
Chapter 5

Contact Process

The contact process is often used as a simple spatial model for the spread of species. In this
case the state at time t, ξt, is the set of occupied sites, and sites in ξct are vacant. In the
contact process on a graph G, occupied sites x ∈ ξt become vacant at rate 1, and give birth
onto each vacant neighbor at rate λ. The contact process can also be viewed as a spatial
SIS epidemic model. In this case ξt is the set of infected sites, and sites in ξct are susceptible.
With most diseases, individuals have some immunity to reinfection after they recover, but we
are not really concerned with applications here. The contact process in which deaths occur
at a constant rate, and the birth rate is linearis a very simple and fundamentally important
example of a stochastic spatial model.

5.1 Basic properties
sec:basicp

Harris (1974) introduced the contact process on G = Zd in 1974. Let ξxt be the process
starting from only x occupied. Harris defined the critical value

λc = inf{λ : P (ξxt ̸= ∅ for all t) > 0},

(this value is independent of x on connected graphs.) He proved that on Zd we have 0 <
λc <∞. On Zd, or on any graph with all degrees ≤M , the lower bound is trivial λc ≥ 1/M .
In the early days of the theory, upper bounds on critical values seemed harder than lower
bounds, but when it came to random graphs with unbounded degree distributions lower
bounds were easier because one only had to find a mechanism that ensured survival. On
graphs with power law degree distribution or even subexponential distributions the critical
value is 0, so the question of lower bounds is moot. The question for random graphs with
exponentially decaying degree distributions, considered in Section 5.8, turned out to be quite
difficult and it took many years to show that λc > 0.

A rich theory has been developed for the contact process on Zd and on regular trees.
See Liggett’s 1999 book for a summary of much of what is known in these settings. In this
section we will review some of the definitions and results that are the most important for our
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2 CHAPTER 5. CONTACT PROCESS

work. If you want to see more details consult Liggett’s book. I am not a big fan of calling
things beautiful, but this book is.

The first item on our agenda is a special construction of the process from a graphical
representation that is built using independent Poisson processes.

� For each site there is an independent rate 1 Poisson process T xn , n ≥ 1. At the arrivals
of this process if there is a particle at x, it will die. To facilitate later definitions we
write a dot at x at the times T xn . In early versions of the construction people wrote δ
for death.

� For each oriented edge (x, y) we have a rate λ Poisson process T x,yn . At these times we
draw an arrow from x to y to indicate that if x is occupied there will be a birth from
x to y. If y is vacant it will become occupied. If y is occupied there is no change.

0 0 0 1 0 0 0

0 1 0 1 1 0 0

0

t

-

-

�

-

�

-

�

-

�

�
•

•

•

•

•

•

•

•

•

Figure 5.1: Graphical representation for the contact process. We think of fluid flowing up the
structure and across arrows in the direction of the orientation, but being stopped by dots.
Thus the contact process is a percolation process that is discrete in space and continuous
and oriented in time,

Let ξAt denote the contact process starting from A occupied at time 0. A point y ∈ ξAt if
for some x ∈ A there is path from (x, 0) to (y, t) that goes up the graphical representation
without passing through •s and crosses edges in the direction of their orientation. A nice
feature of the graphical representation is that it allows us to construct all of the ξAt on the
same space in such a way that

if A ⊂ B then ξAt ⊂ ξBt . (5.1.1) cpmono
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When a set-valued Markov process has this property, it is called attractive. The term
originated from the Ising model in which each site was in state 1 (spin up) or −1 (spin
down). In this case attractive meant that the spins had a tendency to align. An important
consequence of a process being attractive is

upinvm Theorem 5.1.1. If we let ξ1t be the system starting from all sites occupied then ξ1t converges
in distribution to a limit ξ1∞, which is a stationary distribution.

The reader can find the proofs of these and other assertions in Liggett’s (1999) book. Due
to monotonicity property in (5.1.1), ξ1∞ is the largest possible stationary distribution. Thus,
if ξ1∞ = δ∅ then there are no nontrivial stationary distributions.
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Figure 5.2: Contact process duality. We think of fluid flowing down the structure, across
arrows in the direction opposite orientation, but being stopped by dots.

A second important consequence of the construction is that it allows us to define for each
x a dual process ζx,ts , s ≤ t, that works backwards in time to answer the question “Is the
site x occupied at time t?” The dual process can be constructed by a variant of the rule
used for the contact process: y ∈ ζx,ts if there is a path from (x, t) to (y, t−s) that goes down
the graphical representation without passing through •s and crossses edges in the direction
opposite their orientation.

We extend the definition of the dual to an initial set B by setting

ζB,ts = ∪x∈Bζx,ts
A little thought shows that

{ξAt ∩B = ∅} = {A ∩ ζB,tt = ∅} (5.1.2) cdualeq
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The almost sure equality in (5.1.2) is convenient for establishing the equation but it is useful
to rewrite the equality without the superscript t. To do this we note that if t < t′ then the
joint distribution of the ζx,ts , s ≤ t with x ∈ Zd is the same as that of ζx,t

′
s , with x ∈ Zd when

s ≤ t′, so using the Kolmogorov extension theorem there is a family of processes ζxs whose
joint distributions agree with ζx,ts on s ≤ t.

P (ξAt ∩B ̸= ∅) = P (A ∩ ζBt ̸= ∅) (5.1.3) setdual

With future generalizations in mind we will ignore for the moment that contact process
on a graph G is self dual. Taking A = G and B = {x} the duality equation becomes

P (x ∈ ξ1t ) = P (ζxt ̸= ∅)

Since the empty set is an absorbing state for the dual

lim
t→∞

P (x ∈ ξ1t ) = P (ζxt ̸= ∅ for all t)

In words the density of particles in ξ1∞ is the probability that the dual process lives forever
starting from one site. Replacing x by a finite set B

lim
t→∞

P (ξ1t ∩B ̸= ∅) = P (ζBt ̸= ∅ for all t)

The fact that this holds for all B implies that ξ1t converges in distribution.

A consequence ot the construction from a graphical representation is that the interaction
is additive

ξAt ∪ ξBt = ξA∪Bt

Harris (1978) identifed the processes with this property and showed that they had dual
processes. The study of this class of processes was greatly advance by the work of Griffeath
(1979). In Chapter 7 we will encounter another member of this family, the voter model.

5.2 Mean-field theory

The first step in the investigation of an interacting particle system is to examine its properties
when we get rid of the spatial correlations that make it difficult to analyze. To motivate the
simplifications we will use, we begin with an exact equation.

d

dt
P (x ∈ ξt) = −P (x ∈ ξt) + λ

∑
y∼x

P (x ̸∈ ξt, y ∈ ξt) (5.2.1) conexacteq

where y ∼ x means y is a neighbor of x. Let Nx = {y : y ∼ x} Suppose we are on a vertex
transitive graph. This implies (i) that the number of neighbors |Nx| does not depend on x
and (ii) if we start from all sites occupied then at any time t the probabilities P (y ∈ ξt) does
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not depend on y, so we can call it u(t). Using the fact that P (x ̸∈ ξt, y ∈ ξt) ≤ P (y ∈ ξt),
(5.2.1) becomes

du

dt
≤ (β − 1)u(t)

where β = λ|Nx|. If β < 1 and u(0) = 1 then the last equation implies that u(t) → 0. Using
Theorem 5.1.1 now, we conclude that on any vertex transitive graph the critical total birth
rate for the existence of a nontrivial stationary distribution βc ≥ 1.

We get more information from m the differential equation (5.2.1) if we have an equality
rather than an inequality. The first and simplest thing to do is to pertend that the states of
sites are independent and to compute the behavior of u(t) = P (x ∈ ξt). When we use our
independence assumption (5.2.1) becomes

du

dt
= −u(t) + βu(t)(1− u(t))

= u(t)(β − 1− βu(t))) ≡ g(u(t)) (5.2.2) conMFE

where ≡ indicates that the second equality defines the function g.

Theorem 5.2.1. Let β0 = (β − 1)/β. If u(0) ∈ (0, 1] and β > 1 then in (5.2.2) u(t) → β0
as t → ∞. In words, the mean-field contact process has a nontrivial equilbirum frequency
β0 > 0 in addition to the trivial fixed point at 0.

Proof. When β > 1 it is easy to see that g(u) > 0 for u < β0 and g(u) < 0 when u > β0.
From this the result follows easily. The monotonicity of u(t) implies that the limit exists,
and a simple argument shows that it can only converge to a point v where u(v) = 0.

The contact process on the complete graph

provides a second approach to mean-field theory. The complete graph Kn on n vertices has
vertex set {1, . . . , n} and all pairs of neighbors are connected by an edge. On the complete
graph it is convenient to reformulate the definition of the contact process as: an occupied
site produces new particles at rate β and sends them to a site chosen at random from the
graph (including itsef), since this makes the number of neighbors n instead of n − 1. The
number of occupied sties, Xt ,is a birth and death chain with birth and death rates

bm = β ·m ·
(
1− m

n

)
and dm = m, (5.2.3) bdrates

where m is the number of occupied sites.
The first step in analyzing a birth and death chain is to find a function ϕ(x), often called

the natural scale, so that ϕ(Xt) is a martingale, i.e., (d/dt)Eϕ(Xt) = 0. In terms of the
rates

0 = bm(ϕ(m+ 1)− ϕ(m)) + dm(ϕ(m− 1)− ϕ(m)). (5.2.4) ctharm
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Rearranging gives

(ϕ(m+ 1)− ϕ(m)) =
dm
bm

(ϕ(m)− ϕ(m− 1)) =
1

β(1−m/n)
(ϕ(m)− ϕ(m− 1)).

Setting ϕ(0) = 0 and ϕ(1)− ϕ(0) = 1

ϕ(m+ 1)− ϕ(m)) =
m∏
k=1

1

β(1− k/n)
≈ (1/β)m, (5.2.5) phidiff

when m≪ n . Summing we have (again for m≪ n.)

ϕ(m) ≈
m−1∑
k=0

ϕ(k + 1)− ϕ(k) =
m−1∑
k=0

(1/β)k =
1− (1/β)m

1− 1/β
. (5.2.6) philim
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Figure 5.3: Natural scale ϕ(x) when β = 2 and n = 50. fig:mftphi

From (5.2.6) we see that

if m→ ∞ and m/n→ 0 then ϕ(m) → β/(β − 1). (5.2.7) phismallm

Eventually we will prove that if β > 1 the equilibrium frequency of 1’s on the com-
plete graph is (β − 1)/β in agreement with the ODE calculation. To do this the following
monotonicity result, which follows from the formula for the rates in (5.2.3) is useful.

phimono Lemma 5.2.2. If β > 1 we have bm ≥ dm when β(1−m/n) ≥ 1 or m ≤ m0 = ⌊n(β−1)/β⌋.
We have bm < dm when m > m0.
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Using this result we can extend (5.2.7)

phim0 Lemma 5.2.3. As n→ ∞, ϕ(m0) → β/(β − 1).

Proof. Lemma 5.2.2 implies that the slope ϕ(m+1)−ϕ(m) is decreasing when m ≤ m0. Let
m1 = C1 log(n) where C1 = −2/ log(1/β). Since m1/n → 0, we have ϕ(m1) → (β − 1)/β.
Using (5.2.5) ϕ(m1+1)−ϕ(m1) → n−2. Using the fact that ϕ(m+1)−ϕ(m) is decreasing for
m1 ≤ m ≤ m0, and there are only O(n) points in this range, it follows that ϕ(m0)−ϕ(m1) →
0 which completes the proof.

Let Tk = min{t : Xt = k}. Since ϕ(Xt) is a martingale, ϕ(0) = 0, and ϕ(1) = 1

1 = ϕ(1) = ϕ(m0)P1(Tm0 < T0) ≈
β

β − 1
P1(Tm0 < T0),

by (5.2.3), so as n→ ∞
P1(Tm0 < T0) →

β − 1

β
.

On any finite graph, the contact process dies out but as we will see in Section 5.3 that on Kn

and many other graphs the contact has a quasi-stationary distributionor metastable
state with density (β − 1)/β.

Prolonged persistence

Our next goal is to show that when β > 1 then the contact process on the complete graph
with n vertices survives for time exp(C(β)n). This is the best we can hope for since the
probability that in one unit of time no births occur and and all particles die is

≥ [(1− e−β)e−1]n. (5.2.8) ubsurv

.

Method 1: Bounding the extinction time using hitting times

The first step is to construct a martingale for the mean-field contact process in continuous
time Xt, which has jump rates given in (5.2.3). In order for ψ(Xt) to be a martingale while
Xt ∈ (0,m0) we must have

0 = bm(ψ(m+ 1)− ψ(m)) + dm(ψ(m− 1)− ψ(m)) for 0 < m < m0.

If ψ(m0) = 0 and ψ(m) =
∑m0−1

k=m sk for 0 < m < m0 then ψ(Xt) will be a martingale if

0 = −bmsm + dmsm−1.

Thus we want
sm−1 = smbm/dm = smβ(1−m/n). (5.2.9) srec

To get the recursion started we set s(m0) = 1.
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If we let L = m0 and hL = PL−1(T0 < TL) then using the fact that ψ(Xt) is a martingale
and ψ(L) = 0 we have ψ(L− 1) = hLψ(0) and hence

hL = ψ(L− 1)/ψ(0) ≤ sL−1/s0. (5.2.10) hLbd

Using the recursion (5.2.9)

log(s0/sL−1) =
L−1∑
k=1

log(sk−1/sk) =
L−1∑
k=1

log(β(1− k/n)).

