Around tilings of a hexagon

Vadim Gorin

Moscow State University
and
Independent University of Moscow

July, 2009

Consider an equi-angular hexagon of side lengths a, b, c, a, b, c. We are interested in tilings of such hexagon by rhombi with angles $\pi / 3$ and $2 \pi / 3$ and side lengths 1 (lozenges).

A tiling can be identified with a 3d Young diagram (equivalently a boxed plane partition).

We put k unit cubes on a cell with number k.

General settings Model Sampling Bulk limits Generalized MacMahon identity

Each 3d Young diagram corresponds to its border - stepped surface in \mathbb{R}^{3}.

We want to study random stepped surfaces (random tilings).
There are several ways to introduce a randomness here.
Simplest case: Let us fix an $a \times b \times c$ hexagon. We consider all tilings of this hexagon and equip the set of tilings with uniform measure.

Why is this model interesting? Limit shape phenomena.

General settings \quad Model \quad Sampling \quad Bulk limits \quad Generalized MacMahon identity

In 1998 Cohn, Larsen and Propp proved that scaled random surface corresponding to $M a \times M b \times M c$ hexagon (in other words, one corresponding to tilings by rhombi with side length equal to $1 / M$) converges to the deterministic limit shape as M tends to infinity.

Free Young diagrams with weight $q^{\text {volume }}$.
[Cerf-Kenyon; Okounkov-Reshetiknin]

$$
w(\diamond)=\zeta q^{j}-\frac{1}{\zeta q^{j}}
$$

Degenerations:

1. If $\zeta=0$, then we get the weight $q^{\text {-volume }}$. If $\zeta=\infty$, then we get the weight $q^{\text {volume }}$
2. weight $\alpha j+\beta$
3. weight 1 , i.e. uniform measure on tilings

Probability of a tiling is proportional to the product of weights of horizontal lozenges

$$
w(\diamond)=\zeta q^{j}-\frac{1}{\zeta q^{j}}
$$

[There are certain restrictions on q and ζ to ensure positivity]
General settings Model Sampling Bulk limits \quad Generalized MacMahon identity

We want to study big random tilings.
How can we sample from such distribution?
First, note that if $c=0$ then there is exactly one tiling.
General settings Model Sampling Bulk limits Generalized MacMahon identity

Theorem. (A. Borodin, V.G., 2008 - uniform measure case,
A. Borodin, V.G., E. Rains,2009 - general case) There exists a simple discrete time Markov chain which relates random (distributed according to the measurtes above) tilings of hexagons of various sizes. Elementary step of this chain changes the size of hexagon from $a \times b \times c$ to $a \times(b-1) \times(c+1)$.
Algorithmically, one step involves generating some independent one-dimensional random variables. It takes $O(a(b+c))$ arithmetic operations to construct a tiling of $a \times(b-1) \times(c+1)$ hexagon using a tiling of $a \times b \times c$ hexagon

General settings Model Sampling Bulk limits
$70 \times 90 \times 70$ box; $q=0.97, \zeta=q^{-71 / 2}$.

General settings Model Sampling
$30 \times 0 \times 60$

$70 \times 90 \times 70$ box, Linear weight with zero at the corner.

General settings	Model	Sampling	Bulk limits
Zoom in			

In the limit we see some measure on tilings of the plane

[we erased borders of horizontal lozenges]
Slope of the limit shape \leftrightarrow mean concentrations of lozenges of 3 types.

Limit regime:

$$
\begin{gathered}
\rho \rightarrow \infty \\
a(\rho)=\mathrm{a} \rho+o(\rho) \\
b(\rho)=\mathrm{b} \rho+o(\rho) \\
c(\rho)=\mathrm{c} \rho+o(\rho) \\
\ln q(\rho)=\frac{\ln \mathrm{q}}{\rho}+o(1 / \rho) \\
\zeta(\rho)=\zeta q(\rho)^{c(\rho) / 2}
\end{gathered}
$$

General settings Model Sampling Bulk limits Generalized MacMahon identity

Explicit formula for the slope of the measure is very complicated. It is convenient to encode the slope of the measure (equivalently the slope of the limit shape) with coordinate z :

Angles are proportional to the densities of lozenges of 3 types.
R. Kenyon, A. Okounkov. Case of the measure $q^{-v o l}(z=0)$: [Limit shapes]
There exists a second degree polynomial $Q(u, v)$, such that the slope of the limit shape $z(x, y)$ can be found as a solution of:

$$
\begin{gathered}
Q(u, v)=0 \\
u=z \mathrm{q}^{\times}, \quad v=(1-z) \mathrm{q}^{y} .
\end{gathered}
$$

[Here we parameterize the limit shape by its projection on the plane $x_{1}+x_{2}+x_{3}=0$, and x, y are normalized coordinates $x_{2}-x_{1}$ and $x_{3}-x_{1}$ on this plane.]
A. Borodin, V.G., E. Rains. $w(\diamond)=\zeta q^{j}-\frac{1}{\zeta q^{j}}$ [Local measures]
There exists a second degree polynomial $Q(u, v)$, such that the slope of the limit shape (slope of the limit measure) $z(x, y)$ can be found as a solution of:

$$
\begin{gathered}
Q(u, v)=0, \\
u=\frac{z q^{x}-\zeta^{2} q^{2 y}}{1-z \zeta^{2} q^{2 y-x}}, \quad v=\frac{(1-z) q^{y}}{1-z \zeta^{2} q^{2 y-x}}
\end{gathered}
$$

How to find $Q(u, v)$? The procedure is the same in both cases.
We consider the frozen regions. In terms of z it means that z is real.

The boundary of the frozen region should be tangent to the boundary of the hexagon (except for the case when the frozen boundary has a node at some vertex of the hexagon). This condition uniquely defines $Q(u, v)$.

General settings Model Sampling \quad Bulk limits \quad Generalized MacMahon identity

What is the number of plane partitions inside $a \times b \times c$ box?

$$
\prod_{1 \leq i \leq a, 1 \leq j \leq b, 1 \leq k \leq c} \frac{i+j+k-1}{i+j+k-2}=\prod_{1 \leq i \leq a, 1 \leq j \leq b} \frac{i+j+c-1}{i+j-1}
$$

q-partition function?

$$
\begin{gathered}
Z(q)=\sum_{\Pi \subset a \times b \times c} q^{v o l(\Pi)} \\
=\prod_{1 \leq i \leq a, 1 \leq j \leq b, 1 \leq k \leq c} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}=\prod_{1 \leq i \leq a, 1 \leq j \leq b} \frac{1-q^{i+j+c-1}}{1-q^{i+j-1}} .
\end{gathered}
$$

What happens if we replace $q^{v o l}$ by the weight function considered above, i.e.

$$
\begin{aligned}
& w(\Pi)=\prod w(\diamond) \\
& w(\diamond)=\zeta q^{j}-\frac{1}{\zeta q^{j}}
\end{aligned}
$$

We get

$$
\begin{aligned}
& \sum_{\Pi \subset a \times b \times c} q^{v o l(\Pi)} \prod_{1 \leq i \leq a, 1 \leq j \leq b} \frac{\zeta^{2}-q^{i+j-2 \Pi_{i j}-2}}{\zeta^{2}-q^{i+j-c-2}} \\
&=\prod_{1 \leq i \leq a, 1 \leq j \leq b} \frac{1-q^{i+j+c-1}}{1-q^{i+j-1}}
\end{aligned}
$$

