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Abstract

We study evolutionary games on the torus with N points in dimensions d ≥ 3. The
matrices have the form Ḡ = 1 + wG, where 1 is a matrix that consists of all 1’s, and
w is small. As in Cox Durrett and Perkins [7] we rescale time and space and take a
limit as N → ∞ and w → 0. If (i) w � N−2/d then the limit is a PDE on Rd. If
(ii) N−2/d � w � N−1, then the limit is an ODE. If (iii) w � N−1 then the effect
of selection vanishes in the limit. In regime (ii) if we introduce a mutation µ so that
µ/w → ∞ slowly enough then we arrive at Tarnita’s formula that describes how the
equilibrium frequencies are shifted due to selection.

1 Introduction

Here we will be interested in n-strategy evolutionary games on the torus TL = (Z mod L)d.
Throughout the paper we will suppose that n ≥ 2 and d ≥ 3. The dynamics are described
by a game matrix Gi,j that gives the payoff to a player who plays strategy i against an
opponent who plays strategy j. As in [7, 13], we will study games with matrices of the form
Ḡ = 1 + wG, and 1 is a matrix that consists of all 1’s, and w = ε2. We use two notations
for the small parameter to make it easier to connect with the literature.

There are two commonly used update rules. To define them introduce

Assumption 1. Let p be a probability distribution on Zd with finite range, p(0) = 0 and
that satisfies the following symmetry assumptions.

• If π is a permutation of {1, 2, . . . d} and (πz)i = zπ(i) then p(πz) = p(z).

• If we let ẑi
i = −zi and ẑi

j = zj for j 6= i then p(ẑi) = p(z).

If p(z) = f(‖z‖p) where ‖z‖p is the Lp norm on Zd with 1 ≤ p ≤ ∞ then the symmetry
assumptions are satisfied.

Birth-Death Dynamics. In this version of the model, a site x gives birth at a rate equal
to its fitness

ψ(x) =
∑

y

p(y − x)Ḡ(ξ(x), ξ(y))
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and the offspring, which uses the same strategy as the parent, replaces a “randomly chosen
neighbor of x.” Here, and in what follows, the phrase in quotes means z is chosen with
probability p(z − x).

Death-Birth Dynamics. In this case, each site x dies at rate 1 and is replaced by the
offspring of a neighbor y chosen with probability proportional to p(y − x)ψ(y).

Tarnita et al. [25, 26] have studied the behavior of evolutionary games on more general
graphs when w = o(1/N) and N is the number of vertices. To describe their results, we
begin with the two strategy game written as

1 2
1 α β
2 γ δ

(1)

In [25] strategy 1 is said to be favored by selection (written 1 > 2) if the frequency of 1 in
equilibrium is > 1/2 when w is small. Assuming that

(i) the transition probabilities are differentiable at w = 0,

(ii) the update rule is symmetric for the two strategies, and

(iii) strategy 1 is not disfavored in the game given with β = 1 and α = γ = δ = 0

they argued that

I. 1 > 2 is equivalent to σα + β > γ + σδ where σ is a constant that only depends on the
spatial structure and update rule.

In [13] it was shown that for games on Zd with d ≥ 3 that

Theorem 1. I holds for the Birth-Death updating with σ = 1 and for the Death-Birth
updating with σ = (κ+ 1)/(κ− 1) where

κ = 1

/∑
x

p(x)p(−x) (2)

is the effective number of neighbors.

The name for κ comes from the the fact that if each p(z) ∈ {0, 1/m} for all z then κ = m.
In [26] strategy k is said to be favored by selection in an n strategy game if, in the presence

of weak selection, its frequency is > 1/n. To state their result we need some notation.

Ĝ∗,∗ =
1

n

n∑
i=1

Gi,i Ĝk,∗ =
1

n

n∑
i=1

Gk,i

Ĝ∗,k =
1

n

n∑
i=1

Gi,k Ĝ =
1

n2

n∑
i=1

n∑
j=1

Gi,j

where ∗’s indicate values that have been summed over. To make it easier for us to prove
the result and to have nicer constants, we will rewrite their condition for strategy k to be
favored as

α1(Ĝk,∗ − Ĝ) + α2(Gk,k − Ĝ∗,∗) + α3(Ĝk,∗ − Ĝ∗,k) > 0 (3)

2



and refer to it as Tarnita’s formula. The parameters αi depend on the population structure
and the update rule, but they do not depend on the number of strategies or on the entries
Gij of the payoff matrix. In [26] they divide by α3 so σ2 = α1/α3 and σ1 = α2/α3.

When n > 2, (3) is different from the result for almost constant sum three strategy games
on Zd proved in [13]. The condition (3) is linear in the entries in the game matrix while the
condition (8.13) in [13] for the infinite graph is quadratic. This paper arose from an attempt
to understand this discrepancy. The resolution, as we will explain, is that the two formulas
apply to different weak selection regimes.

The path we take to reach this conclusion is somewhat lengthy. In section 2, we introduce
the voter model and describe its duality with coalescing random walk. Section 3 introduces
the voter model perturbations studied by Cox, Durrett, and Perkins [7]. Section 4 states their
reesult that when space and time are scaled appropriately, the limit is a partial differential
equation. The limit PDE is then computed for birth-death and death-birth updating. They
are reaction diffusion equations with a reaction term that is a cubic polynoimal. Section 5
uses the PDE limit to analyze 2 × 2 games. Section 6 introduces a duality for voter model
perturbations, which is the key to their analysis. Section 7 gives our results for regimes (i)
and (ii) in the abstract and our version of Tarnita’s formula for games with n ≥ 3 strategies.
Sections 8–11 are devoted to proofs.

2 Voter model

Our results for evolutionary games are derived from results for a more general class of
processes called voter model perturbations. To introduce those we must first describe the
voter model. The state of the voter model at time t is ξt : Zd → S where S is a finite set of
states, and ξt(x) gives the state of the individual at x at time t. To formulate this class of
models, let p(z) be a probability distribution on Zd satisfying the conditions in Assumption
1. In the voter model, the rate at which the voter at x changes its opinion from i to j is

cvi,j(x, ξ) = 1(ξ(x)=i)fj(x, ξ),

where fj(x, ξ) =
∑

y p(y−x)1(ξ(y) = j) is the fraction of neighbors of x in state i. In words
at times of a rate 1 Poisson process the voter at x wakes up and with probability p(y − x)
imitates the opinion of the individual at y.