Note that by the definition of L = m0 the terms in the final sum > 0. Multiplying by n/n
and turning the sum into an approximation of an integral the RHS is

≈ n

∫ β0

0

log β + log(1− x) dx = β0 log β +

∫ β0

0

log(1− x) dx, (5.2.11) Method1

where β0 = (β− 1)/β. The antiderivative of log(1− x) is (x− 1) log(1− x)− x so the above
is

B ≡ β0 log β + (β0 − 1) log(1− β0)− β0

=
β − 1

β
log β − 1

β
log(1/β)− β − 1

β
= log(β)− β − 1

β

and using (5.2.10) we have hL ≤ exp(−nB). Since each excursion away from L takes at least
1/L unit of time on the average we have

cpcpart1 Lemma 5.2.4. If β > 1 and ϵ > 0 then the extinction time for the contact on the complete
graph with n vertices takes time ≥ exp(n(B − ϵ)) with high probability.

Method 2: Hitting times for birth and death processes

Our second approach is compute the expected hitting time directly using methods that hold
for many borth and death chains. Let Tb,a = time to go from a to b. The subscripts are
backwards from how I would have chosen them, but it is easier to live with the notation than
to rewrite all of the equations in Section 6.7 in Allen (2003). Our first identity is obvious
from the definitions:

ETdecomp Lemma 5.2.5. If a > b then Tb,a = Ta−1,a + Ta−2,a−1 + · · ·+ Tb,b+1.

Let µi be the death rate at i (rate for jumps i → i − 1) and λi be the birth rate at i (rate
for jumps i→ i+ 1). It is easy to see that

ETi−1.i =
µi

λi + µi
· 1

λi + µi
+

λi
λi + µi

·
(

1

λi + µi
+ ETi,i+1 + ETi−1,i

)
.
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Figure 5.4: Plot of consta B versus β. fig:mftsurv

To explain this equality note that the chain stays at i for a time with mean 1/(λi + µi). If
it jumps to i − 1 (with probability µi/(µi + λi)) then we have gotten to i − 1. If not, then
to get to i− 1 we have to go from i+ 1 to i and from i to i− 1. Rearranging gives

ETi−1.i

(
1− λi

λi + µi

)
=

1

λi + µi
+

λi
λi + µi

· ETi,i+1,

which gives us our recursion:

ETi−1.i =
1

µi
+
λi
µi

· ETi−1,i. (5.2.12) ETrec

Suppose now that we want to compute ET0,n for a birth and death process on {0, 1, . . . n}.
The first jump can only be from n to n − 1, so using the recursion (5.2.12) for later terms,
we have

ETn−1,n =
1

µn

ETn−2,n−1 =
1

µn−1

+
λn−1

µn−1

· 1

µn

ETn−3,n−2 =
1

µn−2

+
λn−2

µn−2

·
(

1

µn−1

+
λn−1

µn−1

· 1

µn

)
=

1

µn−2

(
1 +

λn−2

µn−1

+
λn−2λn−1

µn−1µn

)
ETn−4,n−3 =

1

µn−3

(
1 +

λn−3

µn−2

+
λn−3λn−2

µn−2µn−1

+
λn−3λn−2λn−1

µn−2µn−1µn

)
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Generalizing from these formulas, we see that

ETn−k−1,n−k =
1

µn−k

(
1 +

n∑
j=n−k+1

j∏
i=n−k+1

λi−1

µi

)

=
1

µn−k

(
n∑

j=n−k

j∏
i=n−k+1

λi−1

µi

)

where in the last step we have absorbed the 1 into the sum by using the convention that the
empty product

∏n−k
i=n−k+1 = 1. Using Lemma 5.2.5 we have

ET0,n =
n−1∑
k=0

ETn−k−1,n−k

When we combine the last two expressions we get a sum of roughly n2/2 products of
λi−1/µi from i = n− k+1 to j ∈ [n− k+1, n]. When β > 1, if λk = β(1− k/n) and µk = k,
he largest of these products is the one wth i = 1 and j = nβ0.

π =

nβ0∏
i=1

β(1− i/n). (5.2.13) oneterm

Using calculation at the end of the section on Method 1 see (5.2.11)

B = log β − (β − 1)/β

The sum which gives T0,n is bigger than the term in (5.2.13) and smaller than n2 times it,
so we have

cpcpart2 Lemma 5.2.6. If n is large then he extinction time for the contact on the complete graph
takes time ≤ Cn2 exp(nB) with high probability.

This result and Lemma 5.2.4 provide complementary upper and lower bounds on the
survival time.

5.3 Bounded degrees
sec:CPtree

Pemantle (1992) was the first to study the contact process on the tree Td in which each
vertex has degree d+ 1. Here, and in what follows, we assume d ≥ 2 since T1 = Z. Let 0 be
the root of the tree and let P0 be the probability measure for the process starting from only
the root occupied. Pemantle found that the contact process on Td has two critical values:

λ1 = inf{λ : P0(ξt ̸= ∅ for all t) > 0},
λ2 = inf{λ : lim inf

t→∞
P0(0 ∈ ξt) > 0}.
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In words, the contact process survives when λ > λ1 but survives locally when λ > λ2,
i.e., with positive probability 0 is occupied infinitely many times, though the definition we
have chosen is stronger than that.

By deriving bounds on the critical values, he showed that λ1 < λ2 when d ≥ 3. Liggett
(1996) settled the case d = 2 by showing

λ1 < 0.605 < 0.609 < λ2.

At about the same time, Stacey (1996) gave a proof that λ1 < λ2 that did not rely on
numerical bounds on the critical value.

Open problem. Stacey’s argument is simple and elegant but relies heavily on the fact
that the graph is a tree. It would be nice to generalize it to Galton-Watson trees, but the
randomness of the graph seems to pose a substantial problem. A simpler problem is to
consider the Big World of Durrett and Jung (2007), which is the free product Zd ∗ {0, 1}.
More intuitively, the Big World is the covering space of the Bollobás-Chung (1988) small
world which was defined before the more highly cited small world of Watts and Strogatz
(1998). In the BC small world one starts with a circle with an even number of vertices,
pairs them at random and connects each pair by an edge. The Big World gives the limit as
n→ ∞ of the view point of a bug walking on the small world. Moving through a long range
edge brings it to a new copy of Z. If the verbal description is not enough, eee their paper
for a picture.

Contact process on {−n, . . . n} with edges connecting nearest neighbors. Suppose it
starts from all sites occupied and let τn = inf{t : ξt = ∅}. Combining results of Durrett and
Liu (1988) and Durrett and Schonmann (1988) gives the following results

1dsurv Theorem 5.3.1. (i) If λ < λc then there is a constant γ1(λ) so that

τn/ log n→ γ1(λ) in probability.

(ii) If λ > λc then there is a constant γ2(λ) so that

(log τn)/n→ γ2(λ) in probability.

(iii) When λ > λc there is “metastability”:

τn/Eτn ⇒ exponential(1)

Here ⇒ means convergence in distribution. Intuitively, when λ > λc the process on the
interval stays exponentially long in a state that looks like the stationary distribution for the
process on Z restricted to the interval [−n, n]. The lack of memory property of the survival
time suggests that the death of the process comes suddenly and without warning, but we
know of no result that makes this precise.

Results on Zd with d > 1 had to wait for the work of Bezuidenhout and Grimmett
(1990), who showed that in d > 1 the contact process dies out at the critical value. To
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do this they introduced a block construction that can be used to study the supercritical
process. Mountford proved the metastability result in 1993 and that (log τn)/n

d → γ(λ) in
1999.

Stacey (2001) studied the contact process on a tree truncated at height ℓ, Tdℓ . To be
precise, the root has degree d, vertices at distance 0 < k < ℓ from the root have degree
d + 1, while those at distance ℓ have degree 1. Cranston, Mountford, Mourrat, and Valesin
(2014) improved Stacey’s result to establish that the time to extinction starting from all
sites occupied τ dℓ satisfies

fintree Theorem 5.3.2. (a) For any 0 < λ < λ2(Td) there is a c ∈ (0,∞) so that as ℓ→ ∞

τ dℓ / log |Tdℓ | → c in probability.

(b) For any λ2(Td) < λ <∞ there is a c ∈ (0,∞) so that as ℓ→ ∞

log(τ dℓ )/|Tdℓ | → c in probability.

In case (b), τ dℓ /Eτ
d
ℓ converges to a mean one exponential.

When a tree is truncated at a finite distance, a positive fraction of the sites are on the
boundary. A more natural finite version of a tree is a random regular graph in which
all vertices have degree d + 1. In this case there is no boundary and the graph has the
same distribution viewed from any point. If there are n vertices, the graph looks like Td
in neighborhoods of a point that have ≤ n1/2−ϵ vertices, see Theorem 1.2.3. Mourrat and
Valesin (2016) have shown for a random regular graph, the time to extinction starting from
all sites occupied τn satisfies:

randreg Theorem 5.3.3. (a) For any 0 < λ < λ1(Td) there is a C <∞ so that as n→ ∞

P (τn < C log n) → 1,

(b) For any λ1(Td) < λ <∞ there is a c > 0 so that as n→ ∞

P (τn > ecn) → 1.

Notice that the threshold in this comes at λ1, while the one in Stacey’s result comes at λ2.
The difference is that when λ ∈ (λ1, λ2) on the infinite tree the origin is in the middle of
linearly growing vacant region. On the truncated tree the system dies out when the vacant
region is large enough, or more poetically the particles like lemmings run over the edge of
cliff. However, on the random regular graph the occupied sites will later return to the origin.
Durrett and Jung (2007) investigated the qualitative differences between λ ∈ (λ1, λ2) and
λ > λ2 on the small world graph.

Lalley and Su (2017) also proved Theorem 5.3.3. In addition they established an inter-
esting “cutoff” result about convergence to equilibirum. Their Theorem 1.1 shows that if we
start from only 1 occupied then there are constants cλ and gn(ϵ) → 0 so that
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P (2 ∈ ξt) at times
≤ gn(ϵ) ≤ (1− ϵ)cλ log n
≥ ρ2(1− gn(ϵ) ≥ (1 + ϵ)cλ log n

where ρ is the survival probability, which by duality is the fraction of sites that are occupied.
Mourrat and Valesin (2016) extended their result on random reguar graphs given in

Theorem 5.3.3to graphs with bounded degree. The next result is their Theorem 1.3.

bddeg Theorem 5.3.4. Let Gn,d be the set of connected graphs with n vertices and degree bounded
by d+ 1. (a) For any 0 ∈ (0, λc(Td)) there is a constant C <∞ so that

lim
n→∞

inf
G∈Gn,d

P (τG < C log n) = 1.

(b) For any λ ∈ (λc(Z),∞) there is a constant c > 0 so that

lim
n→∞

inf
G∈Gn,d

P (τG > ecn) = 1.

Note that the constants are uniform over G ∈ Gn,d. The form of the result in (b) suggests
the method of proof: we are going to find a large path in the graph and compare with the
one dimensional contact process.

5.3.1 Proofs of Theorems 5.3.3 and 5.3.4

The two proofs are independent of each other. Both are from Mourrat and Valesin (2016).

Proof of part (a) of Theorem 5.3.4

We prove the more general result by comparing the contact process on the graph with the
contact process on the tree. In the statement of the first lemma we use a notation for the
projection π from T to G that is defined in the proof. The parenthetical names of results
refer to their (2016) paper published in EJP. As usual τC are the extinction times for the
contact process starting from sites in C occupied.

Lemma 5.3.5. (Lemma 4.2.) For any G ∈ Gn,d, A ⊂ V , and B ⊂ Td for which π(B) ⊃ A

PG(τ
A > t) ≤ PTd(τB > t).

Proof. To prove this we introduce the universal cover of the graph G. Fix a reference
vertex x ∈ V . Given an oriented edge e⃗ let v0(e⃗) be the vertex that the edge e points
away from, and v1(e⃗) be the vertex points that the edge points towardd. We say that a
sequence of oriented edges (e⃗1, e⃗2, . . . e⃗m) is a nonbacktracking path from x if v0(e⃗1) = x, for
2 ≤ i ≤ m, v1( ⃗ei−1) = v0(e⃗i), and v0( ⃗ei−1) ̸= v1(e⃗i). Let V be the set of non-backtracking
paths, including the empty path which is denoted by o. For any γ = (e⃗1, e⃗2, . . . e⃗m) and
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γ′ = (e⃗1, e⃗2, . . . e⃗m, ⃗em+1) there is an edge from γ to γ′. This defines the edge set E of the
tree T , which has degree ≤ d+ 1.

To map the tree into the graph put ψ(o) = x (where x is the reference vertex). If
γ == (e⃗1, e⃗2, . . . e⃗m) then ψ(γ) = v1(e⃗m). For y ∈ V , let ψ−1(v) be the set of vertices
mapped to v by ψ. Define the set of configurations that have at most one particle per fiber
by

ΩT =

ζ ∈ {0, 1}V :
∑

y∈ϕ−1(v)

ζ(y) ∈ {0, 1}

 .

Define the projection π : ΩT → {0, 1}V by

[π(ζ)](v) =
∑

y∈ϕ−1)v)

ζ(y).

In the usual way we will identify configurations ζ ∈ {0, 1}T with the set of sites that are in
state 1, {y ∈ T : ζ(v) = 1}.

