
HHH HTH THT TTT

THH TTH

Example A.2. Roll two dice. The roll of one die has six possible outcomes: 1,
2, 3, 4, 5, 6. Rolling two dice leads to 62 = 36 outcomes {(m,n) : 1 ≤ m,n ≤ 6}.

The goal of probability theory is to compute the probability of various events
of interest. Intuitively, an event is a statement about the outcome of an exper-
iment. Formally, an event is a subset of the sample space. An example for
flipping three coins is “two coins show Heads,” or

A = {HHT,HTH, THH}

An example for rolling two dice is “the sum is 9,” or

B = {(6, 3), (5, 4), (4, 5), (3, 6)}

Events are just sets, so we can perform the usual operations of set theory on
them. For example, if Ω = {1, 2, 3, 4, 5, 6}, A = {1, 2, 3}, and B = {2, 3, 4, 5},
then the union A ∪ B = {1, 2, 3, 4, 5}, the intersection A ∩ B = {2, 3}, and
the complement of A, Ac = {4, 5, 6}. To introduce our next definition, we
need one more notion: two events are disjoint if their intersection is the empty
set, ∅. A and B are not disjoint, but if C = {5, 6}, then A and C are disjoint.

207
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A probability is a way of assigning numbers to events that satisfies:

(i) For any event A, 0 ≤ P (A) ≤ 1.

(ii) If Ω is the sample space, then P (Ω) = 1.

(iii) For a finite or infinite sequence of disjoint events P (∪iAi) =
∑

i P (Ai).

In words, the probability of a union of disjoint events is the sum of the proba-
bilities of the sets. We leave the index set unspecified since it might be finite,

P (∪k
i=1Ai) =

k∑
i=1

P (Ai)

or it might be infinite, P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).
In Examples A.1 and A.2, all outcomes have the same probability, so

P (A) = |A|/|Ω|

where |B| is short for the number of points in B. For a very general example of a
probability, let Ω = {1, 2, . . . , n}; let pi ≥ 0 with

∑
i pi = 1; and define P (A) =∑

i∈A pi. Two basic properties that follow immediately from the definition of a
probability are

P (A) = 1− P (Ac) (A.1)
P (B ∪ C) = P (B) + P (C)− P (B ∩ C) (A.2)

To illustrate their use consider the following:

Example A.3. Roll two dice and suppose for simplicity that they are red and
green. Let A = “at least one 4 appears,” B = “a 4 appears on the red die,”
and C = “a 4 appears on the green die,” so A = B ∪ C.

Solution 1. Ac = “neither die shows a 4,” which contains 5 · 5 = 25 outcomes
so (A.1) implies P (A) = 1− 25/36 = 11/36.

Solution 2. P (B) = P (C) = 1/6 while P (B∩C) = P ({4, 4}) = 1/36, so (A.2)
implies P (A) = 1/6 + 1/6− 1/36 = 11/36.

Conditional probability

Suppose we are told that the event A with P (A) > 0 occurs. Then the sample
space is reduced from Ω to A and the probability that B will occur given that
A has occurred is

P (B|A) = P (B ∩A)/P (A) (A.3)

To explain this formula, note that (i) only the part of B that lies in A can
possibly occur, and (ii) since the sample space is now A, we have to divide by
P (A) to make P (A|A) = 1. Multiplying on each side of (A.3) by P (A) gives us
the multiplication rule:

P (A ∩B) = P (A)P (B|A) (A.4)

Intuitively, we think of things occurring in two stages. First we see if A occurs,
then we see what the probability B occurs given that A did. In many cases
these two stages are visible in the problem.
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Example A.4. Suppose we draw two balls without replacement from an urn
with 6 blue balls and 4 red balls. What is the probability we will get two blue
balls? Let A = blue on the first draw, and B = blue on the second draw.
Clearly, P (A) = 6/10. After A occurs, the urn has 5 blue balls and 4 red balls,
so P (B|A) = 5/9 and it follows from (A.4) that

P (A ∩B) = P (A)P (B|A) =
6
10
· 5
9

To see that this is the right answer notice that if we draw two balls without
replacement and keep track of the order of the draws, then there are 10 · 9
outcomes, while 6 · 5 of these result in two blue balls being drawn.