To analyze the voter model it is convenient to construct the procees on a graphical
representation introduced by Harris [16] and further developed by Griffeath [15]. For each
x ∈ Zd and y with p(y − x) > 0 let T x,y

n , n ≥ 1 be the arrival times of a Poisson process
with rate p(y − x). At the times T x,y

n , n ≥ 1, the voter at x decides to change its opinion
to match the one at y. To indicate this, we draw an arrow from (x, T x,y

n ) to (y, T x,y
n ). To

calculate the state of the voter model on a finite set, we start at the bottom and work our
way up determining what should happen at each arrow. A nice feature of this approach is
that it simultaneously constructs the process for all initial conditions so that if ξ0(x) ≤ ξ′0(x)
for all x then for all t > 0 we have ξt(x) ≤ ξ′t(x) for all x.

To define the dual process we start with ζx,t
0 = x and work down the graphical represen-

tation. The process stays at x until the first time t−r that it encounters the tail of an arrow
x. At this time, the particle jumps to the site y at the head of the arrow, i.e., ζx,t

r = y. The
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Figure 1: Voter model graphical representation and duality

particle stays at y until the next time the tail of an arrow is encountered and then jumps to
the head of the arrow etc. Intuitively ζx,t

s gives the source at time t− s of the opinion at x
at time t so

ξt(x) = ξt−s(ζ
x,t(s)).

The example in the picture should help explain the definitions. The family of particles ζx,t
s

are coalescing random walk. Each particle at rate 1 makes jumps according to p. If a particle
ζx,t
s lands on the site occupied by ζy,t

s they coalesce to 1, and we know that ξt(x) = ξt(y).
The dark lines indicate the locations of the two dual particles that coalesce.

Using duality it is easy to analyze the asymptotic behavior of the voter model. The
results we are about to quote were proved by Holley and Liggett [17], and can also be found
in Liggett’s book [19]. In dimensions 1 and 2, random walks satisfying our assumptions are
recurrent, so the voter model clusters, i.e.,

P (ξt(x) 6= ξt(y)) ≤ P (ζx,t
t 6= ζx,t

t ) → 0.

In d ≥ 3 random walks are transient so differences in opinion persist. Consider, for simplicity,
the case of two opinions, 0 and 1. Let ξu

t be the voter model starting from product measure
with density u, i.e., the initial voter opinions are independent and = 1 with probability u.
As t→∞, ξu

t converges to a limit distribution νu.
A consequence of this duality relation is that if we let p(0|x) be the probability that two

continuous time random walks, one starting at the origin 0, and one starting at x never hit
then

νu(ξ(0) = 1, ξ(x) = 0) = p(0|x)u(1− u)

since in order for the two opinions to be different at time t, the corresponding random walks
cannot hit, and they must land on sites with the indicated opinions, an event of probability
u(1− u).
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To extend this reasoning to three sites, consider random walks starting at 0, x, and y.
Let p(0|x|y) be the probability that the three random walks never hit and let p(0|x, y) be
the probability that the walks starting from x and y coalesce, but they do not hit the one
starting at 0. Considering the possibilities that the walks starting from x and y may or may
not coalesce:

νu(ξ(0) = 1, ξ(x) = 0, ξ(y) = 0) = p(0|x|y)u(1− u)2 + p(0|x, y)u(1− u).

All the finite dimensional distributions of νu can be computed in this way.

3 Voter model perturbations

The processes that we consider have flip rates

cvi,j(x, ξ) + ε2hε
i,j(x, ξ). (4)

The perturbation functions hε
ij, j 6= i, may be negative but in order for the analysis in [7] to

work, there must be a law q of (Y 1, . . . Y M) ∈ (Zd)M and functions gε
i,j ≥ 0, which converge

to limits gi,j as ε→ 0, so that for some γ <∞, we have for ε ≤ ε0

hε
i,j(x, ξ) = −γfi(x, ξ) + EY [gε

i,j(ξ(x+ Y 1), . . . ξ(x+ Y M))]. (5)

In words, we can make the perturbation positive by adding a positive multiple of the voter
flip rates. This is needed so that [7] can use gε

i,j to define jump rates of a Markov process.
For simplicity we will assume that both p and q are finite range. Applying Proposition

1.1 of [7] now implies the existence of suitable gε
i,j and that all our calculations can be done

using the original perturbation. However, to use Theorems 1.4 and 1.5 in [7] we need to
suppose that

hi,j = lim
ε→0

hε
i,j. (6)

has |hi,j(ξ)− hε
i,j(ξ)| ≤ Cεr for some r > 0, see (1.41) in [7].

Birth-Death Dynamics. If we let ri,j(0, ξ) be the rate at which the state of 0 flips from i
to j,

ri,j(0, ξ) =
∑

x

p(x)1(ξ(x) = j)
∑

y

p(y − x)Ḡ(j, ξ(y))

=
∑

x

p(x)1(ξ(x) = j)

(
1 + ε2

∑
k

fk(x, ξ)Gj,k

)
= fj(0, ξ) + ε2

∑
k

f
(2)
j,k (0, ξ)Gj,k, (7)

where f
(2)
j,k (0, ξ) =

∑
x

∑
y p(x)p(y − x)1(ξ(x) = j, ξ(y) = k). Thus the perturbation, which

does not depend on ε is

hi,j(0, ξ) =
∑

k

f
(2)
j,k (0, ξ)Gj,k. (8)
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If p is uniform on the nearest neighbors of 0, then q is nonrandom and Y 1, . . . Y m is a listing
of the nearest and next nearest neighbors of 0.

Death-Birth Dynamics. Using the notation in (7) the rate at which ξ(0) = i jumps to
state j is

r̄i,j(0, ξ) =
ri,j(0, ξ)∑
k ri,k(0, ξ)

=
fj(0, ξ) + ε2hi,j(0, ξ)

1 + ε2
∑

k hi,k(0, ξ)

= fj(0, ξ) + ε2hi,j(0, ξ)− ε2fj(0, ξ)
∑

k

hi,k(0, ξ) +O(ε4) (9)

The new perturbation, which depends on ε, is

h̄ε
i,j(0, ξ) = hi,j(0, ξ)− fj(0, ξ)

∑
k

hi,k(0, ξ) +O(ε2) (10)

As noted above the technical condition (5) holds because p has finite range. (6) holds with
r = 2.