Coupling. Suppose we have A ⊂ V and B ⊂ T with B ⊃ A. and let At and Bt be the
contact process with these initial states. To couple the two processes we let κ : At → Bt so
that π(κ(a)) = a. κ can change over time but there is no reason to let it change between
jumps of the process.

We use a graphical presentation to couple the two processes. We use the deaths associated
with particles in T and the births associated with particles on G and use independent Poisson
processes to complete the graphical representation on T .

(i) If a death occurs at a b which is = κ(a) for some a then we also kill the particle at a.

(ii) Suppose a birth occurs from a to a neighbor a′. If the corresponding neighbor of b = κ(a)
which we will call b′ is vacant then b will give birth onto b′ and we will let κ(a′) = b′. If b′ is
already occupied then since there are no particles in ϕ−1(a′) we can again let κ(a′) = b′.

The coupling shows that if At ̸= ∅ then Bt ̸= ∅ which proves the desired result.

To complete the proof we use their formula (4.1)

Lemma 5.3.6. For any λ < λ1(Td) there are constants c0, C0 so that

E|ξ0t | ≤ C0e
−c0t.

They prove this result by combining several facts from Section I.4 of Liggett(1999). The
details are not useful for other developments here, so we refer the reader to the paper for
details. The additivity property of the contact process implies that for B ⊂ Td

E|ξBt | ≤ |B| · C0e
−c0t.

which implies the desired conclusion.
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Proof of part (b) of Theorem 5.3.4

We begin with a classical large deviations result for the binomial.

Lemma 5.3.7. (Lemma 3.1.) For every δ ≥ 0MV3_1

P (binomial(m, p) ≥ (p+ δ)m) ≤ e−mψp(δ),

where ψp(δ) = supλ[λ(p+ δ)− log(1− p+ peλ)]

= (p+ δ) log

(
p+ δ

p

)
+ (1− p− δ) log

(
1− p− δ

1− p

)
(5.3.1) MVL2.2

The next ingredient is a lemma from Salzano and Schonmann (1998). Throughout this
section vertices have degree d ≥ 3

Lemma 5.3.8. (Lemma 3.2) For every λ > λ1(Td) there are constants S, p0 > 0 and α > 1MV3_2
so that

PT,λ(|{x ∈ ξ0tS : dist(0, x) = ℓ}| ≥ αℓ) ≤ p0.

which they generalize as follows

Lemma 5.3.9. (Lemma 3.3.) For every λ > λ1(Td) there are R, σ > 0 so that for every ℓMV3_3
large enough the following holds. For any graph G with vertices x, y so that dist(x, y) ≤ r
and (y,G) embeds (0,Tdℓ )

PG,λ
(
|ξxRℓ| ≥ αℓ

)
≥ σ.

Proof. This follows from Lemma 5.3.8 and the next two facts

PG,λ(ξ
x
t (x) = 1) ≥ e−t

PG,λ

(
ξxdist(x,y)(y) = 1

)
≥ (e−2(1− e−λ))dist(x,y)

The first estimate is trivial. In order for x to be 1 at time t it is enough that the initial 1 at
x survives for time t. For the second result suppose x0 = x, x1, . . . xk = y is a path of length
k from x to y. We have ξxk (y) = 1 if in each time interval [j − 1.j] with 1 ≤ j ≤ k there is
no death at j − 1 or j and there is a birth from xj−1 → xj.

We say that a set of verticesW ⊂ Vn is (ℓ,r)-regenerative if there is a family G′
v, v ∈ W

of subgraphs of Gn that are pairwise disjoint have v ∈ G′
v and there is x so that

the distance in G′
v between x and v is r and (x,G′

v) embeds (0,Tdℓ )

Theorem 5.3.10. (Theorem 3.4.) For k and r sufficiently large and for every ℓ there isMV3_4
an ϵ0 so that for all ϵ ≤ ϵ0 the following holds with high probability: from every W ⊂ Vn of
cardinality at least kϵn one can extract a (ℓ,r)-regenerative set of cardinality at least ϵn.
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Proof of (b) of Theorem 5.3.4 assuming Theorem 5.3.10. Fix λ > λ1(Td) and choose con-
stants as follows

(i) fix r and k large, as required by Theorem ?? ref?
(ii) let α,R, σ correspond to λ and r as in Lemma 5.3.9.
(iii) take ℓ large enough, as required by Lemma 5.3.9 and so that αℓ > 2k/σ
(iv) take ϵ < ϵ0 where ϵ0 corresponds to k, r, ℓ as in Theorem 5.3.10.

Assume Gn has the property stated in Theorem 5.3.10 for every W ⊂ Vn with |W | ≥ kϵn
one can extract a (ℓ,r)-regenerative set W ′ = {v1, . . . vϵn} of cardinality at least ϵn. Let
G′
v1
. . . G′

vϵn be the disjoint subgraphs so that (xi, G
′
vi
) embeds Tdℓ . We will now show that

PGn(|ξWRℓ| ≥ kϵn) ≥ 1− e−cn, (5.3.2) suffT12

which when iterated gives (b).
For each i Let ζ it be the contact process on G′

vi
starting with only vi infected. Clearly

ξWt ⊃ ξW
′

t ⊃ ∪ϵni=1ζ
i
t ,

and the ζ it are independent. Let Ei = {|ζ iRℓ| ≥ αℓ}. Lemma 2.3 implies that PGn(Ei) ≥ σ.
Therefore by the large deviations result in Lemma 2.1

PGn

(
ϵn∑
i=1

1Ei
≥ ϵnσ/2

)
. ≥ 1− exp(−c(ϵ, σ)n)

Finally if the event above occurs we have

|ξWRℓ| ≥ αℓ · ϵnσ/2 > kϵn,

by the assumption in (iii). For more details see Section 3 of Mourrat and Valesin (2013)

5.3.2 Work of Schapira and Valesin

They extends the work of Mountford, Mourrat, Valesin and Yao (2012), or MMVY for
short, in two ways. They proved without any restriction in the graph G that if the infection
rate is larger than the critical value of the one-dimensional contact process, λc(Z) then the
extinction timeτG starting from all sites occupied grows faster than exp(|G|/(log |G|)κ) for
any κ > 1. Also for general graphs they showed that the extinction time divided by its
expectation converges to the exponential distribution with mean 1. Even though this is a
subsection of a section titled bounded degrees, they do not make that assumption. To state
their results formally using the numbers in their paper.

Theorem 1.2. For any λ > λc(Z) there is a constant cϵ such that for any connected graph
G that has at least 2 vertices

Eλ[τG] ≥ exp

(
cϵ|G|
|G|1+ϵ

)
.
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Clearly there is no hope when there is only one vertex since in that case it is not possible to
give birth.

Theorem 1.3. For any λ > λc(Z) and any sequence of graphs Gn with |Gn| → ∞
τGn

EτGn

⇒ exponential(1).

There are a large number of details involved in carrying out these proofs, so we will
content ourselves to describe the main new ideas

Proposition 2.7. There is a ccomp > 0 so that for any n ≥ 2 and any tree G with n vertices

P
(
ξAt ̸= ∅, ξAt ̸= ξ1t

)
≤ exp

(
−ccomp

⌊
t

n(log n)3

⌋)
,

for all t > 0 and A ̸= ∅.
Once this result is established Theorem 1.3 follows fairly easily, since it is a key step in
showing that limits of τGn/EτGn have the lack of memory property, and hence must be
exponential(1). This idea already appeared as Lemma A.1 in MMVY.

Proposition 2.7 is an immediate consequence of

Lemma 2.8 There is a c1 < 1 so that for all G with n ≥ 2 vertices and t ≥ n(log n)3

P
(
ξAt ̸= ∅, ξAt ̸= ξ1t

)
< c1.

Proposition 2.7 leads to the second main ingredient.

Proposition 2.9. There exists a constant csplit so that for any treeG containingN connected
and disjoint subtrees G1, . . . GN

E[τG] ≥
csplit

(|G|3)N+1

N∏
i=1

E[τGi
].

This result is interesting in its own right. The authors use it to give a simple proof of part (b)
of Theorem 5.3.4 without the assumption of bounded degree. For more information about
the proof the reqder will have to consult Schapira and Valesin (2015). In their (2018) they
use these methods to analyze the behavior of eight different equences of graphs Gn.

5.4 Erdős-Rényi et al

In the last section we considered bounded degree distributions, i.e., treees and random regular
graphs. In next several sections we will consider random graphs with degree distributions
that are power-law, subexpoentital, and finally with exponential tails. The Erdős-Rényi
graphs we consider are unbounded but the tails decay faster than exponential. As in the



18 CHAPTER 5. CONTACT PROCESS

previous section we will be concerned with showing that if the contact process is sufficiently
supercritical tnen starting from all sites occupied the process survives for time exp(cn), which
as remarked earlier, see (5.2.8) is the best possible result for graphs with n vertices and ≤ Bn
vertices.

Proving survival for time exp(cn) in the Erdős-Rényi case is easy thanks to Theorem
1.4.7 which shows that if the mean degree is λ > 1 then there is a path with length ≥
n(σλ − Li2(σλ)) where σλ is the suvival probability and Li2 is the dilogarithm function.
Comparing the contact process on the path with the contact process on an interval, see
Theorem 5.3.1, it follows that if we start with all sites occupied then survival occur for time
≥ exp(cn).

A new approach due to Cator and Don (2021)

The method relies on uniformly bounding the infection rate from below for all sets with a
fixed number of vertices k. Once the minimum infection rate for sets of size k has been
estimated and it is ≥ ρk for a range of values, a simple comparison with a birth and death
chain will show exponential growth of the infection time.

To illustrate this method we consider the Erdös-Renyi(n, p) graph with np = σ. Their
method will clearly fail if nσ < 1, but as they explain it will also fail if the fraction of sites
in the giant component is < 1/2, because in that case there will be sets of size n/2 that
have no neighbors (take the complement of the giant component). The probability ρ that a
vertex does not belong to the giant component satisfies ρ = exp(−σ(1− ρ)) so recalling that
the generating function ϕ(z) = exp(σ(1− z) is convex and has ϕ′(1) = σ we see that ρ > 1/2
if 1/2 < exp(−σ/2), i.e., σ < 2 log 2 = 1.3862. For technical reasons that will become clear
later they have to choose σ > 4 log 2.

Large deviations for the number of connections to a set

Suppose we have a graph with n vertices, i.e., |V | = n, and a set S ⊂ V of size k. The
number of potential connections from S to V −S is k(n−k) and each is independently present
with probability σ/n so the number of links from from one fixed set S, LS = binomial(k(n−
k), σ/n). The number of sets of vertices size k is

(
n
k

)
so it is a simple exercise in large

deviations to find a lower bound Mn,k on the minimum number of connections from S to
V − S for a set S of size k.

Fix n and k = γn, p = σ/n. LS is binomial(k(n− k), p). To begin we compute

ELS = k(n− k)σ/n and

E exp(−θLS) =
(
1− σ

n
+
σ

n
e−θ
)k(n−k)

= exp
(
−(σ/n)(1− e−θ)k(n− k)

)
.

Thus if θ > 0, Markov’s inequality implies

exp(−θρELS)P (LS ≤ ρE(LS)) ≤ exp(−(σ(1− e−θ)k(n− k)/n),

Filling in the formula for ELS and rearranging

P (LS ≤ ρE(LS)) ≤ exp
(
−σ
n
k(n− k) · (−θρ+ 1− e−θ)

)
.
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The next step is to optimize this bound over θ. Differentiating gives

(−θρ+ 1− e−θ)′ = −ρ+ e−θ,

so we let θ0 = − log ρ. In this case

(−θ0ρ+ 1− e−θ0) = ρ log ρ+ (1− ρ) ≡ G(ρ).

If we let γ = k/n then we have

P (LS ≤ ρE(LS)) ≤ exp(−σG(ρ)γ(1− γ)) (5.4.1) 3.21

This is (3.12) in Cator and Don (2021) which they prove by invoking the “Chernoff-Hoeffding
inequality,” and cite Hoeffding (1963).

Before we move on note that G(1) = 0, which is natural since it gives us P (LS ≤ ELS)
which by the central limit theorem has limit 1/2.

As ρ→ 0, G(ρ) → 1. (5.4.2) G01

At first it may be surprising that G(ρ) ̸→ ∞as ρ→ 0 but then you remember than if X has
a Poisson(bn) distribution then P (X = 0) = e−bn.
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Figure 5.5: Picture proof of G(ρ) > (1−√
ρ)2 fig:Gbdd

Later we will want to know that G(ρ) > (1−√
ρ)2 for 0 < ρ < 1. We content ourslves with

a proof by picture.

Counting the number of sets of size k, γ = k/n

Lemma 5.4.1. If H(γ) = −γ log(γ)− (1− γ) log(1− γ) then for large n(
n

γn

)
≤ enH(γ) (5.4.3) 3.22
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Proof. To prove this, we use Stirling’s formula m! ∼ mme−m
√
2πm to conclude that (the

e−m terms in Stirling’s formla cancel)(
n

γn

)
=

n!

(γn)!((1− γ)n)!