The multiplication rule is useful in solving a variety of problems. To illus-
trate its use we consider:

Example A.5. Suppose we roll a four-sided die then flip that number of coins.
What is the probability we will get exactly one Heads? Let B = we get exactly
one Heads, and Ai = an i appears on the first roll. Clearly, P (Ai) = 1/4 for
1 ≤ i ≤ 4. A little thought gives

P (B|A1) = 1/2, P (B|A2) = 2/4, P (B|A3) = 3/8, P (B|A4) = 4/16

so breaking things down according to which Ai occurs,

P (B) =
4∑

i=1

P (B ∩Ai) =
4∑

i=1

P (Ai)P (B|Ai)

=
1
4

(
1
2

+
2
4

+
3
8

+
4
16

)
=

13
32

One can also ask the reverse question: if B occurs, what is the most likely
cause? By the definition of conditional probability and the multiplication rule,

P (Ai|B) =
P (Ai ∩B)∑4

j=1 P (Aj ∩B)
=

P (Ai)P (B|Ai)∑4
j=1 P (Aj)P (B|Aj)

(A.5)

This little monster is called Bayes’ formula, but it will not see much action
here.

Last but far from least, two events A and B are said to be independent
if P (B|A) = P (B). In words, knowing that A occurs does not change the
probability that B occurs. Using the multiplication rule this definition can be
written in a more symmetric way as

P (A ∩B) = P (A) · P (B) (A.6)

Example A.6. Roll two dice and let A = “the first die is 4.”

Let B1 = “the second die is 2.” This satisfies our intuitive notion of indepen-
dence since the outcome of the first dice roll has nothing to do with that of the
second. To check independence from (A.6), we note that P (B1) = 1/6 while
the intersection A ∩B1 = {(4, 2)} has probability 1/36.

P (A ∩B1) =
1
36
6= 1

6
· 4
36

= P (A)P (B1)
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Let B2 = “the sum of the two dice is 3.” The events A and B2 are disjoint, so
they cannot be independent:

P (A ∩B2) = 0 < P (A)P (B2)

Let B3 = “the sum of the two dice is 9.” This time the occurrence of A enhances
the probability of B3, i.e., P (B3|A) = 1/6 > 4/36 = P (B3), so the two events
are not independent. To check that this claim using (A.6), we note that (A.4)
implies

P (A ∩B3) = P (A)P (B3|A) > P (A)P (B3)

Let B4 = “the sum of the two dice is 7.” Somewhat surprisingly, A and B4

are independent. To check this from (A.6), we note that P (B4) = 6/36 and
A ∩B4 = {(4, 3)} has probability 1/36, so

P (A ∩B3) =
1
36

=
1
6
· 6
36

= P (A)P (B3)

There are two ways of extending the definition of independence to more
than two events.

A1, . . . , An are said to be pairwise independent if for each i 6= j, P (Ai∩Aj) =
P (Ai)P (Aj), that is, each pair is independent.

A1, . . . , An are said to be independent if for any 1 ≤ i1 < i2 < . . . < ik ≤ n
we have

P (Ai1 ∩ . . . ∩Aik
) = P (Ai1) · · ·P (Aik

)

If we flip n coins and let Ai = “the ith coin shows Heads,” then the Ai are
independent since P (Ai) = 1/2 and for any choice of indices 1 ≤ i1 < i2 <
. . . < ik ≤ n we have P (Ai1 ∩ . . . ∩Aik

) = 1/2k. Our next example shows that
events can be pairwise independent but not independent.