4 PDE limit

Let ξε
t be the process with flip rates given in (4). The next result is the key to the analysis

of voter model perturbations on Zd. Intuitively, it says that if we rescale space to εZd and
speed up time by ε−2 the process converges to the solution of a partial differential equation.
The first thing we have to do is to define the mode of convergence. Given r ∈ (0, 1), let
aε = dεr−1eε, Qε = [0, aε)

d, and |Qε| the number of points in Qε. For x ∈ aεZd and ξ ∈ Ωε

the space of all functions from εZd to S let

Di(x, ξ) = |{y ∈ Qε : ξ(x+ y) = i}|/|Qε|

We endow Ωε with the σ-field Fε generated by the finite-dimensional distributions. Given
a sequence of measures λε on (Ωε,Fε) and continuous functions wi, we say that λε has
asymptotic densities wi if for all 0 < δ,R <∞ and all i ∈ S

lim
ε→0

sup
x∈aεZd,|x|≤R

λε(|Di(x, ξ)− wi(x)| > δ) → 0

Theorem 2. Suppose d ≥ 3. Let wi : Rd → [0, 1] be continuous with
∑

i∈S wi = 1. Suppose
the initial conditions ξε

0 have laws λε with local densities wi and let

uε
i(t, x) = P (ξε

tε−2(x) = i)

If xε → x then uε
i(t, xε) → ui(t, x) the solution of the system of partial differential equations:

∂

∂t
ui(t, x) =

σ2

2
∆ui(t, x) + φi(u(t, x)) (11)

with initial condition ui(0, x) = wi(x). The reaction term

φi(u) =
∑
j 6=i

〈1(ξ(0)=j)hj,i(0, ξ)− 1(ξ(0)=i)hi,j(0, ξ)〉u (12)

where the brackets are expected value with respect to the voter model stationary distribution
νu in which the densities are given by the vector u.
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This result is Theorem 1.2 in [7]. Intuitively, on the fast time scale the voter model runs
at rate ε−2 versus the perturbation at rate 1, so the process is always close to the voter
equilibrium for the current density vector u. Thus, we can compute the rate of change of ui

by assuming the nearby sites are in that voter model equilibrium.
In a homogeneously mixing population the frequencies of the strategies in an evolutionary

game follow the replicator equation, see e.g., Hofbauer and Sigmund’s book [18]:

dui

dt
= φi

R(u) ≡ ui

(∑
k

Gi,kuk −
∑
j,k

ujGj,kuk

)
. (13)

We will now compute the reaction terms φi for our two examples.

Birth-Death Dynamics. On Zd we let vi be independent with P (vi = x) = p(x). Let

p1 = p(0|v1|v1 + v2) and p2 = p(0|v1, v1 + v2).

In this case the limiting PDE in Theorem 2 is ∂ui/∂t = (1/2d)∆u+ φi
B(u) where

φi
B(u) = p1φ

i
R(u) + p2

∑
j 6=i

uiuj(Gi,i −Gj,i +Gi,j −Gj,j). (14)

See Section 12 of [13] for a proof. Formula (4.8) in [13] implies that

2p(0|v1, v1 + v2) = p(0|v1)− p(0|v1|v1 + v2),

so it is enough to know the two probabilities on the right-hand side.
If coalescence is impossible then p1 = 1 and p2 = 0 and φi

B = φi
R. There is a second more

useful connection to the replicator equation. Let

Ai,j =
p2

p1

(Gi,i +Gi,j −Gj,i −Gj,j).

The matrix is skew symmetric. That is, Ai,i = 0 and if i 6= j Ai,j = −Aj,i. This implies∑
i,j uiAi,juj = 0 and it follows that φi

B(u) is p1 times the RHS of the replicator equation
for the game matrix A+G. This observation is due to Ohtsuki and Nowak [24] who studied
the limiting ODE that arises from the pair approximation.

Death-Birth Dynamics. On Zd we let vi be independent with P (vi = x) = p(x), let

p̄1 = p(v1|v2|v2 + v3) and p̄2 = p(v1|v2, v2 + v3).

With Death-Birth updating the limiting PDE is ∂ui/∂t = (1/2d)∆u+ φi
D(u) where

φi
D(u) = p̄1φ

i
R(u) + p̄2

∑
j 6=i

uiuj(Gi,i −Gj,i +Gi,j −Gj,j)

− (1/κ)p(v1|v2)
∑
j 6=i

uiuj(Gi,j −Gj,i). (15)
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where κ = 1/P (v1 + v2 = 0) is the “effective number of neighbors.” Again see Section 12 of
[13] for a proof. The first two terms are the ones in (14). The similarity is not surprising
since the numerators of the flip rates in (9) are the flip rates in (7). The third term comes
from the denominator in (9). Formula (4.9) in [13] implies that

2p(v1|v2, v2 + v3) = (1 + 1/κ)p(v1|v2)− p(v1|v2|v2 + v3),

so again it is enough to know the two probabilities on the right-hand side.
As in the Birth-Death case, if we let

Āi,j =
p̄2

p̄1

(Gi,i +Gi,j −Gj,i −Gj,j)−
p(v1|v2)

κp̄1

(Gi,j −Gj,i),

then φD
i (u) is p̄1 times the RHS of the replicator equation for Ā+G.

5 Two strategy games

In a homogeneously mixing population, the fraction of individuals playing the first strategy,
u, evolves according to the replicator equation (13):

du

dt
= u{αu+ β(1− u)− u[αu+ β(1− u)]− (1− u)[γu+ δ(1− u)]}

= u(1− u)[β − δ + Γu] ≡ φR(u) (16)

where we have introduced Γ = α−β− γ+ δ. Note that φR(u) is a cubic with roots at 0 and
at 1. If there is a fixed point in (0, 1) it occurs at

ū =
β − δ

β − δ + γ − α
(17)

Using results from the previous section gives the following.

Birth-Death Dynamics. The limiting PDE is ∂u/∂t = (1/2d)∆u+ φB(u) where φB(u) is
p1 times the RHS of the replicator equation for the game(

α β + θ
γ − θ δ

)
(18)

and θ = (p2/p1)(α+ β − γ − δ).

Death-Birth Dynamics. The limiting PDE is ∂u/∂t = (1/2d)∆u+ φD(u) where φD(u) is
p̄1 the RHS of the replicator equation for the game in (18) but now

θ =
p̄2

p̄1

(α+ β − γ − δ)− p(v1|v2)

κp̄1

(β − γ).
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5.1 Analysis of 2× 2 games

Suppose that the limiting PDE is ∂u/∂t = (1/2d)∆u + φ(u) where φ is a cubic with roots
at 0 and 1. There are four possibilities

S1 ū attracting φ′(0) > 0, φ′(1) > 0
S2 ū repelling φ′(0) < 0, φ′(1) < 0
S3 φ < 0 on (0, 1) φ′(0) < 0, φ′(1) > 0
S4 φ > 0 on (0, 1) φ′(0) > 0, φ′(1) < 0

To see this, we draw a picture. For convenience, we have drawn the cubic as a piecewise
linear function.

S1 �
�@

@
@�

�

�
-

S2
@
@�

�
�@

@
�

-

S3 HH
H�

��
� S4 ��

�H
HH-

We say that i’s take over if for all K

P (ξs(x) = i for all x ∈ [−K,K]d and all s ≥ t) → 1 as t→∞.