∼ nn

(γn)γn((1− γ)n)(1−γ)n
·

√
2πn

√
2πγn

√
2π(1− γ)n

=
1

γγn(1− γ)(1−γ)n
· 1√

2πγ(1− γ)n

The last term is < 1 for large n which completes the proof.
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Figure 5.6: Comparison of 0.9γ(1− γ) and the entropy H(γ). fig:mftphi

Combining (5.4.1) and (5.4.3) we have

P{∃S : |S| = k, LS ≤ ρELS} ≤ enH(γ) · Ce−σG(ρ)γ(1−γ)

The exponent is negative if
G(ρ) · σγ(1− γ) > H(γ) (5.4.4) negexp

The functions σγ(1− γ) and H(γ) are symmetric about 1/2. It is easy to see that γ(1− γ)
is maximized at 1/2 where the value is 1/4. A little caclulus shows that H(γ) is maximized
at 1/2 where the value is log 2. If we suppose that σ > 4 log 2 then γ(1 − γ) > H(γ) when
γ = 1/2 so using (5.4.2) it is possible to pick ρ > 1 so that (5.4.4) holds at λ = 1/2

If we consider sets of size k = n/2 and know that LS ≥ ρELS then the
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birth rate bk = λρ(σ/n)k(n− k) = λρσn/4

death rate dk = k = n/2

Note that once we are able to choose ρ > 0 then we can get bk > dk by choosing λ large.
In our simple calculation once we knoe we can choose ρ > 0 at 1/2 then we can widen

this to (1/2 − δ, 1/2 + δ) for some δ > 0 and we can get the exponential survial result by
coupling the contact to a birth and death chain and using calculations at the end of Section
5.2. Cator and Don (2003) have a better way of generating an interval of values with ρ > 0.

Lemma 3.2. Fix σ > 4 log 2 and consider a Erdős-Rényi graphs with n vertices and edge
probabilities σ/n. Choose

γσ =
1

2
−
√

1

4
− log 2

σ
∈ (0, 1/2) and ασ =

2 log(1− 2
√

(log2)/σ

log(1/4− (log2)/σ)
∈ (0, 2)

For γσ < γ < 1− γσ let

ρ(γ) = (γ(1− γ)− (log 2)/σ)ασ ∈ (0, 1) and Mn,k = ρ(k/n) · σk(n− k)

Then with high probability LS ≥Mn,k for all γσn < k < (1− γσ)n and all S ∈ Sk.

Proof. A little calculus shows that for γσ < (1− γσ)

ασ ≥
2 log

(
1− 2

√
H(γ)

σγ(1−γ)

)
log(γ/(1− γ)− (log 2)/σ

∈ (0, 2) (5.4.5) alphasineq

Since G(ρ) > (1−√
ρ)2 we have

σG(ρ)γ(1− γ) > σ
(
1−

√
(γ(1− γ)− (log 2)/σ)ασ

)2
γ(1− γ)

≥ σ

(
1−

(
1−

√
H(γ)

σγ(1− γ)

))2

γ(1− γ) = H(γ)

where the second inequality follows from (5.4.5). It follows that

sup
γσ<γ<1−γσ)

H(γ)− σG(ρ)γ(1− γ) < 0

which gives the desired result

Using this result with results from their Section 2 on birth and death proicesses, they are
able to prove

Theorem 3.2. Consider a Erdős-Rényi graphs Gnwith n vertices and edge probabilities
σ/n where σ > 4 log 2. There are functions λ0(σ) = (1 + o(1))/σ and ϵ(σ) = o(1). so that if
λ > λ0(σ) then Tn the survial time of contact process starting from all sites occupied satisfies

1

n
logETn ≥ (1− ϵ(σ) log(λσ) +

1− ϵ(σ

λσ
− 1

with high probability.
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5.5 Power-law random graphs
sec:CPpowerlaw

Pastor-Satorras and Vespigniani who we will abbreviate PSV (2001a, 2001b, 2002) have made
an extensive study of the contact process on “scale-free” random networks using mean-field
methods. For this and many other related results see the survey paper by Pastor-Satorras,
Castellano, van Meighem, and Vespigniani (2015).

Mean-field theory. To be be precise we will use what is called degree based mean-
field theory. The results here are from PSV (2001b) although the arguments will be written
differently. Let ρk(t) denote the fraction of vertices of degree k that are infected at time t,
and θ(λ) be the probability that a given link points to an infected vertex. If we make the
assumption that there is no correlation between the degree of a site and the state of the
vertex pointed to then

dρk(t)

dt
= −ρk(t) + λk[1− ρk(t)]θ(λ).

This will turn out to be a bad assumption but it is needed to conclude that the equilibrium
frequency ρk satisfies

0 = −ρk + λk[1− ρk]θ(λ) (5.5.1) MFeq

Solving and writing θ(λ) simply as θ we have

ρk =
kλθ

1 + kλθ

Suppose pk is the degree distribution in the graph. The probability that a given link points
to a vertex of degree k is the size-biased degree distribution qk = kpk/µ where µ =

∑
j jpj,

so we have the following self-consistent equation for θ:

θ =
∑
k

qkρk =
∑
k

qk
kλθ

1 + kλθ
(5.5.2) thetaeq

Once θ is computed we can compute the fraction of occupied sites from

ρ =
∑
k

pk
kλθ

1 + kλθ
(5.5.3) BArho

To reduce the problem to computing θ we begin by noting that in all of the examples we
will consder µ =

∑
k kpk < ∞. In examples the critical value λc may be 0 or positive, but

in all cases θ(λ) ↓ 0 as λ→ λc. Using the dominated convergence theorem

ρ(λ) = λθ
∑
k

kpk
1

1 + kλθ
∼ λθ(λ)µ (5.5.4) thtorho

Analysis of (5.5.2), which we are about to describe in some detail, suggests the following
conjectures about the contact process on power law graph with degree distribution pk ∼
Ck−α. Here β is the critical exponent for the equilibrium density ρ(λ) ≈ (λ−λc)

β as λ ↓ λc.



5.5. POWER-LAW RANDOM GRAPHS 23

� If α ≤ 3 then λc = 0

� If 3 < α < 4, λc > 0 but the critical exponent β > 1

� If α > 4 then λc > 0 and ρ(λ) ∼ C(λ− λc)
1 so β = 1.

In Section 1.8 we defined β and other exponents associated iwith the phase transition
in Erdős-Rényi graphs. In Section 2.7 we computed the exponent β associated with the
percolation phase transition in power-law graphs generated by the configuration model. The
results presented there in the table after Theorem 2.7.1 are closely related to the ones we
will find here. See Figure 5.3.

The results depend on the power α in the degree distribution so our discussion s organized
by its value. For reasons that will become clear in the discussion we have abandoned our
usual γ and will denote the power law by α. We begin in the middle of the range of values.

α = 3

Since we are following in the footsteps of physicists, we will use the continuous approximation
p(x) = 2/x3 for x ≥ 1, and enjoy the fact that it simplifies computations. The size biased
distribution has q(x) = 1/x2 for x ≥ 1 and (5.5.2) becomes

θ =

∫ ∞

1

1

x
· λθ

1 + λθx
dx =

∫ ∞

1

λθ

x
+
λθ

x

(
1

1 + λθx
− 1

)
dx

=

∫ ∞

1

λθ

x
− (λθ)2

1 + λθx
dx

The two parts of the last integrand are not integrable separately, but if we replace the upper
limit of ∞ by M the integral is

λθ logM − λθ{log(1 + λθM)− log(1 + λθ)}
= −λθ log(λθ + 1/M) + λθ log(1 + λθ)

so letting M → ∞ the integral is

−λθ
[
(log(λθ)− log(1 + λθ)

]
= λθ log

(
1 +

1

λθ

)
The equation we want to solve is 1 = λ log(1 + 1/λθ). Dividing by λ and exponentiating

e1/λ = 1 +
1

λθ

Solving for θ now we have

θ(λ) =
1

λ(e1/λ − 1)
= (1/λ)e−1/λ(1− e−1/λ)−1 (5.5.5) BAtheta
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Using (5.5.4) and dropping constants

ρ(λ) ∼ λθ(λ) ≈ e−1/λ

Notice that ρ(λ) → 0 exponentially fast. This agrees with the result for percolaton on graphs
but with pk ∼ Ck−3 in Section 2.7 but as we will see later in Figure 5.3 it is not accurate
for the contact process.

2 < α < 3

In this and future examples, we will let

the degree distribution be p(x) = (1 + γ)x−2−γ for x ≥ 1
so the size biased distributon is q(x) = γx−1−γ.

In the new notation 2 < α < 3 is 0 < γ < 1 and (5.5.2) becomes

1 =

∫ ∞

1

γ

xγ
· λ

1 + λθx
dx ≡ F (λ, θ)

θ → F (λ, θ) a decreasing function of θ that is ∞ when θ = 0 and → 0 when θ → ∞ ,so we
know there is a unique solution. Changing variables x = u/λθ, dx = du/(λθ) we have

1 = λγθγ−1

∫ ∞

λθ

γu−γ
1

1 + u
du

Since γ < 1 the integral on the right has a limit cγ as λθ → 0. Rearranging we have

θ ∼ Cλγ/(1−γ) (5.5.6) smexpth

Using (5.5.4) the fraction of occupied sites

ρ(λ) ∼ C ′λ1/(1−γ) (5.5.7) smexprho

α > 3

In the new notation this case is γ > 1 and (5.5.2) becomes

1 =

∫ ∞

1

γ

xγ
· λ

1 + λθx
dx (5.5.8) thetaeq3

However, now the integral converges when θ = 0, so for a solution to exist we must have

F (λ, 0) =

∫ ∞

1

λγ

xγ
dx > 1 or or λ > λc = 1

/∫ ∞

1

γ

xγ
dx =

γ − 1

γ

For fixed λ > λc we want to solve F (λ, θ(λ)) = 1. If λ > λc, F (λ, 0) = λ/λc > 1. To find
the point where F (λ, θ) crosses 1 we begin by noting that

∂F

∂θ
= −

∫ ∞

1

γ

xγ
λ2x

(1 + λθx)2
dx. (5.5.9) Fderiv
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When γ ≤ 2, ∂F/∂θ → ∞ as θ → 0 so we will begin with the case γ > 2 where

∂F

∂θ
(0) = −bγ,λ

so we have

1− λ

λc
= F (λ, θ(λ))− F (λ, 0) ∼ −bγ,λcθ(λ)

and it follows that

θ(λ) ∼ λ− λc
λcbγ,λc

(5.5.10)

Using (5.5.4) we conclude

ρ(λ) ∼ C(λ− λc) as λ→ λc. (5.5.11)

Turning now to γ < 2, changing variables y/θ = x (5.5.9) becomes

−
∫ ∞

θ

γθγ

yγ
λ2y/θ

(1 + λy)2
dy

θ
∼ −θγ−2

∫ ∞

0

γ

yγ−1

λ2

(1 + λy)2
dy

Writing cγ,λ for the integral (which is finite) and integrating

1− λ

λc
= F (λ, θ(λ))− F (λ, 0) ∼ −cγ,λθγ−1/(γ − 1)

Rearranging

θ(λ) ∼ C(λ− λc)
1/(γ−1)

Using(5.5.4) we conclude the for 3 < λ < 4

ρ(λ) ∼ C(λ− λc) as λ→ λc. (5.5.12)

Rigorous results

The first result about the long time survival of the contact process was proved by Berger,
Borgs, Chayes, and Saberi in 2005. They considered the preferential attachment model which
has a power law with α = 3, so when they proved that λc = 0 they confirmed the physicists’
prediction. Chatterjee and Durrett showed in 2009 that λc > 0 is not correct when α > 3.

CDpower Theorem 5.5.1. Consider a graph Gn with n vertices generated by the configuration model
with P (di = k) ∼ Ck−α with α > 3 and P (di ≤ 2) = 0. Let ξ1t , t ≥ 0 denote the contact
process on Gn starting from all sites occupied. Then for any λ > 0 there is a positive constant
p(λ) > 0 so that for any δ > 0

inf
t≤exp(n1−δ

P
(
ξ1t |/n ≤ p(λ)

)
→ 1 as n→ ∞.
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Figure 5.7: Mean field critical exponents (solid line) versus rigorous results (dashed line)
given in (5.5.13) as α varies from 2 to 4.5. fig:crexp

Sections 5.4 and 5.5 are devoted to the proof of this result.
In 2013 Mountford, Valesin, and Yao extended the results of Chatterjee and Durrett to

include 2 < α ≤ 3 and proved upper and lower bounds that had the same dependence on λ
but different constants, showing that

ρ(λ) ∼


λ1/(3−α) 2 < a ≤ 5/2

λ2α−3 log2−α(1/λ) 5/2 < α ≤ 3

λ2α−3 log4−2α(1/λ) 3 < α

(5.5.13) cvcon

The result for 2 < α ≤ 5/2 agrees with the mean-field calculations quoted above but that
formula is claimed to hold for 2 < α < 3. Figure 5.7 gives a visual comparison of the mean-
field and rigorous results for critical exponents. For more about why the change occurs at
5/2 see the 2013 paper cited above. Three years later, Mountford, Mourrat, Valesin, and
Yao (2016) showed that for all λ > 0, there exists some c > 0 so that the survival time ≥ ecn

with high probability.

5.6 Results for the star graph
sec:star

Let Gk be a star graph with center 0 and leaves 1, 2, . . . , k and let ξt be set of vertices infected
in the contact process at time t. Write the state ξt as (i, j) where i is the number of infected
leaves and j = 1 if the center is infected and j = 0 otherwise. We write Pi,j for the law of
the process starting from (i, j).
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Here, following the approach in Chatterjee and Durrett (2009), we will reduce to a discrete
time one dimensional chain, and we will only look at times when j = 1. When the state is
(i, 0) with i > 0, the next event will occur after exponential time with mean 1/(iλ+ i). The
probability that it will be the reinfection of the center is λ/(λ + 1). The probability it will
be the recovery of a leaf is 1/(λ + 1). Thus, the number of leaf infections N that will be
lost while the center is healthy has a shifted geometric distribution with success probability
λ/(λ+ 1), i.e.,

P (N = j) =

(
1

λ+ 1

)j
· λ

λ+ 1
for j ≥ 0.