Example A.7. Flip three coins. Let A = “the first and second coins are the
same,” B = “the second and third coins are the same,” and C = “the third
and first coins are the same.” Clearly P (A) = P (B) = P (C) = 1/2. The
intersection of any two of these events is

A ∩B = B ∩ C = C ∩A = {HHH,TTT}

an event of probability 1/4. From this it follows that

P (A ∩B) =
1
4

=
1
2
· 1
2

= P (A)P (B)

i.e., A and B are independent. Similarly, B and C are independent and C and
A are independent; so A, B, and C are pairwise independent. The three events
A, B, and C are not independent, however, since A ∩ B ∩ C = {HHH,TTT}
and hence

P (A ∩B ∩ C) =
1
4
6=
(

1
2

)3

= P (A)P (B)P (C)

The last example is somewhat unusual. However, the moral of the story is that
to show several events are independent, you have to check more than just that
each pair is independent.
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A.2 Random Variables, Distributions

Formally, a random variable is a real-valued function defined on the sample
space. However, in most cases the sample space is usually not visible, so we
describe the random variables by giving their distributions. In the discrete
case where the random variable can take on a finite or countably infinite set of
values this is usually done using the probability function. That is, we give
P (X = x) for each value of x for which P (X = x) > 0.

Example A.8. Binomial distribution. If we perform an experiment n times
and on each trial there is a probability p of success, then the number of successes
Sn has

P (Sn = k) =
(

n

k

)
pk(1− p)n−k for k = 0, . . . , n

In words, Sn has a binomial distribution with parameters n and p, a phrase we
will abbreviate as Sn = binomial(n, p).

Example A.9. Geometric distribution. If we repeat an experiment with
probability p of success until a success occurs, then the number of trials required,
N , has

P (N = n) = (1− p)n−1p for n = 1, 2, . . .

In words, N has a geometric distribution with parameter p, a phrase we will
abbreviate as N = geometric(p).

Example A.10. Poisson distribution. X is said to have a Poisson distri-
bution with parameter λ > 0, or X = Poisson(λ) if

P (X = k) = e−λ λk

k!
for k = 0, 1, 2, . . .

To see that this is a probability function we recall

ex =
∞∑

k=0

xk

k!
(A.7)

so the proposed probabilities are nonnegative and sum to 1.

In many situations random variables can take any value on the real line or
in a certain subset of the real line. For concrete examples, consider the height
or weight of a person chosen at random or the time it takes a person to drive
from Los Angeles to San Francisco. A random variable X is said to have a
continuous distribution with density function f if for all a ≤ b we have

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx (A.8)

Geometrically, P (a ≤ X ≤ b) is the area under the curve f between a and b.
In order for P (a ≤ X ≤ b) to be nonnegative for all a and b and for

P (−∞ < X <∞) = 1 we must have

f(x) ≥ 0 and
∫ ∞

−∞
f(x) dx = 1 (A.9)

Any function f that satisfies (A.9) is said to be a density function. We will
now define three of the most important density functions.



212 APPENDIX A. REVIEW OF PROBABILITY

Example A.11. Uniform distribution on (a,b).

f(x) =

{
1/(b− a) a < x < b

0 otherwise

The idea here is that we are picking a value “at random” from (a, b). That is,
values outside the interval are impossible, and all those inside have the same
probability density. Note that the last property implies f(x) = c for a < x < b.
In this case the integral is c(b− a), so we must pick c = 1/(b− a).

Example A.12. Exponential distribution.

f(x) =

{
λe−λx x ≥ 0
0 otherwise

Here λ > 0 is a parameter. To check that this is a density function, we note
that ∫ ∞

0

λe−λx dx = −e−λx
∣∣∞
0

= 0− (−1) = 1

In a first course in probability, the next example is the star of the show.
However, it will have only a minor role here.

Example A.13. Normal distribution.

f(x) = (2π)−1/2e−x2/2

Since there is no closed form expression for the antiderivative of f , it takes
some ingenuity to check that this is a probability density. Those details are not
important here, so we will ignore them.

Any random variable (discrete, continuous, or in between) has a distribu-
tion function defined by F (x) = P (X ≤ x). If X has a density function f(x)
then

F (x) = P (−∞ < X ≤ x) =
∫ x

−∞
f(y) dy

That is, F is an antiderivative of f .
One of the reasons for computing the distribution function is explained by

the next formula. If a < b, then {X ≤ b} = {X ≤ a} ∪ {a < X ≤ b} with the
two sets on the right-hand side disjoint so

P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b)

or, rearranging,

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) (A.10)

The last formula is valid for any random variable. When X has density function
f , it says that ∫ b

a

f(x) dx = F (b)− F (a)

i.e., the integral can be evaluated by taking the difference of the antiderivative
at the two endpoints.