Let Ω0 = {ξ :
∑

x ξ(x) = ∞,
∑

x(1− ξ(x)) = ∞} be the configurations with infinitely many
1’s and infinitely many 0’s. We say that coexistence occurs if there is a stationary distribution
µ for the spatial model with µ(Ω0) = 1. The next result follows from Theorems 1.4 and 1.5
in [7]. The PDE assumptions and the other conditions can be checked as in the arguments in
Section I.4 of [7] for the Lotka-Volterra system. Intuitively, the result says that the behaviior
of the particle system for small ε is the same as that of the PDE.

Theorem 3. If ε < ε0(G), then:
In case S3, 2’s take over. In case S4, 1’s take over.
In case S2, 1’s take over if ū < 1/2, and 2’s take over if ū > 1/2.
In case S1, coexistence occurs. Furthermore, if δ > 0 and ε < ε0(G, δ) then any stationary
distribution with µ(Ω0) = 1 has

sup
x
|µ(ξ(x) = 1)− ū| < δ.

This result, after some algebra gives Tarnita’s formula for two person games, Theorem
1. The key observation is

Lemma 1. 1 > 2 if and only if the reaction term in the PDE has φ(1/2) > 0.

Proof. Clearly φ(1/2) > 0 in case S4 but not S3. In case S1, φ(1/2) > 0 implies ū > 1/2,
while in case S2 φ(1/2) > 0 implies ū < 1/2 and hence the 1’s take over.

With this result in hand, Theorem 1 follows from the formulas for φB and φD.
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6 Duality for voter model perturbations

Our next step is to introduce a duality that generalizes the one for the voter model. Suppose
now that we have a voter model perturbation of the form

hε
i,j(x, ξ) = −γfi(x, ξ) + EY [gε

i,j(ξ(x+ Y 1), . . . ξ(x+ Y M))]

For each x ∈ Zd and y with p(y) > 0 let T x,y
n , n ≥ 1 be the arrival times of a Poisson process

with rate p(y). At the times T x,y
n , n ≥ 1, x decides to change its opinion to match the one at

x+ y where the arithmetic is done modulo L in each coordinate. We call this a voter event.
To accommodate the perturbation we let

‖gε
i,j‖ = sup

η∈SM

gε
i,j(η1, . . . ηM)

and introduce Poisson processes T x,i,j
n , n ≥ 1 with rate ri,j = ε2‖gε

i,j‖, and independent
random variables Ux,i,j

n , n ≥ 1 uniform on (0, 1). At the times t = T x,i,j
n we draw arrows

from x to x+ Y i for 1 ≤ i ≤M . We call this a branching event. If ξt−(x) = i and

gε
i,j(ξt−(x+ Y 1), . . . ξt−(x+ Y m)) < ri,jU

x,i,j
n (19)

then we set ξt(x) = j. The uniform random variables slow down the transition rate from the
maximum possible rate ri,j to the one appropriate for the current configuration.

To define the dual, suppose we start with particles at X1(0), . . . Xk(0) at time t. We
let K(0) = k be the number of particles, J(0) = {1, 2, . . . k} be the indices of the active
particles, and T0 = 0. Suppose we have constructed the dual up to time Tm with m ≥ 0. No
particle moves from its position at time Tm until the first time r > Tm that the tail of an
arrow touches one of the active particles at time t− r. Call that time Tm+1. We extend the
definitions of K(t), Xi(t), i ≤ K(t), and J(t) to be constant on [Tm, Tm+1).

If the arrow is from a voter event affecting particle number i then Xi jumps to the head
of the arrow at time Tm+1. If there is another active particle Xj on that site, the two coalesce
to 1 and the higher numbered particle is removed from the active set at time Tm+1. If the
event is a branching event, we add new particles numbered K(Tm) + k at Xi(Tm) + Y k for
1 ≤ k ≤ M and set K(Tm+1) = K(Tm) + M . If there are collisions between the newly
created particles and existing active particles, those newly created particles are not added to
the active set. Our proof will show that in the situation covered in Theorem 6 the probability
of a collision at a branching event will go to zero as N →∞

Durrett and Neuhauser [14] called I(s) = {Xi(s) : i ∈ J(s)} the influence set because

Lemma 2. If we know the values of ξt−s on I(s), the locations and types of arrows that
occurred at the jump times Tm ≤ s, and the associated uniform random variables Um then
we can compute the values of ξt at X1(0), . . . Xk(0) by working our way up the graphical
representation starting from time t− s and determining the changes that should be made in
the configuration at each jump time.

This should be clear from the construction. A formal proof can be found in Section 2.6
of [7]. The computation process, as it is called in [7] is complicated, but is useful because
up to time t/ε2 there will only be O(1) branching events. In between these events there will
be many random walk steps that on the rescaled lattice will converge to Brownian motions.
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7 Results for the torus

To motivate the results that we are about to state, recall that if we have a random walk on
the torus TL = (Z mod L)d that takes jumps at rate 1 with a distribution p that satisfies
our assumptions in Assumption 1, then:

• One random walk needs of order L2 steps to converge to the uniform distribution on
the torus (see Proposition 1 in Section 10).

• Two independent random walks starting from randomly chosen points will need of
order N = Ld steps to meet for the first time. See e.g., [6]

7.1 Regime 1. ε−1
L � L, or w � N−2/d

In this case when we rescale space by multiplying by εL then the limit of the torus is all of
Rd and the PDE limit, Theorem 2, holds. Thus, one can apply results from Section 7 in [7]
to show that the conclusions of Theorem 3 hold in cases S2−S4. Indeed, since we are on the
torus the linearly growing “dead zone” produced by the block construction eventually coves
the entire torus and the weaker type becomes extinct at a time O(L).

Case S1 is more interesting. We cannot have a stationary distribution since we are dealing
with a Markov chain on a finite set in which ξ(x) = i for all x are absorbing. However, as
is the case for many other particle systems, e.g., the contact process on a finite set, we will
have a quasi-stationary distribution that will persist for a long time. Using the comparison
with oriented percolation described in Chapter 6 of [7] and in [9] we can show

Theorem 4. Consider a two strategy evolutionary game in case 1, so φ(u) = λu(u−ρ)(1−ρ).
Suppose that ε−1

L ∼ CLα where 0 < α < 1 and that for each L we start from a product measure
in which each type has a fixed positive density. Let N1(t) be the number of sites occupied by 1’s
at time t. There is a c > 0 so that for any δ > 0 if L is large and logL ≤ t ≤ exp(cL(1−α)d)
then N1(t)/N ∈ (ρ− δ, ρ+ δ) with high probability.

The logL time needed to come close to equilibrium could be replaced by a fixed time T
that depends on λ, ρ, δ, and the initial density of 1’s. Our proof will show that with high
probability at any time logL ≤ t ≤ exp(cL(1−α)d) the density is close to ρ (in the sense used
to define the hydrodynamic limit) across most of the torus.