Note that since this version of the geometric counts the number of failures before the first
success

EN =
λ+ 1

λ
− 1 =

1

λ
.

The next step is to modify the chain so that the infection rate is 0 when the number of
infected leaves is at least

L = pk where p = λ/(1 + 2λ). (5.6.1) Ldef

To explain the choice of p note that the number of infected leaves in the modified chain is
always ≤ pk and the number of uninfected leaves is ≥ (1 − p)k. Thus if we look at the
embedded discrete time process for the contact process on the star and only look at times
when the center is infected, the process dominates Yn where

jump with prob
Yn → Yn − 1 pk/D
Yn → min{Yn + 1, pk} λ(1− p)k/D
Yn → Yn −N 1/D

Here N is independent of Yn and the denominator

D = pk + λ(1− p)k + 1 ≤ k + λk + 1 ≤ (2 + λ)k.

The fact that Yn has a reflecting barrier at pk will simplify computations. We will use the
process to lower bound survival times.

super Lemma 5.6.1. Let L = pk where p = λ/(1+2λ). Let eθ = 1/(1+λ/2). If k is large enough
eθYn is a supermartingale while Yn ∈ (0, pk).

Proof. We begin by noting that

E(exp(θYn+1)− exp(θYn)|Yn = y) = eθy(eθ − 1)λ(1− p)k/D (5.6.2) smeq

+eθy(e−θ − 1)pk/D +
eθy

D

[
∞∑
j=0

(
e−θ

1 + λ

)j (
λ

1 + λ

)
− 1

]
.
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The term in square brackets is

1

1− e−θ/(1 + λ)
· λ

1 + λ
− 1 =

λ

1 + λ− e−θ
− 1 =

e−θ − 1

1 + λ− e−θ
≥ 0.

Note that this implies we must take e−θ < 1 + λ.
The first two terms are

eθyk

D

(
(eθ − 1)λ(1− p) + (e−θ − 1)p

)
,

so we begin by solving
(eθ − 1)λ(1− p) + (e−θ − 1)p = 0.

Rearranging and setting x = eθ we want

x2λ(1− p)− [λ(1− p) + p]x+ p = 0.

Factoring we have
(λ(1− p)x− p)(x− 1) = 0.

Since p = λ/(1 + 2λ) the smaller root is

p

λ(1− p)
=

λ/(1 + 2λ)

λ(1 + λ)/(1 + 2λ)
=

1

1 + λ
.

We let eθ = 1/(1 + λ/2) ∈ (1/(1 + λ), 1) so that there is a δ > 0 with

eθλ(1− p) + e−θp = [λ(1− p) + p]− δ

and hence

(eθ − 1)λ(1− p)k + (e−θ − 1)pk +
e−θ − 1

1 + λ− e−θ
= −δk + e−θ − 1

1 + λ− e−θ
.

From this we see that if k is large enough eθYn is a supermartingale while Yn ∈ (0, pk).

Let T−
ℓ = inf{n : Yn ≤ ℓ} and let T+

m = inf{n : Yn ≥ m}.
exit Lemma 5.6.2. Let a, b ∈ (0, L). If b < a then

Pa(T
−
b < T+

L ) ≤ (1 + λ/2)b−a.

Proof. To estimate the hitting probability let ϕ(x) = exp(θx) where we take eθ = 1/(1+λ/2)
and note that if τ = T−

b ∧ T+
L then ϕ(Y (t∧ τ)) is a supermartingale. Let q = Pa(T

−
b < T+

L ).
Using the optional stopping theorem we have

qϕ(Y −
b ) + (1− q)ϕ(Y +

L ) ≤ ϕ(a).

It is possible that Y −
b < b. Note that since θ < 0, we have ϕ(x) ≥ ϕ(b) for x ≤ b. Hence,

qϕ(b) + (1− q)ϕ(L) ≤ ϕ(a).

Dropping the second term on the left, q ≤ ϕ(a)/ϕ(b) = (1 + λ/2)b−a , which completes the
proof.
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return Lemma 5.6.3. If RL = inf{n > T−
L−1 : Yn = L} and b ∈ [0, L) then

PL(T
−
b < RL) ≤ (2 + λ)(1 + λ/2)b−L.

Remark. Here, and in later lemmas, the computation of explict constants is somewhat
annoying. However, when we consider asymptotics for critical values, λ will go to 0, so we
will need to know how the constants depend on λ.

Proof. To compute the left-hand side we break things down according to the first jump. The
definition of RL allows us to ignore the attempted upward jumps that do nothing. Recall
that L = pk. The jump is to L−1 with probability pk/(pk+1) and to L−j with probability

λ
(1+λ)j+1 · 1

1+pk
. In the first case the probability of returning to L before going below b is

≤ (1 + λ/2)b−(L−1) = (1 + λ/2) · (1 + λ/2)b−L.

In the second we have to sum over the possible values of L− j. Using Lemma 5.6.2

≤ (1 + λ/2)b−L
∞∑
j=1

λ

(1 + λ)j+1
(1 + λ/2)j +

λ

1 + λ
PL(T

−
b < RL)

≤ (1 + λ/2)b−L
λ

λ+ 1
·

∞∑
j=0

(
1 + λ/2

1 + λ

)j
+

λ

1 + λ
PL(T

−
b < RL)

= 2(1 + λ/2)b−L +
λ

1 + λ
PL(T

−
b < RL).

Noting that max{2, 1 + λ/2} ≤ 2(1 + λ/2)− δ for some small δ < λ, we have the following
relation,

PL(T
−
b < RL) ≤

λ

(1 + λ)(1 + pk)
PL(T

−
b < RL) + (2 + λ− δ)(1 + λ/2)b−L.

Hence for k sufficiently large, we have

PL(T
−
b < RL) ≤ (2 + λ)(1 + λ/2)b−L.

life Lemma 5.6.4. Let b = ϵL and S = 1
(2+λ)2k

(1 + λ/2)L(1−2ϵ)

PL,1

(
inf
t≤S

ξt ≤ b

)
≤ (3 + λ)(1 + λ/2)−Lϵ.

Proof. Let M = (1 + λ/2)L(1−2ϵ). By Lemma 5.6.3 the probability that the chain fails to
return M times to L before going below ϵL is

≤ (2 + λ)(1 + λ/2)−Lϵ.
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Using Chebyshev’s inequality on the sum SM of M exponentials with mean 1 (and hence
variance 1),

P (SM < M/2) ≤ 4/M.

When the number of infected leaves is ≤ L maximum jump rate is D ≤ (2 + λ)k so

P

(
SM

(2 + λ)k
≤ (1 + λ/2)L(1−2ϵ)

2(2 + λ)k

)
≤ 4(1 + λ/2)−L(1−2ϵ).

Adding up the error probabilities completes the proof.

Up to this point we have shown that if a star has L infected leaves it will remain infected
for a long time. To make this useful, we need estimates about what happens when the star
starts with only the center infected.

ignite Lemma 5.6.5. Let λ > 0 be fixed and K = λk1/3. Then for large k

P0,1(T
+
K > T0,0) ≤ 2λk−1/3,

PK,1(T0,0 < T+
L ) ≤ k−1/3,

E0,1(T
+
L |T

+
L < T0,0) ≤ 2/λ.

Proof. Clearly

P0,1(T
+
K < T0,0) ≥

K−1∏
j=0

(k − j)λ

1 + (k − j)λ+ j

so subtracting the last inequality from 1 =
∏K−1

j=0 1 and using Lemma 3.4.3 from PTE5

P0,1(T
+
K > T0,0) ≤

K−1∑
j=0

1 + j

(k − j)λ
≤ λ2k2/3

(k − λk1/3)λ
≤ 2λk−1/3.

For the second result we use the supermartingale eθYn from Lemma 5.7.2. If q = PK,1(T0,0 <
T+
L ), using optional stopping theorem we have

q · 1 + (1− q)eθL ≤ eθK .

Dropping the second term on the left,

q ≤ eθK = (1 + λ/2)−K ≤ k−1/3.

To bound the time we return to continuous time

jump at rate
Yt → Yt − 1 pk
Yt → min{Yt + 1, pk} λ(1− p)k
Yt → Yt −N 1
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Before time VL = T0,0 ∧ T+
L the drift of Yt is at least

µ = λ(1− p)k − pk − 1/λ = λpk − 1/λ (5.6.3) Ydrift

so Yt−µt is a submartingale. Stopping this martingale at the bounded stopping time VL ∧ t

EY (VL ∧ t)− µE(VL ∧ t) ≥ EY0 ≥ 0.

Since EY (VL ∧ t) ≤ L, it follows that

E(VL ∧ t) ≤ L

µ
=

pk

λpk − 1/λ
,

where p = λ/(1 + 2λ), so if λ is fixed and k is large

E(VL ∧ t) ≤ 2/λ

which completes the proof.

Combining Lemmas 5.6.4 and 5.6.5 we have the following

good Lemma 5.6.6. Let At denote the number of infected leaves at time t and take S as in Lemma
5.6.4. Define G = {infk2/3≤t≤S |At| ≥ ϵL}. If λ > 0 is fixed

P0,1 (G) ≥ 1− Cλk
−1/3 (5.6.4) from0

for some constant Cλ.

When G occurs, we say the star at 0 is good.

5.7 Subexponential degree distributions
sec:CPsubexp

Given an offspring distribution pk, we construct a Galton-Watson tree as follows. Starting
with the root, each individual has k children with probability pk. Pemantle (1992) has shown
in his Theorem 3.2 that

Theorem 5.7.1. There are constants c2 and c3 so that if µ > 1 is the mean of the offspring
distribution, then for any k > 1, if we let rk = max{2, c2 log(1/kpk)/µ} .

λ2 < c3
√
rk log rk log(k)/k. (5.7.1) Pemub

If the offspring distribution is a stretched exponential pk = cγ exp(−kγ) with γ < 1 then
log(1/kpk) ∼ kγ and hence λ2 = 0.

Huang and Durrett (2020a) extended the last result to subexponential distributions,
which satisify

lim sup
k→∞

(1/k) log pk = 0.
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subexp Theorem 5.7.2. If the offspring distribution pk for a Galton-Watson tree is subexponential
and has mean µ > 1 then λ2 = 0.

This result was proved as a consequence of their study of the case in which degrees have
a geometric distribution. pk = (1 − p)k−1p for k ≥ 1. The goal of their paper was to prove
that λ1 > 0. The solution of that problem will be described in the next section. The upper
bound on λ1 is easy.

ubglam1 Theorem 5.7.3. Under the assumptions of Theorem 5.7.2 λ1 ≤ p/(1− p).

Proof. Modify the contact process so that births from a site can only occur on sites further
from the root. Each vertex x will be occupied at most once. If x is occupied then it will give
birth with probability λ/(λ+1) onto each neighbor y. The birth events are not independent
but that is not important. If we let Zn be the number of sites at distance n that are ever
occupied, Zn is a branching process in which the offspring distribution has mean λ/((λ+1)·p)
which is > 1 if λ > p/(1− p).

When pk = (1 − p)k−1p, log(1/kpk) ∼ cpk, so (5.7.1) gives a finite upper bound on λ2.
However, the resulting bound is much worse than the following:

ubglam2 Theorem 5.7.4. If pk = 2−k for k ≥ 1, then λ2 ≤ 2.5.

The proof works for a general geometric pk = (1 − p)k−1p, k ≥ 1. Huang and Durrett
(2020a) could not get a nice formula for the upper bound as a function of p but the upper
bounds can easily be computed numerically and graphed. These upper bounds are only
interesting for small p. A Galton-Watson tree with p0 = 0 and p1 < 1 contains a copy of Z
(start with a vertex with two children and follow their descendants) so using the bound on
λc(Z) proved in Liggett (1995) we conclude λ2 ≤ 2 for all 0 < p < 1.

Proof for pn = 2−n, n ≥ 1. Our proof follows the outline of the proof of Theorem 3.2 in
Pemantle (1992), see pages 2109–2110. We can suppose without loss of generality that the
root has degree k. Otherwise examine the children of the root until we find one with degree
k and apply the argument to the children of this vertex. There are two steps in the proof.

1. Push the infection to vertices at a distance r = k that have degree k.

2. Bring the infection back to the root at time t.

To push the infection in either direction we use the following results.

transfer Lemma 5.7.5. Let v0, v1, . . . vr be a path in a graph. Suppose that v0 is infected at time 0
and that it is good in the sense of Lemma 5.6.6. Then there is a γ > 0 so that the probability
that vr will become infected by time 2r is

≥
(

λ

λ+ 1

)r
(1− exp(−γr)).

If ϵ > 0 and we let λ̂ = (1− ϵ)λ/(λ+ 1) then for large r this probability is ≥ λ̂r.
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Figure 5.8: Upper bounds on λ1 (dotted line) from Theorem 5.7.4 and on λ2 (solid line)
from (5.7.4) as a function of p for the geometric degree distribution. The horizontal line is
the bound that comes from using the existence of a copy of Z in the graph. fig:lam2lb

Proof. The probability that vi−1 infects vi before it is cured is λ/(1+λ). When this transfer
of infection occurs the amount of time is ti, which is an independent exponential with rate
1 + λ. By large deviations for the exponential distribution P (t1 + · · · + tr > 2r) ≤ e−γr for
some γ > 0.

infect Lemma 5.7.6. Run the contact process on a graph consisting of a star with k leaves, to
which there has been added a single chain v1, . . . vr of length r where v1 is a neighbor of 0,
the center of the star. Suppose that at time 0 there are L infected leaves. For large r the
probability that vr will not be infected before time T = m(2r + 1) is

≤ (1− λ̂r)m.