To see what distribution functions look like, and to explain the use of (A.10),
we return to our examples.
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Example A.14. Uniform distribution. f(x) = 1/(b− a) for a < x < b.

F (x) =


0 x ≤ a

(x− a)/(b− a) a ≤ x ≤ b

1 x ≥ b

To check this, note that P (a < X < b) = 1 so P (X ≤ x) = 1 when x ≥ b and
P (X ≤ x) = 0 when x ≤ a. For a ≤ x ≤ b we compute

P (X ≤ x) =
∫ x

−∞
f(y) dy =

∫ x

a

1
b− a

dy =
x− a

b− a

In the most important special case a = 0, b = 1 we have F (x) = x for 0 ≤ x ≤ 1.

Example A.15. Exponential distribution. f(x) = λe−λx for x ≥ 0.

F (x) =

{
0 x ≤ 0
1− e−λx x ≥ 0

The first line of the answer is easy to see. Since P (X > 0) = 1, we have
P (X ≤ x) = 0 for x ≤ 0. For x ≥ 0 we compute

P (X ≤ x) =
∫ x

0

λe−λy dy = −e−λy
∣∣x
0

= 1− e−λx

In many situations we need to know the relationship between several random
variables X1, . . . , Xn. If the Xi are discrete random variables then this is easy,
we simply give the probability function that specifies the value of

P (X1 = x1, . . . , Xn = xn)

whenever this is positive. When the individual random variables have continu-
ous distributions this is described by giving the joint density function which
has the interpretation that

P ((X1, . . . , Xn) ∈ A) =
∫
· · ·
∫

A

f(x1, . . . , xn) dx1 . . . dxn

By analogy with (A.9) we must require that f(x1, . . . , xn) ≥ 0 and∫
· · ·
∫

f(x1, . . . , xn) dx1 . . . dxn = 1

Having introduced the joint distribution of n random variables, we will for
simplicity restrict our attention for the rest of the section to n = 2. The first
question we will confront is: “Given the joint distribution of (X, Y ), how do we
recover the distributions of X and Y ?” In the discrete case this is easy. The
marginal distributions of X and Y are given by

P (X = x) =
∑

y

P (X = x, Y = y)

P (Y = y) =
∑

x

P (X = x, Y = y) (A.11)
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To explain the first formula in words, if X = x, then Y will take on some
value y, so to find P (X = x) we sum the probabilities of the disjoint events
{X = x, Y = y} over all the values of y.

Formula (A.11) generalizes in a straightforward way to continuous distri-
butions: we replace the sum by an integral and the probability functions by
density functions. If X and Y have joint density fX,Y (x, y) then the marginal
densities of X and Y are given by

fX(x) =
∫

fX,Y (x, y) dy

fY (y) =
∫

fX,Y (x, y) dx (A.12)

The verbal explanation of the first formula is similar to that of the discrete
case: if X = x, then Y will take on some value y, so to find fX(x) we integrate
the joint density fX,Y (x, y) over all possible values of y.

Two random variables are said to be independent if for any two sets A
and B we have

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) (A.13)

In the discrete case, (A.13) is equivalent to

P (X = x, Y = y) = P (X = x)P (Y = y) (A.14)

for all x and y. The condition for independence is exactly the same in the
continuous case: the joint distribution is the product of the marginal densities.

fX,Y (x, y) = fX(x)fY (y) (A.15)

The notions of independence extend in a straightforward way to n random
variables: the joint probability or probability density is the product of the
marginals.

Two important consequences of independence are

Theorem A.1. If X1, . . . Xn are independent, then

E(X1 · · ·Xn) = EX1 · · ·EXn

Theorem A.2. If X1, . . . Xn are independent and n1 < . . . < nk ≤ n, then

h1(X1, . . . Xn1), h2(Xn1+1, . . . Xn2), . . . hk(Xnk−1+1, . . . Xnk
)

are independent.