In many situations, e.g., the supercritical contact process on the d-dimensional cube
[22], and power-law random graphs [23], the quasi-stationary distribution persists for time
exp(γNd). However, we think that is not true in Theorem 4. For a simpler situation where
we can prove this, consider the

Contact process with fast voting, studied by Durrett, Liggett, and Zhang [11]. In this
voter model perturbation, there are two states, 0 and 1.

• h1,0(x, ξ) ≡ 1: particles die at rate 1.

• h0,1(x, ξ) = λf1(x, ξ): a particle at x gives birth to a new one at x+ y at rate λp(y).

11



We only have to keep track of 1’s so the reaction term

φ(u) ≡ φ1(u) = 〈1(ξ(0)=0)λf1(x, ξ)− 1(ξ(0)=1)〉u
= λp(0|v1)u(1− u)− u

If β = λp(0|v1) > 1 then 0 is an unstable equilibrium for du/dt = φ(u) and there is a fixed
point at ρ = (β − 1)/β. The proof of Theorem 4 can be easily extended to show survival up
to time exp(cL(1−α)d) with high probability. In this case we can prove a partial converse.

Theorem 5. There is an C <∞ so that the system dies out by time exp(CLd−2α logL) with
high probability.

Note that the powers of L in the two results, d(1−α) and d−2α, do not match. We suspect
that the larger value is the correct answer. However it is not clear how to improve the proof
of Theorem 4 to close the gap.

7.2 Regime 2. L� ε−1
L � Ld/2 or N−2/d � w � N−1.

In this case the time scale for the perturbation to have an effect, ε−2
L is much larger than

the time O(L2) needed for a random walk to come to equilibrium, but much smaller than
the time O(Ld) it takes for two random walks to hit. Because of this, the particles in the
dual will (except for times O(L2 logL) after the initial time or a branching event) will be
approximately independent and uniformly distributed across the torus. Thus, if we speed
up time by ε−2

L the fraction of sites on the torus in state i will converge to an ordinary
differential equation. To formulate a precise result define the empirical density by

Ui(t) =
1

N

∑
x∈TL

1
(
ξε
tε−2

L
(x) = i

)
Theorem 6. Suppose that L2 � ε−2

L � Ld. If Ui(0) → ui then Ui(t) converges uniformly
on compact sets to ui(t), the solution of

dui

dt
= φi(u) ui(0) = ui

where φi is the reaction term in (12).

Thus in Regime 2, we have “mean-field” behavior, but the reaction function in the ODE is
computed using the voter model equilibrium, not the product measure that is typically used
in heuristic calculations. The asymptotic behavior of the particle system is now the same as
that of the limiting ODE. In particular in case S2, it will converge to 0 or 1, depending on
whether the initial density u1 < ū or u1 > ū.

7.3 Tarnita’s formula

Suppose each individual switches to a strategy chosen at random from the n possible strate-
gies at rate µ.

12



Theorem 7. Suppose that N−2/d � w � N−1. If µ → 0 and µ/w → ∞ slowly enough,
then in an n-strategy game strategy k is favored by mutation if and only if

φk(1/n, . . . , 1/n) > 0.

Note the similarity to Lemma 1. Intuitively, the change from uniformity will be due to
lineages that have one branching event. We do not claim that these conditions are necessary
for the conclusion to hold but they are needed for out proof to work. Our next step is to
show that we recover the formula in [26] and identify the coefficients.

Birth-Death Dynamics. In this case the limiting PDE is ∂uk/∂t = (1/2d)∆u + φB
i (u)

where
φB

k (u) = p1φ
R
k (u) + p2

∑
j

ukuj(Gk,k −Gj,k +Gk,j −Gj,j).

see (14). If we take ui ≡ 1/n then

p1φ
R
k (1/n, . . . 1/n) =

p1

n

(∑
i

Gk,i
1

n
−
∑
i,j

1

n
Gi,j

1

n

)
=
p1

n
(Ĝk,∗ − Ĝ)

while the second term in (14) is

p2

n
(Gk,k − Ĝ∗,k + Ĝk,∗ − Ĝ∗,∗)

For Birth-Death dynamics (3) holds with α1 = p(0|e1|e1 + e2) and α2 = α3 = p(0|e1, e1 + e2).

Death-Birth Dynamics. In this case the limiting PDE is ∂uk/∂t = (1/2d)∆u + φD
k (u)

where

φD
k (u) = p̄1φ

R
k (u) + p̄2

∑
j

ukuj(Gk,k −Gj,k +Gk,j −Gj,j)

− (1/κ)p(v1|v2)
∑

j

ukuj(Gk,j −Gj,k). (20)

see (15). The computations for the first two terms are as in Birth-Death case with pi replaced
by p̄i. The third term is

−(1/κ)p(v1|v2)

n
(Ĝk,∗ − Ĝ∗,k).

Thus for Death-Birth dynamics (3) holds with α1 = p(e1|e2|e2 + e3), α2 = p(e1|e2, e2 + e3),
α3 = p(e1|e2, e2 + e3)− (1/κ)p(e1|e2), where 1/κ = P (e1 + e2 = 0) is the effective number of
neighbors.

These calculations for Theorem 7 apply to graphs other than the torus. For example, a
random r-regular graph looks locally like a tree in which each vertex has r neighbors. Of
course the values of the constants for the random regular graph will be different from those
on the torus.
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8 Proof of Theorem 4

Proof. We will prove only the asymptotic lower bound on the number of 1’s. Once this is
done, the upper bound follows by interchanging the roles of 0’s and 1’s. The reaction term
φ(u) = λu(u−ρ)(1−u) so the limiting PDE satisfies Assumption 1 in CDP with u∗ = u∗ = ρ.

There are constants 0 < v0 < ρ < v1 < 1 and w,Li > 0 so that

(i) if u(0, x) ≥ v0 when |x| ≤ L0 then lim inft→∞ inf |x|≤wt u(t, x) ≥ ρ.

(ii) if u(0, x) ≤ v1 when |x| ≤ L1 then lim supt→∞ sup|x|≤wt u(t, x) ≤ ρ.

In our case if w is chosen small enough we can take the vi and Li to be any positive numbers.
See Aronson and Weinberger [1, 2]. We will take v0 = min{ρ/2, u1/2} where u1 is the density
of 1’s in the initial product measure.

As in the proof of Theorem 1.4 in CDP on the infinite lattice, we use a block construction.
We let K be the largest odd integer so that we can fit Kd adjacent cubes with sides = 2ε−1

L

into the torus. Asymptotically we have K ∼ (C/2)L1−α. Suppose that the origin is in
the middle of one of the blocks and call that box I0. The other blocks can be indexed by
{−K/2,−K/2 + 1, . . . K/2}d. There is some space leftover outside our blocks, so the block
construction lattice is not a torus but a flat cube.

To achieve the PDE limit we scale space by multiplying by εL and speed up time by ε−2
L .