Proof. Consider a sequence of times ti = (2r + 1)i for i ≥ 1. The center 0 may not be
infected at time ti but since the star at 0 is good the number of infected neighbors is ≥ ϵL
and it will with high probability be infected by time ti+1. By Lemma 5.7.5 the probability
vr is successfully infected in [ti, ti+1) is ≥ λ̂r when 0 is good, even if we condition on the
events up to time ti. The desired result follows.

To use the two lemmas to prove the main result we need the next weird but wonderful
result, which is Lemma 2.4 from Pemantle (1992). Let φ(x) =

∑∞
n=0 pnx

n be the generating
function of the degree distribution. We will apply Lemma 5.7.7 to

f(t) = P (0 ∈ ξ0t ) ≥ pkP (0 ∈ ξ0t | 0 has at least k children).
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magic Lemma 5.7.7. Let H be any nondecreasing function on the nonnegative reals with H(x) ≥ x
when x ∈ [0, x0]. If f satisfies (i) inf0≤t≤L f(t) > 0 and (ii) f(t) ≥ H(inf0≤s≤t−L f(s)) for
t ≥ L some L > 0 then lim inft→∞ f(t) > 0.

Proof. For any t0 and ϵ > 0, (ii) implies that there is a decreasing sequence ti with ti+1 ≤
ti − L and tk < L for some k

f(ti) ≥ H(f(ti+1))− ϵ2−i.

If f(ti) < x0 for all 1 ≤ i ≤ k then

f(ti) ≥ f(ti+1)− ϵ2−i

and summing gives f(t0) > f(tk)−ϵ which gives the desired result. Suppose now that j is the
smallest index with f(tj) > x0. If j = 0 we have f(t0) > x0. If j = 1 we have f(t0) ≥ H(x0).
If j ≥ 2 we have

f(t0) ≥ f(tj−1)− ϵ ≥ H(x0)− ϵ

so in all cases we get the desired conclusion.

Step 1. The mean of the offspring distribution is 2. Let Zr be the number of vertices at
distance r from 0 and let v1r , . . . v

J
r be the subset of those that have exactly k children, where

J is a random variable that represents the number of such vertices.
Since the root has degree k and pk = 2−k if we set r = k

EJ ≥ kµr−1pk = k/2,

where µ = 2 is the mean offspring number.
If we condition on the value of W = Zr/(kµ

r−1) and let J̄ = (J |W ) be the conditional
distribution of J given W then

J̄ = Binomial(k2r−1W, 2−k).

Let M be the random number of vertices among v1r , . . . v
J
r that are infected before time

S =
1

2k(2 + λ)
(1 + λ/2)L(1−2ϵ)

By Lemma 5.7.6 the probability a given vertex will not become infected by time S is

pnoi ≤ (1− λ̂k)m where λ̂ = (1− ϵ)
λ

λ+ 1
and

m =
S

2k + 1
=

(1 + λ/2)L(1−2ϵ)

2k(2k + 1)(2 + λ)
with L =

λk

1 + 2λ
.
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Combining the definitions and using (1− x) ≤ e−x we have

pnoi ≤ exp

(
− Γk

2k(2k + 1)(2 + λ)

)
where Γ = λ̂(1 + λ/2)(1−2ϵ)λ/(1+2λ).

When λ = 2.5
λ

λ+ 1
(1 + λ/2)λ/(1+2λ) = 1.0014 > 1, (5.7.2) super

so Γ > 1 when ϵ is small and pnoi → 0 as k → ∞. From this we see that if δ > 0 then for
large k

EM ≥ (1− δ)EJ.

The remark after Lemma 5.7.6 implies that if we condition on the value of W and let
M̄ = (M |W ) then

M̄ ≥ Binomial(k2r−1W, 2−k(1− δ)).

To prepare for the following two generalizations of the result for Geometric(1/2) offspring
distribution we ask the reader to verify that in Step 2, all we use is the fact that (5.7.2)
implies the bounds on EM and M̄ .

Step 2. Let H1(t) = P (vir ∈ ξt−S for some 1 ≤ i ≤ J) and

H2(t) = P (0 ∈ ξt|vir ∈ ξt−S for some 1 ≤ i ≤ J),

so that f(t) ≥ H1(t)H2(t). Fix t > 2S and let

χ(t) = inf{f(s) : s ≤ t− S}.

Since t is fixed, we simplify the notation and write χ(t) as χ.
Ignore all but the first infection of each vir by its parent. Any of these will evolve

independently from the time s < S it is first infected, and will be infected at time t − S
with probability at least χ. Thus given M the number of infected sites at time t − S will
dominate N = binomial(M,χ). If we let N̄ = binomial(M̄, χ) and let δ > 0, then by Lemma
2.3 in Pemantle (1992) we see that there exists a ε > 0 such that

P (N̄ ≥ 1) ≥ (1− δ)χEM ∧ ε

Therefore H1(t) ≥ (1− δ)χEM ∧ ε when t > 2S.
Finally, if some vir is infected at time t − S then the probability of finding 0 infected at

time t is bounded below by ρ1ρ2 where

� ρ1 is the probability that the contact process starting with only vir infected at time
t− S infects 0 at some time s with t− S ≤ s ≤ t. By Lemmas 5.6.5, 5.6.6, and 5.7.6,
ρ1 ≥ 1− δ.
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� ρ2 is the probability 0 is infected at time t given the infection of 0 at such a time
s. For any ϵ > 0, by Lemma 5.7.6 the probability that 0 has not been infected by
time S/2 is less than ϵ when k is sufficiently large. By Lemma 5.6.6, with probability
≥ 1− (2+2λ)k−1/3 there should be at least ϵL infected leaves at time t− ϵ. Hence 0 is
infected at t with probability at least (1−e−λϵ2L)e−ϵ, where the second term guarantees
that the root is infected at time t. Choosing ϵ sufficiently small and k sufficiently large
gives ρ2 ≥ 1− δ.

Thus

f(t) ≥

{
χ(t)EM(1− δ)3 ∧ ε t > 2S,

inf0≤s≤2S f(s) S ≤ t ≤ 2S.

We can take ε < inf0≤s≤2S f(s) so that f(t) ≥ χ(t)EM(1 − δ)3 ∧ ε for all t ≥ S. The
result now follows from Lemma 5.7.7 with L = S and H(x) = (1− δ)3(EM)x ∧ ε.
Proof for pn = (1 − p)n−1p. It is now straightforward to replace 1/2 by p. We only have
to pick k and r so that we can prove the analogue of (5.7.2). The mean of the offspring
distribution is 1/p. Let Zr be the number of vertices at distance r from 0 and let v1r , . . . v

J
r

be those that have exactly k children. Since the root has degree k and pk = (1− p)k−1p

EJ ≥ k(1/p)r−1(1− p)k−1p. (5.7.3) meanoff

In this case we want to pick r so that (1/p)r(1− p)k ≈ 1. Hence EJ can be large when k is
large. Ignoring the fact that r and k must be integers this means

r/k = log(1− p)/ log p.

Let M be the random number of vertices among v1r , . . . v
J
r that are infected before time

S. By Lemma 5.7.6 the probability a given vertex will not become infected is

≤ (1− λ̂r)⌈S/(2r+1)⌉ ≤ exp

(
− −Γk

2k(2r + 1)(2 + λ)

)
where Γ = λ̂r/k(1 + λ/2)(1−2ϵ)λ/(1+2λ). That is, if we choose λ such that(

λ

λ+ 1

)r/k
· (1 + λ/2)λ/(1+2λ) > 1 (5.7.4) suff

then we have Γ > 1 for large k. By the same reasoning as before this choice of λ gives an
upper bound on λ2.

If we want to graph the bound as a function of p it is better to work backwards. Given
λ the second factor is > 1 so we can easily find the value of r/k that makes this 1. Having
done this we can easily compute the value of p for which λ gives the upper bound on λ2.

Proof for subexponential distributions. We suppose that the mean of the offspring
distribution is µ > 1. If pk is subexponential, i.e.,

lim sup
k→∞

(1/k) log pk = 0,
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then for any δ there is a k with pk ≥ (1−δ)k. It follows from the same reasoning as in (5.7.3)
that we can take r such that

r

k
= − log(1− δ)

log µ
.

Given any λ > 0, (5.7.4) will hold if δ is small enough, which implies local survival of the
process. Therefore λ2 = 0.

5.8 Exponential tails
sec:CPexpt

In the decade after my 2009 work with Shirshendu Chatterjee on the contact process on
power law graphs, one of my favorite open problems was proving that the critical value for
the contact process on a Galton-Watson tree is positive if the degree distribution D has an
exponential tail, i.e., EeθD < ∞ for some θ > 0. I was so excited by this question that
when I gave a talk at the Northeast Probability Seminar held in November 2018 I followed
in Erdös’s footsteps and offered $1000 for a proof.

Danny Nam and Oanh Nguyen, two students of Allan Sly at Princeton, were in the
audience and it was not long until in joint work with their advisor and Shankar Bhamidi
of UNC the problem was solved. It is somewhat surprising that the proof is not very
complicated. Ménard and Singh (2016) studied random geometric graphs in d-dimensions,
graphs that are built by connecting points in a spatial Poisson process that are within
distance R. The proof that λc > 0 for these graphs, which was done by studying “cumulative
merging on a weighted graph,” was arduous (and an impressive achievement).

In contrast, the BNNS proof is short and sweet. As the paper explains, there are two
important new ideas:

(i) They modified the process by adding a new vertex above the root that is always infected.
Recoveries at the root are not allowed unless all of the descendants of the root are healthy.
One might worry that this assumption gives away too much, but the approach has the advan-
tage that while the root is infected then the subtrees below its descendants are independent
and this greatly facilitates recursion.

(ii) The second, somewhat more technical, idea is to prove that the probability that the
infection goes deeper than depth h decays exponentially fast in h. See theirTheorem 3.4
(Theorem 5.8.3 below). To see why this is useful the reader will need to wait to see it used
in the proof. Here, and in what follows we use a dual numbering system which includes the
numbers used in the paper.

Turning to the details, let D be a distribution on the positive integers with an exponential
tail, as defined above. Suppose that ED > 1 so that the Galton-Watson tree with this
offspring distribution GW(D) has positive probability of surviving forever.

Theorem 5.8.1. (Theorem 1) Suppose the degree distribution D has an exponential tail.BNNSTh1
Then there is a λ0 so that for λ < λ0 the contact process starting from a single infection at
the root dies out with probability 1.
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5.8.1 Expected survival time

Let L be a large positive integer, let TL denote the depth L Galton-Watson tree and let
CPλ(TL; 1ρ) be the contact process on TL in which initially there is one infected at ρ and the
other sites are healthy. .The first of two main steps in the proof of Theorem 5.8.1 is to show:

Theorem 5.8.2. (Theorem 3.1) Let RL be the first time that CPλ(TL; 1ρ) reaches 0. ThereBNNSTh3_1
are constants C, which is = e, and λ0 > 0 so that for any λ ≤ λ0, ERL ≤ C for all integers
L.

A recursive equation. As mentioned in (i) we add a new vertex ρ+ as a parent of the root
of the tree ρ and set ρ+ to be permanently infected. Since ρ+ is always in state 1, we define
the state space of the process to be {0, 1}TL . Let Xt be the contact process modified to have
permanent infection at ρ+ and let X̃t be Xt further modified to not allow recovery at ρ until
none of its descendants are infected. Let SL be the time for Xt to reach the all healthy state
0 and let S̃L be the time for X̃t to reach the all healthy state. The first event in X̃t is either

A. ρ recovers

B. ρ infects one of its children vi

In case A, S̃L is the exponential(1) time it took for ρ to recover. If the degree of the root ρ is
D the probability of event A is 1/(1 + λD). In case B, the evolution of the contact process
on the subtrees Tvi are independent of each other until the time S̃⊗

L at which all of them are
completely healthy. Let X⊗

t be the contact process on the union of the subtrees, which has
initial state 1vi run until the time S̃⊗

L they are all completely healthy.

�
�
�
�
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Figure 5.9: A picture of notation used in the proof.