In words, the second result says that functions of disjoint sets of independent
random variables are independent.

Our last topic in this section is the distribution of X + Y when X and Y
are independent. In the discrete case this is easy:

P (X + Y = z) =
∑

x

P (X = x)P (Y = z − x) (A.16)

To see the first equality, note that if the sum is z then X must take on some
value x and Y must be z−x. The first equality is valid for any random variables.
The second holds since we have supposed X and Y are independent.
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Example A.16. If X = binomial(n, p) and Y = binomial(m, p) are indepen-
dent, then X + Y = binomial(n + m, p).

Proof by direct computation.

P (X + Y = i) =
i∑

j=0

(
n

j

)
pj(1− p)n−j ·

(
m

i− j

)
pi−j(1− p)m−i+j

= pi(1− p)n+m−i
i∑

j=0

(
n

j

)
·
(

m

i− j

)

=
(

n + m

i

)
pi(1− p)n+m−i

The last equality follows from the fact that if we pick i individuals from a group
of n boys and m girls, which can be done in

(
n+m

i

)
ways, then we must have j

boys and i− j girls for some j with 0 ≤ j ≤ i.

Much easier proof. Consider a sequence of n + m independent trials. Let
X be the number of successes in the first n trials and Y be the number of
successes in the last m. By (2.13), X and Y independent. Clearly their sum is
binomial(n, p).

Formula (A.16) generalizes in the usual way to continuous distributions:
regard the probabilities as density functions and replace the sum by an integral.

fX+Y (z) =
∫

fX(x)fY (z − x) dx (A.17)

Example A.17. Let U and V be independent and uniform on (0, 1). Compute
the density function for U + V .

Solution. If U + V = x with 0 ≤ x ≤ 1, then we must have U ≤ x so that
V ≥ 0. Recalling that we must also have U ≥ 0

fU+V (x) =
∫ x

0

1 · 1 du = x when 0 ≤ x ≤ 1

If U + V = x with 1 ≤ x ≤ 2, then we must have U ≥ x − 1 so that V ≤ 1.
Recalling that we must also have U ≤ 1,

fU+V (x) =
∫ 1

x−1

1 · 1 du = 2− x when 1 ≤ x ≤ 2

Combining the two formulas we see that the density function for the sum is
triangular. It starts at 0 at 0, increases linearly with rate 1 until it reaches the
value of 1 at x = 1, then it decreases linearly back to 0 at x = 2.

A.3 Expected Value, Moments

If X has a discrete distribution, then the expected value of h(X) is

Eh(X) =
∑

x

h(x)P (X = x) (A.18)
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When h(x) = x this reduces to EX, the expected value, or mean of X, a
quantity that is often denoted by µ or sometimes µX to emphasize the ran-
dom variable being considered. When h(x) = xk, Eh(X) = EXk is the kth
moment. When h(x) = (x− EX)2,

Eh(X) = E(X − EX)2 = EX2 − (EX)2

is called the variance of X. It is often denoted by var (X) or σ2
X . The variance

is a measure of how spread out the distribution is. However, if X has the
units of feet then the variance has units of feet2, so the standard deviation
σ(X) =

√
var (X), which has again the units of feet, gives a better idea of the

“typical” deviation from the mean than the variance does.

Example A.18. Roll one die. P (X = x) = 1/6 for x = 1, 2, 3, 4, 5, 6 so

EX = (1 + 2 + 3 + 4 + 5 + 6) · 1
6

=
21
6

= 3.5

In this case the expected value is just the average of the six possible values.

EX2 = (12 + 22 + 32 + 42 + 52 + 62) · 1
6

=
91
6

so the variance is 91/6 − 49/4 = 70/24. Taking the square root we see that
the standard deviation is 1.71. The three possible deviations, in the sense of
|X − EX|, are 0.5, 1.5, and 2.5 with probability 1/3 each, so 1.71 is indeed a
reasonable approximation for the typical deviation from the mean.