To define our block event we consider the initial condition for the PDE in which u(0, x) ≥ v0

when |x| ≤ 1/2. Given δ > 0, we choose T large enough so that u(T, x) ≥ ρ − δ/2 when
|x| ≤ 3.

As in the hydrodynamic limit, given r ∈ (0, 1), let aε = dεr−1eε, Qε = [0, aε)
d, and |Qε|

the number of points in Qε. For x ∈ aεZd and ξ ∈ Ωε the space of all functions from εZd to
S let

Di(x, ξ) = |{y ∈ Qε : ξ(x+ y) = i}|/|Qε|

We say that the configuration in the box Ik is good at time t if in each small box xaε +Qε

contained in k + [−1/2, 1/2]d the density Di(x, ξt) ≥ v0, and it is very good if in each
small box xaε + Qε contained in k + [−1, 1]d we have Di(x, ξt) ≥ ρ − δ. It follows from the
hydrodynamic limit that

Lemma 3. Let θ > 0. Suppose the configuration in Ik is good at time mT . If L is large
enough then with probability ≥ 1 − θ/2 all of the boxes I` with ` − k ∈ {−1, 0, 1}d are very
good at time (m+ 1)T .

Determining whether that all of the boxes Ik with k ∈ {−1, 0, 1}d are very good at time T
can be done by running the dual processes from all of these points back to time 0. Bounding
the dual by a branching random walk and then using exponential estimates it is easy to
show:

Lemma 4. Given θ > 0 and T , there is an C so that if L is large enough with probability
≥ 1− θ/2 none of the duals starting in [−3, 3]d escape from [−3− CT, 3 + CT ]d by time T .

If the configuration in Ik is good at timemT , all of the boxes I` with `−k ∈ {−1, 0, 1}d are
very good at time (m+1)T , and none of the dual processes escape from k+[−3−CT, 3+CT ]d

as we work backwards from time (m+ 1)T to time we set η(k,m) = 1. If we fail to achieve
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any one of our goals we set η(k,m) = 0. If the configuration in Ik is not good at time mT
we define η(k,m) by an independent Bernoulli that is 1 with probability 1− θ.

These variables η(k,m) define for us an oriented site percolation process on the graph
(Z mod K)d×{0, 1, 2, . . .} in which (k,m) is connected to (`,m+1) when `−k ∈ {−1, 0, 1}d.
Writing z as shorthand for (k,m) the collection of η(z) is “M dependent with density at
least 1− θ” which means that for any k,

P (η(zi) = 1|η(zj), j 6= i) ≥ (1− θ), (21)

whenever zi, 1 ≤ i ≤ k satisfy |zi − zj| > M for all i 6= j.

It is typically not difficult to prove results for M -dependent percolation processes with
θ small (see Chapter 4 of [9]), but here it will be useful to simplify things by applying
Theorem 1.3 of Liggett, Schonmann, and Stacy [20] to reduce to the case of independent
percolation. By that result, under (21), there is a constant ∆ depending on d and M such
that if

1− θ′ =
(
1− θ1/∆

(∆− 1)(∆−1)/∆

)(
1− (θ(∆− 1))1/∆

)
, (22)

we may couple η(z) with a family ζ(z) of iid Bernoulli random variables with P (ζ(z) = 1) =
1− θ′ such that ζ(z) ≤ η(z) for all z.

With this result in hand we can prove the long time survival of our process on the torus
by using

Lemma 5. Suppose that θ < θ0. Start the oriented percolation on [−K/2, K/2]d with all
sites occupied and let τ be the first time all sites are vacant. There is a constant c so that
as K →∞

P (τ > exp(cKd)) → 1 (23)

Mountford [22] proved for the contact process on [1, N ]d that for all λ > λc

(logEτ)/Nd → γ (24)

Earlier he showed, see [21]
τ/Eτ ⇒ E (25)

where E has an exponential distribution with mean 1.

Proof of (23). We claim that our result can be proved by the method Mountford used to
prove the sharp result in (24) for all λ > λc. To explain why the reader should believe this,
we note that Lemma 1.1 in [22] concerns connectivity properties of an oriented percolation
process in which sites are open with probability 1− ε0 which is then extended to the contact
process with λ > λc by using the renormalization argument of Bezuidenhout and Grimmett
[4].

To be specific, Mountford, who only gives the details in d = 2, shows that if λ > 0 there
are constants L and c > 0 so that for the contact process ξ̄x

t in Dn = [1, n]× [1, 4L] starting
with a single occupied site at x

inf
λn2≤t≤n8

inf
x,y∈Dn

P (ξ̄x
t (y) = 1) ≥ c > 0

See his Corollary 1.1. This result which is the key to the proof is also true for our oriented
percolation process.
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The last step in the proof of Theorem 4 is to note that if we start with product measure
with a density u1 of 1 then with high probability all of the Im are good at time 0. To do this
we note that the number of small boxes in the torus is a polynomial in L but the probability
of an error in one is ≤ exp(−cL(1−r)d) where r is the constant used to define the sizes of the
little boxes.

To justify the remark after Theorem 4 we use Proposition 1.2 of Mountford [21]. Write
ξ1
t for the contact process in [1, n]2 starting from all sites occupied. He shows that there are

sequences a(n), b(n) →∞ with b(n)/a(n) →∞ so that P 1(τ < b(n)) → 0 and

inf
ξ0
P ξ0(ξ1

a(n) = ξa(n) or τ < an) → 1

In words the process either dies out before time a(n) or at time a(n) agrees with the process
starting from all 1’s. This idea, which is due to Durrett and Schonmann [12] allows one to
prove the limit is exponential by showing that it has the lack of memory property. Unfortu-
nately, Mountford writes sup rather than inf in the conclusion. He cannot mean sup because
that is attained by ξ0 ≡ 1 and the probability is 0.

9 Proof of Theorem 5

Proof. Suppose for simplicity that ε−1
L ∼ Lα. Start a coalescing random walk ζ̄L

t with one
particle at each site of the torus.

Lemma 6. Let N̄L(t) be the number of particles in the coalescing random walks at time t.
There is a constant C1 so that for all L,

EN̄L(t) ≤ C1/(1 + t) for all 0 ≤ t ≤ L2α.

With high probability, i.e., one that tends to 1 as L→∞,

N̄L(t) ≤ 4C1N/(1 + t) for all 0 ≤ t ≤ L2α.

The constant C1 is special but all the others C’s are not and will change from line to line.

Proof. Let St be the first coordinate of our d-dimensional random walk that makes jumps
according to p at rate 1.

E exp(θSt) = exp(t(φ(θ)− 1)) where φ(θ) =
∑

z

eθz1p(z)

Since z → exp(θz1) is convex and p has mean zero and finite range

0 ≤ φ(θ)− 1 ∼ σ2θ2

2
as θ → 0.