At time S̃⊗
L the process X̃t is again in state 1ρ. After a geometric number of returns to

this state, we will finally achieve outcome A so

E(S̃L|TL) =
∞∑
k=0

(
λD

1 + λD

)k
1

1 + λD
·
[
(k + 1) · 1

1 + λD
+ kE

(
S̃⊗
∣∣∣ Tvi)] (5.8.1) BSrec
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where |Tvi) is short for conditioning on all of the subtrees 1 ≤ i ≤ D. The mean of the
geometric(p) distribution

∑∞
k=0(1− p)kp(k + 1) = 1/p so the above is

= (1 + λD) · 1

1 + λD
+ (1 + λD − 1)E(S̃⊗|D)

which implies
E(S̃L|D) = 1 + λDE(S̃⊗|D) (5.8.2) BSgoal1

Estimating E(S̃⊗|D)

We do this by relating this expected value to the stationary distribution of the root-added
contact process, which, conditional on TL, is irreducible on a finite state space and hence a
unique stationary distribution. Let πD be the stationary distribution of the product chain
CP⊗

ρ (TL). If we let πi be the stationary distribution of CPλρ(T +
i ), where T +

i is Tvi with ρ
added as a permanently infected added root, then

πD = ⊗D
i=1πi

For any state η on TL−{ρ}, πD(η) is proportional to the time that the chain X⊗
t ∼ CP⊗

ρ (TL)
stays at state η. The expected time to stay at 0 (conditional on D) is (λD)−1. After escaping
from 0 it spends expected time E(S̃⊗

L |TL) before returning to 0. Therefore

πD(0) =
(λD)−1

(λD)−1 + E(S̃⊗
L |TL)

=
1

1 + λDE(S̃⊗
L |TL)

Similarly we have

πi(0) =
1

1 + λE(S̃L−1|Tvi)

where SL−1 is the first time X i
t ∼ CPλρ(T +

vi
, 1vi) reaches state 0. Therefore we obtain

1 + λDE(S̃⊗|TL) =
D∏
i=1

[1 + λE(S̃L−1|Tvi)] (5.8.3) LvsL1

Since Tvi , i ≥ 1 are i.i.d. GW(D)L−1 integrating out the randomness of Tvi , i ≥ 1 we have

1 + λDE(S̃⊗|D) = (1 + λE(S̃L−1))
D

Using 1 + x ≤ ex this becomes
≤ exp(λE(S̃L−1))

Using this with (5.8.2) we get

E(S̃L|D) ≤ exp(λE(S̃L−1) ·D))
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and it follows that
ESL ≤ ES̃L ≤ ED[exp(λE(SL−1|D)] (5.8.4) BSgoal2

To complete the proof now let c > 0 be so that M = E exp(cD) < ∞. Define K and λ
so that

K = e ·max{logM, 1}, λ0 = c/K

To prove Theorem 5.8.2 by induction note that ES0 = 1 and suppose that ESL−1 ≤ e. If
λ < λ0 we have

γ ≡ λESL−1

c
≤ λ0e

c
=

e

K
< 1

so using Jensen’s inequality

E exp(γcD) ≤ (E exp(cD))γ =Mγ = exp(logM · (e/K)) ≤ e

which completes the proof of Theorem 5.8.2.

5.8.2 Exponential decay of infection depth

We continue to use the notation introduced previously. Recall that TL = GW(D)L and T +
L

is the graph obtained by adding a permanently infected vertex ρ+ above the root. For each
state η of the contact process on TL define the depth of η to be

r(η) = max{d(ρ+, v) : η(v) = 1}

with r(0) = 0. This definition is natural since ρ+ will be permanently occupied. Consider
the root added process Xt ∼ CPλρ+(TL

+, 1ρ) and let Sl be the first time the process reaches
0. Let H = max{r(Xt) : t ∈ [0, SL]} be the maximum depth reached. The second main step
in the proof of Theorem 5.8.1 is

Theorem 5.8.3. (Theorem 3.4) Let L > 0 be an integer. There are constants K, λ0 > 0BNNSTh3_4
depending only on the degree distribution D so that for all λ ≤ λ0, h > 0 and m > 0 we have

P (H > h|TL) ≤ 2m(Kλ)h

for a collection of values of TL.with probability ≥ 1−m−1.

Delayed contact process

Let S+ be a finite graph rooted at ρ+. We assume that the graph is finite so that the
stationary distributions we define later in this paragraph will exist. Here we will only consider
S = T +

L , but the general notation saves some typing. Let S = S+ − {ρ+}. For any two
states η, ζ ∈ {0, 1}S let Qη,ζ be the transition rate from η to ζ in CPλρ+(S+). For a fixed

constant θ ∈ (0, 1), the delayed contact process, denoted by DPλ,θρ+ (S
+, η0) is the continuous

time Markov process on {0, 1}S with initial state η0 and transition rate

Qθ
η,ζ = θr(η)Qη,ζ
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If πS and νθS are the stationary distribution for the ordinary and delayed contact processes
then it is immediate from the definitions that

νθS(η) =
θ−r(η)πS(η)∑
ζ θ

−r(ζ)πS(ζ)
(5.8.5) tceqc4

Lemma 5.8.4. (Lemma 3.6) Let L > 0 be an integer. There are constants K and λ0 > 0BNNSL3_6
so that for all λ ≤ λ0 and L

E
[
νθTL(0)

−1
]
≤ 2

The proof is similar to that of Theorem 5.8.2, but requires more work, so we refer the reader
to the paper for details.

Proof of Theorem 5.8.3. To simplify notation write πL for πTL and νL for νθTL with θ = Kλ
where K is the constant from Lemma 5.8.4. Let A = {η : r(η) ≥ h} and note that (5.8.5)
implies

πL(A)

πL(0)
≤ θh

νL(A)

νL(0)

Lemma 5.8.4 and Markov’s inequality imply that, for a collection of TL with probability
≥ 1−m−1, we have νL(0)

−1 ≤ 2m and hence

πL(A)

πL(0)
≤ 2m(Kλ)h (5.8.6) p34bd

Now if Xt ∼ CPλρ+(T +
L ) hits A before 0 then the time needed to escape form A is at least

exponential with mean 1, since escape can only happen when there is exactly one infected
at distance h from ρ+. Thus if γ(h) = |{t ∈ [0, SL] : Xt ∈ A}|, where | · | denotes Lebesgue
measure then

E(γ(h)|H ≥ h, TL) ≥ 1

Combining this with (5.8.6) and noting that γ(h) = 0 on H < h

P (H ≥ h|TL) ≤ E(γ(h)|H ≥ h, TL) · P (H ≥ h|TL)

≤ E(γ(h)|TL) ≤
πL(A)

πL(0)
≤ 2m(Kλ)h

which completes the proof.

At this point the rest is routine.

Proof of Theorem 5.8.1. Let T ∼ GW(D), ρ be its root, and let Xt ∼ CP(T , 1ρ). Let K,λ0
be given in Theorem 5.8.3 and let λ ≤ λ0 so that Kλ ≤ 1. Let δ > 0 be small and pick h so
that (Kλ)h = δ2/8. Let E(h) be the event that the infection inf Xt does not go deeper than
h before dying out. Taking m = 2/δ in Theorem 5.8.3 we see that

P (H ≥ h|TL) ≤ (4/δ)(δ2/8) = δ/2
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for a collection of values of TL with probability ≥ 1− δ/2 so P (E(h)) ≥ 1− δ.
Let Th be T truncated at depth h and couple the processes CP(T , 1ρ) and CP(Th, 1ρ) by

identifying the recoveries and infections inside Th. Let R and Rh be the times CP(T , 1ρ) and
CP(Th, 1ρ) reach 0. Then Theorem 5.8.2 tells us that

E(R|E(h)) = E(Rh|E(h)) ≤
ERh

P (E(h))
<∞

Thus P (Xt ̸= 0 for all t ≥ 0) ≤ δ. Since δ is arbitrary the desired result follows.

5.8.3 Bounds on survival time

Theorem 5.8.5. (Theorem 3) Suppose that Gn is a graph on n vertices generated by theBNNSTh3
configuration model with degree distribution D with (i) ED(D − 2) > 0, so there is a giant
component, and (ii) E(ecD) < ∞ for some c > 0. Consider the contact process on Gn

starting from all sites infected. There are constants 0 < λi ≤ λii <∞ so that

(i) For λ < λi the process survives for time at most n1+o(1)

(ii) for λ > λii the process survives for time at least eΘ(n).

The proof of this result requires hard work, so we will only explain a few ideas from the
proof.

Proof of (i). It is enough to prove

Theorem 5.8.6. (Theorem 4.1) Fix an arbitrary vertex v ∈ G and let Tv be the time whenBNNSTh4_1
CPλ(G; 1v) reaches the root 0. There is an event H so that P (G ∈ H) = 1 − o(1) and
constants B, λ0 > 0 depending on µ so that for all λ ∈ (0, λ0) we have

E(TV |G ∈ H) ≤ B

The result follows from Markov’s inequality. Using this approach we have to estimate the
probability the survival time > n1+o(1) so that n times the error probability goes to 0.

To prove Theorem 5.8.6, they show that the graph looks locally like a Galton-Watson
tree with an augmented distribution defined as follows. Suppose for simplicity that kmax =
max{k : pk > 0} and let

k0 = max{k :
∑
j≥k

√
pj ≥ 1/2}

They define the augmented distribution by

µ̂(j) =

{
pj/2Z if j ≤ k0
√
pj/Z if j > k0

where Z is chosen to make the sum of the µ̂(j) = 1. In addition to changing the tails of
the distribution, one cannot assume that the graph is tree like, but one must allow an extra
edge that may form a cycle.
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Proof of (ii). To prove prolonged persistence they show that in Section 7 the random graph
contains a large (α,R)-embedded expander. A subset W0 of vertices has this property if for
every set A ⊂ W0 with |A| ≤ α|W0|

|N(A,R) ∩W0| ≥ 2|A|

where N(A,R) is the collection of vertices in Gn within distance at most R of A.

Once this is done they can prove

Lemma 5.8.7. (Lemma 5.4) There are constants λ0, C, C
′, and β so that for all λ ≥ λ0BNNSL5_4

and integer a ∈ (0, αβn]

P (|X0
t+C | ≤ 5a/4|X0

t = a) ≤ 2 exp(−a/C ′)

This leads easily to the lower bound on the survival times. For more details see the paper.

Further Reading. Huang (2020) shows that if a contact process on a Galton-Watson tree
survies then it dominates a Crump-Mode-Jagers branching process. This implies that thee
surival probability p(λ) is conitnuous at λ = λ1

Nam, Nguyen, and Sly (2022) have studied the asymptotics of critical values λ1 and λ2
for the contact process on Galton-Watson trees and finite graphs when the mean degree
ED → ∞ and degree distribution satisfies a concentration condition for D/ED. Theorem 1
shows that λ1/ED → 1. Theorem 2 shows that the same result holds for the short and long
time survival thresholds.

5.9 Threshold-θ contact process
sec:CPthresh

Reproduction of particles in the contact process is asexual. An individual at x gives birth to
a new individual at a neighboring site y at rate λ. As a consequence, the process is additive:
when built on the graphical representation

xiA∪Bt = ξAt ∪ ξBt

A number of particle systems have been defined that have sexual reproduction: at least
two particles are needed to create a new one. Here we will describe results for one non-
additive process with nonlinear flip rates that has been studied on random regular graphs:
the threshold θ ≥ 2 contact process of Chatterjee and Durrett (2013). Along the way we
will mention some of the other models. The introduction of CD2013 has examples that
have been studied on Zd. Before we get lost in the details of what is in CD2013, we should
note that Danny Nam (2019) has proved results for graphs that have more general degree
distributions. Since our proof of Proposition 5.9.8 does not work when the degree is not
constant his proof required some substatial new ideas.

Let Gn be a random r-regular graph with r ≥ 3 on n vertices, constructed for example by
the algorithm used in Section 2.1 for the configuration model. Let P denote the distribution
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of Gn, which is the first of several probability measures we will define. We condition on the
event En that the graph is simple, i.e., it does not contain a self-loop at any vertex, or
more than one edge between two vertices. Theorem 2.1.1 implies that P(En) converges to a
positive limit cr as n→ ∞, and hence

if P̃ = P(·|En), then P̃(·) ≤ crP(·) for some constant cr > 0. (5.9.1) Ptilde

Thus conditioning on the event En will not have much effect on the distribution of Gn. It is
easy to see that the distribution of Gn under P̃ is uniform over the collection of all r-regular
(simple) graphs on the vertex set Vn. (We put simple in parentheses since it is redundant:
graphs by definition are simple.) We choose Gn according to the distribution P̃ on simple
graphs, and once chosen the graph remains fixed through time.

Having defined the graph, the next step is to introdcue the dynamics on the graph. For
the proofs it is crucial that we work in discrete time. We write x ∼ y to mean that x is a
neighbor of y, and let

Ny = {x ∈ Vn : x ∼ y} (5.9.2) Nbrdef

be the set of neighbors of y. The distribution PGn
p,θ of the (discrete time) threshold-θ contact

process ξt ⊆ Vn with parameters p and θ conditioned on Gn can be described as follows:

PGn
p,θ (x ∈ ξt+1 | |Nx ∩ ξt| ≥ θ ) = p and

PGn
p,θ (x ∈ ξt+1 | |Nx ∩ ξt| < θ ) = 0,

where the decisions for different vertices at time t+ 1 are made independently. Let ξAt ⊆ Vn
denote the threshold-θ contact process starting from ξA0 = A, and let ξ1t denote the special
case when A = Vn.

Being an attractive processes, the threshold-θ contact process on an r-regular tree has a
translation invariant upper invariant measure, ξ1∞, that is the limit as t→ ∞ for the system
starting from all 1’s. There are three basic questions for our models.

Q1. Let ξpt be the system starting from product measure with density p, i.e., ξp0(x) are
independent and equal 1 with probability p. Does ξpt die out for small p? That is, do we
have P (ξpt (x) = 1) → 0 as t→ ∞ if p ≤ p0(λ)?

Q2. Let ρ(λ) = P (ξ1∞(x) = 1) and let λc = inf{λ : ρ(λ) > 0}. Is ρ(λ) discontinuous at λc?
If so, then soft results imply that P (ξ1∞(x) = 1) > 0 when λ = λc. (As λ ↓ λc the upper
invariant measures ξ1∞ decrease to a limit which must be the upper invariant measure at λc.)