Example A.19. Geometric distribution. Starting with the sum of the
geometric series

(1− θ)−1 =
∞∑

n=0

θn

and then differentiating twice and discarding terms that are 0, gives

(1− θ)−2 =
∞∑

n=1

nθn−1 and 2(1− θ)−3 =
∞∑

n=2

n(n− 1)θn−2

Using these with θ = 1− p, we see that

EN =
∞∑

n=1

n(1− p)n−1p = p/p2 =
1
p

EN(N − 1) =
∞∑

n=2

n(n− 1)(1− p)n−1p = 2p−3(1− p)p =
2(1− p)

p2

and hence

var (N) = EN(N − 1) + EN − (EN)2

=
2(1− p)

p2
+

p

p2
− 1

p2
=

(1− p)
p2

The definition of expected value generalizes in the usual way to continuous
random variables. We replace the probability function by the density function
and the sum by an integral

Eh(X) =
∫

h(x)fX(x) dx (A.19)
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Example A.20. Uniform distribution on (a,b). Suppose X has density
function fX(x) = 1/(b− a) for a < x < b and 0 otherwise. In this case

EX =
∫ b

a

x

b− a
dx =

b2 − a2

2(b− a)
=

(b + a)
2

since b2 − a2 = (b − a)(b + a). Notice that (b + a)/2 is the midpoint of the
interval and hence the natural choice for the average value of X. A little more
calculus gives

EX2 =
∫ b

a

x2

b− a
dx =

b3 − a3

3(b− a)
=

b2 + ba + a2

3

since b3 − a3 = (b − a)(b2 + ba + a2). Squaring our formula for EX gives
(EX)2 = (b2 + 2ab + a2)/4, so

var (X) = (b2 − 2ab + a2)/12 = (b− a)2/12

To help explain the answers we have found in the last two example we use

Theorem A.3. If c is a real number, then

(a) E(X + c) = EX + c (b) var (X + c) = var (X)
(c) E(cX) = cEX (d) var (cX) = c2 var (X)

Uniform distribution on (a,b). If X is uniform on [(a−b)/2, (b−a)/2] then
EX = 0 by symmetry. If c = (a + b)/2, then Y = X + c is uniform on [a, b], so
it follows from (a) and (b) of Theorem A.3 that

EY = EX + c = (a + b)/2 var (Y ) = var (X)

From the second formula we see that the variance of the uniform distribution
will only depend on the length of the interval. To see that it will be a multiple
of (b−a)2 note that Z = X/(b−a) is uniform on [−1/2, 1/2] and then use part
(d) of Theorem A.3 to conclude var (X) = (b−a)2 var (Z). Of course one needs
calculus to conclude that var (Z) = 1/12.

Generating functions will be used at several points in the text. If pk =
P (X = k) is the distribution of X then the generating function is φ(x) =∑∞

k=0 pkxk. φ(1) =
∑∞

k=0 pk = 1. Differentiating (and not worrying about the
detail of interchanging the sum and the integral) we have

φ′(x) =
∞∑

k=1

kpkxk−1 φ′(1) = EX

or in general after m derivatives

φ(m)(x) =
∞∑

k=m

k(k − 1) · · · (k −m + 1)pkxk−1

φ(m)(1) = E[X(X − 1) · · · (X −m + 1)]
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Example A.21. Poisson distribution. P (X = k) = e−λkλk/k!. The gener-
ating function is

φ(x) =
∞∑

k=0

e−λk λkxk

k!
= exp(−λ + λx)

Differentiating m times we have

φ(m)(x) = λm exp(−λ(1− x))

and E[X(X − 1) · · · (X −m + 1)] = λm. From this we see that EX = λ and
reasoning as we did for the geometric

var (X) = EX(X − 1) + EX − (EN)2 = λ2 + λ− λ2 = λ

The next two results give important properties of expected value and vari-
ance.