Let 1/2 < ρ < 1. If we take θ = tρ−1/2σ2 and t is large we have

P (St > tρ) ≤ exp
(
−θtρ + σ2θ2t

)
≤ exp(−t2ρ−1/4σ2).
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Let β ∈ (α, 1) so that ρ = β/2α < 1, and let δ = 2ρ− 1. Using the last result on each of
the d coordinates.

(*) With probability ≥ 1−N · d exp(−Lδ/4σ2) no particle that starts outside [−2Lβ, 2Lβ]d

will enter [−Lβ, Lβ]d by time L2α and no particle that starts inside [−2Lβ, 2Lβ]d will exit
[−3Lβ, 3Lβ]d.

Let ζ̄t be the coalescing random walk on Zd, let p(t) = P (x ∈ ζ̄t). and let pL(t) = P (x ∈ ζ̄L
t ).

The last two probabilities do not depend on x by translation invariance. (*) implies that

|pL(t)− p(t)| ≤ N · d exp(−Lδ/4σ2) for all t ≤ L2α.

The result for the expected value now follows from a result of Bramson and Griffeath [5]
that shows p(t) ∼ c/t as t→∞.

We begin by proving the second result for each fixed t. A result of Arratia [3], see Lemma
1 on page 913, shows

P (x ∈ ζ̄t, y ∈ ζ̄t) ≤ P (x ∈ ζ̄t)P (y ∈ ζ̄t),

so we have
var (N̄L

t ) ≤ NpL(t)(1− pL(t)) ≤ EN̄L(t).

Using Chebyshev’s inequality, and N̄L(t) ≤ C1N/(1 + t)

P (|N̄L(t)− EN̄L(t)| ≥ C1N/(1 + t)) ≤ 1 + t

C1N
≤ C

Ld−2α
.

To complete the proof now let M = [log2 L
2α]. Applying the last result to the O(logL)

values si = 2i with 1 ≤ i ≤M we see that

P (N̄L(si) ≤ 2C1N/(1 + t) for 1 ≤ i ≤M) ≥ 1− C logL

Ld−2α
.

Using the fact that t→ N̄L(t) is decreasing and si+1/si = 2 we have

P (N̄L(t) ≤ 2C1N/(1 + t/2) for 0 ≤ t ≤ L2α) ≥ 1− C logL

Ld−2α
,

which proves the desired result.

The dual for the contact process with fast voting is a branching coalescing random walk.
The maximum branching rate is ‖h‖∞ε2L, so the expected number of branchings that occur
on the space-time set covered by particles in the coalescing random walk is

≤ 4C1||h‖∞ε2L
∫ ε−2

L

0

N/(1 + t) dt ≤ CLd−2α logL.

Since the total number of branchings on the space-time set occupied by particles is Poisson,
the probability that no branching occurs is

≥ exp(−CLd−2α logL).
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Since there are deaths in the graphical representation for the contact process, the rest is
easy. With probability ≥ exp(−CLd−2α) all of the particles at time L2α/2 will be hit by a
death by time L2α. Thus even if the process is in the all 1’s state at time 0, the probability
it dies out by time L2α is at least

≥ exp(−C2L
d−2α logL) ≡M.

If we are given M2 = exp(2C2L
d−2α logL) trials the probability we always fail is

≤ (1− 1/M)M2

≤ exp(−M).

This completes the proof.

We could try to prove the upper bound on the survival tiem by arguing that with proba-
bility ≥ exp(−CLd−2α) all the particles at time L2α land on a 0 in the configuration at time
t−L2α. In the contact process we can argue this by noting that the state at time t−L2α is
dominated by the process starting from all 1 at time t − 2L2α. Since ξ ≡ 1 is absorbing in
evolutionary games, this simple argument is not possible.

10 Proof of Theorem 6

We use the notation for the dual introduced in Section 6. Let Rn denote the increasing
subsequence of jump times Tm that are branching times, and N(t) be the number that occur
by time t/ε2. Since branching times occur at rate CBkε

2 when there are k particles in the
dual, and the number of particles in the dual is bounded by a branching process in which
each particle gives birth to M new particles at rate CBε

2, the expected number of particles
at time t/ε2 is ≤ exp(CBMt) times the number at time 0.

Choose a time KL so that KL/L
2 → ∞ and ε2LKL → 0. If there are k particles at time

0, then the second condition implies

P (R1 ≤ KL) → 0

as L→∞. From this it follows easily that

P (Rm −Rm−1 ≤ KL for some m ≤ N(t)) → 0 (26)

as L→∞ and
P (t/ε2 −RN(t) ≤ KL) → 0. (27)

Let Sn = Rn + L2 +KL.
The next three results concern the time intervals [Rn, Rn+L2], [Rn+L2, Sn] and [Sn, Rn+1].

In the next three lemmas we suppose that at time 0 there are k particles in the dual and no
two particles are within distance L3/4 of each other.

Lemma 7. Suppose the first particle encounters a birth event in the dual at time 0. With
high probability (i) there is no coalescence between the newborn particles or with their parent
after time L2 and before the next birth event, (ii) up to time L2 there is no coalescence
between the new born particles and particles 2, . . . k, and (iii) at time L2 all particles are
separated by L3/4.
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Lemma 8. Even if we condition on the starting locations, then at time KL the particle
locations at time KL are almost independent and uniformly distributed over the torus, i.e., the
total variation distance between the random positions and independent uniformly distributed
positions tends to 0.

Lemma 9. With high probability, (i) there is no coalescence before the first time a birth event
affects a particle, and (ii) just before the first birth time the existing particles are separated
by L3/4.

Proof of Theorem 6. We will now argue that the three lemmas imply the desired conclusion.
(27) implies that with high probability there is no branching event in [t/ε2 −KL, t/ε

2]. Let
N(t) be the last branching time before time t/ε2. By the last remark SN(t) < t/ε2. Lemma
9 implies that no coalescence occurs in the dual in [SN(t), t/ε

2].
When (26) holds, Lemma 9 implies that the particles at time RN(t) are all separated

by L3/4 so using Lemma 7 all of the coalescences between the new born particles and their
parent occur before RN(t) + L2 and there is no coalescence with other particles during that
time interval. At time RN + L2 all the particles are separated by L3/4, so Lemmas 8 and 9
imply that there is no coalescence during [RN(t) + L2, SN(t)] and at time SN(t) the particles
are almost uniform over the torus.

The results in the last paragraph imply that when the jump occurs at time RN(t) the joint
distribution of the focal site and its neighbors are approximately that of the voter model
with the density at time SN(t). Since ε2LKL → 0 this is almost the same as the density at
time RN(t). Working backwards in time and using induction we see that as L→∞ the dual
on the time scale tε−2

L the dual converges to a limit in which branchings occur at rate ‖h‖∞
and when they occur the joint distribution of the state of the focal site and its neighbors is
given by the density at time t.