Q3. Let ξ0,β∞ be the limit as t → ∞ for the system starting from all 0’s when sites become
occupied spontaneously at rate β along with the original dynamics. Is limβ→0 P (ξ

0,β
∞ (x) =

1) = 0? If so, we say that 0 is stable under perturbation, and it follows that there are
two nontrivial stationary distributions when β > 0 is small. (To see this note ξ1,β∞ is larger
that ξ1,0∞ , so we have two stationary distributions if the density of particles in ξ0,β∞ is less than
the density in ξ1,0∞ .
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One of the first processes with sexual reproduction that was studied is Toom’s (1974)
NEC (north-east-center) rule on Z2. See also Toom (1980). In the original formulation it
was an example of a stochastic perturbation of a cellular automaton. a 0 at x is changed
to 1 if x + e1 and x + e2 are both in state 1. This cellular automaton is an eroder. If the
initial configuration has only finitely many 0’s then after a finite number of iterations the
configuration is all 1’s. By Toom’s eroder theorem if we add errors that change 1’s to 0’s
with probability ϵ and ϵ < ϵ0 then there is a nontrivial stationary distribution

More relevant for us, is the reformulation of Toom’s rule as a growth model, where the
state of x changes

1 → 0 at rate 1,

0 → 1 at rate λ if x+ e1 and x+ e2 are both in state 1. (5.9.3) Toom

For the model in (5.9.3), Durrett and Gray (1985) have proved (a)–(d) below. Until recently
the only source was the announcement of results in Durrett (1985), but now a pdf of the
original preprint is avaiable (see references).

(a) if we let ξAt denote the set of all 1’s at time t starting from ξA0 = A, and

λf = inf{λ : P (ξAt ̸= ∅ for all t ) > 0}

be the critical value for survival from a finite set, then λf = ∞, because if all the 1’s in the
initial configuration are inside a rectangle, then there will never be any birth of 1’s outside
that rectangle.

(b) Durrett and Gray used a contour argument to prove λc ≤ 110. Swart, Szabo, and
Toninelli (2022) have further developed the method of contours, Bramson and Gray have
proved a version of Toom’s eroder theorem in continuous time when implies λc <∞
(c) if p∗ is such that 1−p∗ equals the critical value for oriented bond percolation on Z2, then
for any p < p∗ the process starting from product measure with density p dies out. This is
trivial to prove if there is an oriented path of 0’s that only moves up and to the right then
these 0’s are permanent. They can never be changed to 1.

(d) Suppose that sites become occupied spontaneously at rate β along with the original
dynamics. If λ > λc and 6β1/4λ3/4 < 1, then there are two stationary distributions.

Chen (1992, 1994) has generalized Toom’s growth model. He begins by defining the
following diagonally adjacent pairs for each site x.

pair 1 pair 2 pair 3 pair 4
x− e1, x− e2 x+ e1, x− e2 x+ e1, x+ e2 x− e1, x+ e2

His models are numbered by the pairs that can give birth: Type I (pair 1 = South-West-
Corner rule); Type IV (any pair); Type III (pairs 1, 2, and 3); Type 2A (pairs 1 and 2); and
Type 2B (pairs 1 and 3). Chen (1992) proves for model IV that if 0 < p < p(λ), then

P (0 ∈ ξpt ) ≤ t−c log2λ(1/p).
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He also shows for the same model that

lim
β→0

P (0 ∈ ξ0,β∞ ) > 0

for large λ, so 0 is unstable under perturbation. In contrast, Chen (1994) shows that 0 is
stable under perturbation in model III (and hence in modes IIA, IIB, and I).

5.7.1. Results

The first step is to prove that threshold-θ contact process dies out for small values of p and
survives for p close to 1. It is easy to see that on any graph in which all vertices have degree
r the threshold-θ contact process dies out rapidly if p < 1/r, because an occupied site has
at most r neighbors that it could cause to be occupied at the next time step suggesting
EGn
p,θ ξ

1
t ≤ n(rp)t.

Survival from initial density close to 1

Our next result shows that if θ ≥ 2, r ≥ θ + 2 and p is sufficiently close to 1, then with
high probability the fraction of occupied vertices in the threshold-θ contact process on Gn

starting with all 1’s stays above 1− ϵ1 for an exponentially long time.

p_c Theorem 5.9.1. Suppose θ ≥ 2 and r ≥ θ + 2. There are constants ϵ1, γ1 > 0, and a good
set of graphs Gn with P̃(Gn ∈ Gn) → 1 so that if Gn ∈ Gn and p ≥ p1 = 1 − ϵ1/(3r − 3θ),
then

PGn
p,θ

(
inf

t≤exp(γ1n)

|ξ1t |
n

< 1− ϵ1

)
≤ exp(−γ1n).

Here and in what follows, all constants will depend on the degree r and threshold θ. If they
depend on other quantities, that will be indicated.

The reason for the restriction to r ≥ θ+2 comes from Proposition 5.9.8 (with j = r−θ+1)
below. When r ≤ θ + 1, it is impossible to pick η > 0 so that (1 + η)/(r − θ) < 1. There
may be more than algebra standing in the way of constructing a proof. We conjecture that
the result is false when r ≤ θ + 1. To explain our intuition in the special case θ = 2 and
r = 3, consider a rooted binary tree in which each vertex has two descendants and hence,
except for the root, has degree three. If we start with a density u of 1’s on level k and no
1’s on levels m < k, then at the next step the density will be g(u) = pu2 < u on level k − 1.
When each vertex has three descendants instead of two, then

g(u) = p(3u2(1− u) + u3),

which has a nontrivial fixed point for p ≥ 8/9 (divide by u and solve the quadratic equation).
As the next result shows, there is a close relationship between the threshold-θ contact

process ξt on a random r-regular graph and the corresponding process ζt on the homogeneous
r-tree. Following the standard recipe for attractive interacting particle systems, if we start
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with all sites on the tree occupied, then the sequence {ζ1t } of sets of occupied vertices
decreases in distribution to a limit ζ1∞, which is called the upper invariant measure, since it
is the stationary distribution with the most 1’s. Here and later we denote by 0 any fixed
vertex of the homogeneous tree. Writing Pp,θ for the distribution of ζt with parameters p
and θ, the critical value is defined by

pc(θ) := sup{p : Pp,θ(ζ1∞(0) = 1) = 0},

pctree Corollary 5.9.2. Suppose θ ≥ 2, r ≥ θ+2 and that p1 and ϵ1 are the constants in Theorem
5.9.1. If p ≥ p1, then there is a translation invariant stationary distribution for the threshold-
θ contact process on the homogeneous r-tree in which each vertex is occupied with probability
≥ 1− ϵ1.

Fontes and Schonmann (2008a) have considered the continuous time threshold-θ contact
process on a tree in which each vertex has degree b+1, and they have shown that if b is large
enough, then λc <∞. Our result improves their result by removing the restriction that b is
large.

Dying out from small initial density

If we set the death rate = 0 in the threshold-θ contact process, then we can without loss of
generality set the birth rate equal to 1 and the process reduces to bootstrap percolation (with
asynchronous updating). Balogh and Pittel (2007) have studied bootstrap percolation on
random regular graphs. They have identified an interval [p−(n), p+(n)] so that the probability
that all sites end up active goes sharply from 0 to 1. The limits p±(n) → p∗ and p+−p− is of
order 1/

√
n. If bootstrap percolation cannot fill up the graph, then it seems that our process

with deaths will be doomed to extinction. The next result proves this, and more importantly
extends the result to arbitrary initial conditions with a small density of occupied sites.

Here, since processes with larger θ have fewer survivals, it is enough to prove the result
when θ = 2.

th1 Theorem 5.9.3. Suppose θ ≥ 2 and p2 < 1. There are constants 0 < ϵ2(p2), C2(p2) < ∞,
and a good set of graphs Gn with P̃(Gn ∈ Gn) → 1 so that if Gn ∈ Gn, then for any p ≤ p2,
and any subset A ⊂ Vn with |A| ≤ ϵ2n,

PGn
p,θ

(
ξA⌈C2 logn⌉ ̸= ∅

)
≤ 2/n1/6 for large enough n.

The density of 1’s ρ(p, θ) := Pp,θ(ζ
1
∞(0) = 1) in the stationary distribution on the homo-

geneous r-tree is a nondecreasing function of p. The next result shows that the threshold-θ
contact process on the r-tree has a discontinuous phase transition.

disco Corollary 5.9.4. Suppose θ ≥ 2, let p1 be the constant from Theorem 5.9.1, and let ϵ2(·) be
as in Theorem 5.9.3. ρ(p, θ) never takes values in (0, ϵ2(p1)).
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This result, like Theorem 5.9.3 does not require the assumption r ≥ θ+2. On the other hand,
if ρ(p, θ) ≡ 0 for r ≤ θ + 1, the result is not very interesting in that case. Again Fontes and
Schonmann (2008a) have proved that the threshold-θ contact process has a discontinuous
transition when the degree b+ 1 is large enough.

Fontes and Schonmann (2008b) have studied θ-bootstrap percolation on trees in which
each vertex has degree b+1 and 2 ≤ θ ≤ b. They have shown that there is a critical value pf
so that if p < pf , then for almost every initial configuration of product measure with density
p, the final bootstrapped configuration does not have any infinite component. This suggests
that we might have ϵ2(p) bounded away from 0 as p→ 1.

Stability of 0

The previous pair of results are the most difficult in the paper. From their proofs one
easily gets results for the process with sponataneous births with probability β, i.e., after
the threshold-θ dynamics has been applied to the configuration at time t, we independently
make vacant sites occupied with probability β. For this new process, we denote the set of
occupied vertices at time t starting with all 0’s by ξ̂0t and its distribution conditioned on the
graph Gn by PGn

p,θ,β to have the following:

th3 Theorem 5.9.5. Suppose θ ≥ 2. There is a good set of graphs Gn with P̃(Gn ∈ Gn) → 1
so that if Gn ∈ Gn and p < 1, then there are constants C3(p), β3(p), γ3(p, β) > 0 so that for
β < β3,

PGn
p,θ,β

(
sup

t≤exp(γ3n)

|ξ̂0t |
n

> C3β

)
≤ 2 exp(−γ3n).

Let ζ̂0∞ be the limiting distribution for the process on the homogeneous tree, which exists
because of monotonicity.

c3 Corollary 5.9.6. If θ ≥ 2 and p < 1, then limβ→0 Pp,θ,β(ζ̂
0
∞(0) = 1) = 0.

5.7.2. Key ideas for the proof

We now describe the “isoperimetric inequalities” that are the keys to the proofs of our results.
Let ∂U := {y ∈ U c : y ∼ x for some x ∈ U} be the boundary of U , and given two sets U
and W , let e(U,W ) be the number of edges having one end in U and the other end in W .
Given an x ∈ Vn let nU(x) be the number of neighbors of x that are in U , and let

U∗j = {x ∈ Vn : nU(x) ≥ j}.

The estimation of the sizes of e(U,U c) is key to the study of random walks on graphs, see
Chapter 6, and especially Section 6.3. Here we are interested in studying the sizes of U∗j

and having better constants by restricting to small sets. The last remark will make more
sense after reading Section 6.3.
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isoper0 Proposition 5.9.7. Let E∗1(m,≤ k) be the event that there is a subset U ⊂ Vn with size
|U | = m so that |U∗1| ≤ k. There are constants C0 and ∆0 so that for any η > 0, there is
an ϵ0(η) which also depends on r so that for m ≤ ϵ0(η)n,

P
[
E∗1(m,≤ (r − 1− η)m)

]
≤ C0 exp

(
−η

2

4r
m log(n/m) + ∆0m

)
.

This result yields the next proposition which we need to prove Theorems 5.9.1 and 5.9.3.
For Theorem 5.9.1, note that ifW = Vn\ξt is the set of vacant vertices at time t, then at time
t+1 the vertices inW ∗(r−θ+1) will certainly be vacant and the vertices in its complement will
be vacant with probability 1− p. So having an upper bound for |W ∗(r−θ+1)| will be helpful.
On the other hand for Theorem 5.9.3, if U is the set of occupied vertices at time t, then
at time t + 1 the vertices in U∗θ will be occupied with probability p and the vertices in its
complement will certainly be vacant. So having an upper bound for |U∗θ| will be helpful.

Keeping these in mind, it is easy to see from the definitions that if j > 1 and |Z| = m,
then

rm ≥
∑
y∈Z∗1

e({y}, Z) ≥ |Z∗1 \ Z∗j|+ j|Z∗j| = |Z∗1|+ (j − 1)|Z∗j|.

So for any set Z of sizem, if |Z∗j| ≥ k, then |Z∗1| ≤ rm−(j−1)k. Taking k = m(1+η)/(j−1)
so that rm− (j − 1)k = (r − 1− η)m and using Proposition 5.9.7 we get

isoper2 Proposition 5.9.8. Let E∗j(m,≥ k) be the event that there is a subset Z ⊂ Vn with size
|Z| = m so that |Z∗j| ≥ k. For the constants C0, ∆0, and ϵ0(η) given in Proposition 5.9.7,
if j > 1 and m ≤ ϵ0(η)n, then

P
[
E∗j

(
m,≥

(
1 + η

j − 1

)
m

)]
≤ C0 exp

(
−η

2

4r
m log(n/m) + ∆0m

)
.

The reasoning that led to Proposition 5.9.8 depends on the fact that all vertices have the
same degree. Danny Nam has developed new results to cover the case of variable degree.
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