Theorem A.4. If X1, . . . , Xn are any random variables, then

E(X1 + · · ·+ Xn) = EX1 + · · ·+ EXn

Theorem A.5. If X1, . . . , Xn are independent, then

var (X1 + · · ·+ Xn) = var (X1) + · · ·+ var (Xn)

Theorem A.6. If X1, . . . , Xn are independent and have a distribution with
generating function φ(x) then the generating function of the sum is

E(xSn) = φ(x)n

To illustrate the use of these properties we consider the

Example A.22. Binomial distribution. If we perform an experiment n
times and on each trial there is a probability p of success, then the number of
successes Sn has

P (Sn = k) =
(

n

k

)
pk(1− p)n−k for k = 0, . . . , n

To compute the mean and variance we begin with the case n = 1, which is
called the Bernoulli distribution Writing X instead of S1 to simplify notation,
we have P (X = 1) = p and P (X = 0) = 1− p, so

EX = p · 1 + (1− p) · 0 = p

EX2 = p · 12 + (1− p) · 02 = p

var (X) = EX2 − (EX)2 = p− p2 = p(1− p)

To compute the mean and variance of Sn, we observe that if X1, . . . , Xn are
independent and have the same distribution as X, then X1 + · · ·+ Xn has the
same distribution as Sn. Intuitively, this holds since Xi = 1 means one success
on the ith trial so the sum counts the total number of success. Using Theorems
A.4 and A.5, we have

ESn = nEX = np var (Sn) = n var (X) = np(1− p)
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As for the generating function. When n = 1 it is (1 − p + px) so by Theorem
A.6 it is

(1− p + px)n

in general. If we set p = λ/n and let n→∞ then(
1− λ

n
(1− x)

)n

→ exp(−λ(1− x))

the generating function of the Poisson.

In some cases an alternate approach to computing the expected value of X
is useful. In the discrete case the formula is

Theorem A.7. If X ≥ 0 is integer valued then

EX =
∞∑

k=1

P (X ≥ k) (A.20)

Proof. Let 1{X≥k} denote the random variable that is 1 if X ≥ k and 0 other-
wise. It is easy to see that

X =
∞∑

k=1

1{X≥k}.

Taking expected values and noticing E1{X≥k} = P (X ≥ k) gives

EX =
∞∑

k=1

P (X ≥ k)

which proves the desired result.

The analogous result which holds in general is:

Theorem A.8. Let X ≥ 0. Let H be a differentiable nondecreasing function
with H(0) = 0. Then

EH(X) =
∫ ∞

0

H ′(t)P (X > t) dt

Proof. We assume H is nondecreasing only to make sure that the integral exists.
(It may be ∞.) Introducing the indicator 1{X>t} that is 1 if X > t and 0
otherwise, we have∫ ∞

0

H ′(t)1{X>t} =
∫ X

0

H ′(t) dt = H(X)

and taking expected value gives the desired result.

Taking H(x) = xp with p > 0 we have

EXp =
∫ ∞

0

ptp−1P (X > t) dt (A.21)
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When p = 1 this becomes

EX =
∫ ∞

0

P (X > t) dt (A.22)

the analogue to (A.21) in the discrete case is

EXp =
∞∑

k=1

(kp − (k − 1)p)P (X ≥ k) (A.23)

When p = 2 this becomes

EX2 =
∞∑

k=1

(2k − 1)P (X ≥ k) (A.24)

To state our final useful fact, recall that φ is convex if for all x, y and
λ ∈ (0, 1)

φ(λx + (1− λ)y) ≤ λφ(x) + (1− λ)φ(y)

For a smooth function this is equivalent to φ′ is nondecreasing or φ′′ ≥ 0.

Theorem A.9. If φ is convex then Eφ(X) ≥ φ(EX).

Proof. There is a linear function `(y) = φ(EX)+c(y−EX) so that `(y) ≤ φ(y)
for all y. If one accepts this fact the proof is easy. Redplacing y by X and taking
expected value we have

Eφ(X) ≥ E`(X) = φ(EX)

since E(X − EX) = 0. To prove the fact we note that for any z, as h ↓ 0

φ(z + h)− φ(z)
h

↓ c+
φ(z)− φ(z − h)

h
↑ c−

Taking z = EX and c ∈ [c−, c+] gives the deisred linear function.
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