The last observation implies EUi(t) converges to a limit ui(t). To show that the limit
satisfies the differential equation we consider ui(t + h) − ui(t). When h is small the the
probability of two or more branching events is o(h2). By considering the effect of a single
event and letting h → 0 we conclude that dui/dt = φi(u). For more details in the more
complicated situation of convergence to a PDE, see Section 2 in Durrett and Neuhauser [14]
or Chapter 2 of [7].

The final detail is to show that varUi(t). To do this, we note that if x and y are separated
by a distance greater than L3/4 then with high probability their dual processes never intersect
before time t/ε2. Writing ηt(x) as shorthand for ξε

tε−2
L

(x), we see that if δ > 0 and L is large

var (Ui(t)) =
1

N2

∑
x∈TL

cov (ηt(x), ηt(y))

≤ cdL
3d/4

Ld
+ δ

Letting L→∞ and using Chebyshev’s inequality gives the desired result.
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10.1 Proofs of the three lemmas

Let p(x) be a finite range, irreducible symmetric random walk kernel on Zd, some d ≥ 3,
with characteristic function

φ(θ) =
∑
x∈Zd

eiθxp(x), θ ∈ [−π, π]d

Then φ is real-valued, and by PII.5 in Spitzer there is a constant λ > 0 such that

1− φ(θ) ≥ λ|θ|2, θ ∈ [−π, π]d (28)

Let Zt be a rate-one continuous time walk on Zd with jump kernel p, starting at 0. Then
Zt has characteristic function

φt(θ) = E0(e
iθZt) = exp(−t(1− φ(θ)),

and by (1),

φt(θ) ≤ e−λt|θ|2 , θ ∈ [−π, π]d (29)

Let ZL
t = Zt mod L be the corresponding walk on the torus TL.

Proposition 1. (a) There is a constant C > 0 such that

P (ZL
t = x) ≤ C

(
L−d ∨ t−d/2

)
, t ≥ 0, x ∈ TL. (30)

(b) If sL →∞ then

sup
t≥L2sL

max
x∈TL

Ld|P (ZL
t = x)− L−d| = 0 (31)

(b) implies Lemma 8.

Proof. By a standard inversion formula,

P (ZL
t = x) = L−d

∑
y∈TL

φt(2πy/L)e2πixy/L.

Pulling out the y = 0 term and using (29) gives

|P (ZL
t = x)− L−d| ≤ L−d

∑
y∈TL,y 6=0

e−λt|2πy|2/L2

(32)

After bounding the sum by an integral and then changing variables, there is a constant
C ′ > 0 such that∑

y∈TL,y 6=0

e−λt|2πy|2/L2 ≤ C ′
∫ L

1

e−λt(2πr/L)2rd−1dr ≤ C ′
( L

2π
√
λt

)d
∫ ∞

0

ud−1e−u2

du. (33)

Since Cd =
∫∞

0
rd−1e−rdr <∞, (32) and (33) imply

P (ZL
t = x) ≤ L−d + CdC

′(2πλ)−d t−d/2
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which proves part (a).
For part (b), plug any t ≥ L2sL into (32) and (33) to get

Ld|P (Zx
t = x)− L−d| ≤ CdC

′)(2π
√
λ)−ds

−d/2
L .

Since sL →∞ this proves part (b).

Proposition 2. (a) If 1 � rL ≤ L/2 and tL � Ld, then

max
x∈TL,|x|≥rL

P (ZL,x
s = 0 for some s ≤ tL) → 0

(b) If rL � L then
sup
t≥L2

P (|ZL,0
t | ≤ rL) → 0

(b) with rL = L3/4 gives (iii) of Lemma 7 and (ii) of Lemma 9. (a) gives (i) of Lemma 9 and
(ii) of Lemma 7. To prove (i) of Lemma 7, combine (iii) of Lemma 7 with (i) of Lemma 9.

Proof. Let τ = inf{t ≥ 0 : ZL,x
t = 0}, let |x| ≥ rL, and choose {t′L} such that t′L → ∞ and

t′L � tL ∧ rL. Using a standard martingale argument,

P (τ ∈ [0, t′L]) ≤ P ( sup
0≤t≤t′L

|ZL,0
t | ≥ rL) ≤ 2dP (|Z0

t′L
| ≥ rL) ≤ 2dE(|Z0

t′L
|)/rL,

which tends to 0 because t′L � rL. (Alternatively, could use the assumption p has finite
range and (30) for some t′L →∞, which is all that’s needed for below.)

Next, by the Markov property and the fact that ZL,x
t is a rate one walk, (30) implies

P (τ ∈ [t′L, tL]) ≤ e

∫ tL+1

t′L

P (Zx
t = 0) ≤ Ce

∫ L2∧t′L

t′L

t−d/2dt+ Ce

∫ t′L+1

t′L∧L2

L−ddt.

This tends to 0 because t′L →∞ and t′L/L
d → 0, proving (a).

For (b), the bound (30) implies P (ZL,0
L2 = 0) ≤ CL−d, so we have

P (|ZL,0
L2 | ≤ rL) ≤ CL−d(|rL|+ 1))d → 0

which is the desired result.

11 Proof of Theorem 7

For this result we need to augment the construction with Poisson processes T x
n , n ≥ 1 that

have rate µ, and random variables V x
n that are uniform over the strategy set. At time T x

n

the value at x is set equal to V x
n . Since mutations tell us the value at a site, when we work

backward in the dual, we kill a particle when it encounters a mutation. When all of the
particles have been killed then we can compute the value of the process at all the sites used
to initialize the dual.
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Suppose first that there are no mutations. Since w satisfies the conditions for Regime 2,
it follows from Theorem 6 that if we run time at rate 1/w then in the limit as L → ∞ the
density of type k satisfies

duk

dt
= φk(u). (34)

If we now return to the case with mutations and assume that µ/w → c then the limiting
equations become

duk

dt
= φk(u) +

µ

w
(1/n− uk) (35)

so equilibria are solutions of

uk =
1

n
+
w

µ
φk(u).

Doing some algebra gives

uk −
1

n
=
w

µ
φk(1/n, . . . 1/n) +

w

µ
(φk(u)− φk(1/n, . . . 1/n))

and hence ∣∣∣∣uk −
1

n
− w

µ
φk(1/n, . . . 1/n)

∣∣∣∣ ≤ w

µ
|φk(u)− φk(1/n, . . . 1/n)| .

Using the fact that φk is Lipschitz continuous we conclude

|uk −
1

n
| ≤ C1w/µ,∣∣∣∣uk −

1

n
− w

µ
φk(1/n, . . . 1/n)

∣∣∣∣ ≤ C2(w/µ)2.

If µ/w →∞ slowly enough then we can use the last result to conclude

uk > 1/n,

when w is small giving the desired formula.
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