Coalescents: Theory and Applications

Rick Durrett

Coalescents

Moran model

- Each individual is replaced at rate 1. That is, individual \(x \) lives for an exponentially distributed amount with mean 1 and then is "replaced."
- To replace individual \(x \), we choose an individual at random from the population (including \(x \) itself) to be the parent of the new individual.

Suppose that we have two alleles \(A \) and \(a \), and let \(X_t \) be the number of copies of \(A \). The transition rates for \(X_t \) are

\[
\begin{align*}
i &\rightarrow i+1 \text{ at rate } b_i = (2N - i) \cdot \frac{i}{2N} \\
i &\rightarrow i-1 \text{ at rate } d_i = i \cdot \frac{2N - i}{2N}
\end{align*}
\]

Kingman's coalescent

Theorem When time is run at rate \(N \), the genealogy of a sample of size \(n \) from the Moran model converges to Kingman's coalescent.

Proof. If we look backwards in time, then when there are \(k \) lineages, each replacement leads to a coalescence with probability \(\frac{k-1}{2N} \). If we run time at rate \(N \), then jumps occur at rate \(N \cdot \frac{k}{2N} = \frac{k}{2} \), so the total rate of coalescence is \(k(k-1)/2 \), the right rate for Kingman's coalescent.

Directional Selection

Fecundity selection. Suppose \(b \)'s are born at a rate \(1 - s \) times that of \(B \)'s.

The transition rates for \(X_t \) for the number of \(B \)'s is now:

\[
\begin{align*}
i &\rightarrow i+1 \text{ at rate } b_i = (2N - i) \cdot \frac{i}{2N} \\
i &\rightarrow i-1 \text{ at rate } d_i = i \cdot \frac{2N - i}{2N} (1 - s)
\end{align*}
\]

Embedded jump chain is a simple random walk that jumps up with probability \(p = \frac{1}{2 - s} \) and down with probability \(1 - p \).

Started with \(X_0 = i \), \(B \) becomes fixed in the population (reaches \(2N \)) with probability:

\[
\frac{1 - (1 - s)^i}{1 - (1 - s)^{2N}}
\]

Hitchhiking

Due to recombination, each chromosome you inherit from each parent is a mixture of their two chromosomes, with transitions between the two at points of a nonhomogeneous Poisson process.

In the absence of recombination, fixation of an allele would result in every individual in the population having a copy of the associated chromosome. With recombination, changes in allele frequency occur only near the allele that went to fixation.

Three phases of the fixation process

- While the advantageous \(B \) allele is rare, the number of \(B \)'s can be approximated by a supercritical branching process.
- While the frequency of \(B \)'s is \(\in [\epsilon, 1-\epsilon] \) there is very little randomness and it follows the solution of the logistic differential equation: \(du/dt = su(1-u) \).
- While the disadvantageous \(b \) allele is rare, the number of \(a \)'s can be approximated by a subcritical branching process.
Maynard-Smith and Haigh (1974)

Alleles B and b have relative fitesses 1 and 1-s, neutral locus with alleles A and a, recombination between the two has probability p.

Let $p_0 = \text{frequency of } B \text{ before the sweep (1/2N)}$.

$Q_t = P(A|B)$, $R_t = P(A|b)$.

Theorem. Suppose $Q_0 = 0$. Under the logistic sweep model, which ignores the branching process phases 1 and 3, $Q_\infty = R_0(1 - p_0) \int_0^{2\tau} \frac{re^{-rt}}{(1 - p_0) + p_0e^{rt}} ds$

Proof. $R_0(1 - p_0)$ is the frequency of A before the sweep. In order for a sampled individual to have the A allele, its lineage must escape the sweep due to recombination.

From the previous theorem, the probability a lineage escapes from the sweep by recombination is

$p_{\text{inb}} = \int_0^{2\tau} \frac{re^{-rt}}{(1 - p_0) + p_0e^{rt}} ds$

Theorem. Under the logistic sweep model, if $N \to \infty$ and $r \log(2N)/s \to a$, $p_{\text{inb}} \to 1 - e^{-a}$.

Biologists rule of thumb: “hitchhiking is efficient if $r < s$ and negligible if $r \approx s$.” (should be efficient if $r \approx s/(\log(2N))$)

Approximation 1 Let $p_{k,j}$ = probability k lineages reduced to i by the sweep. Under the logistic sweep model, if $N \to \infty$ with $r \ln(2N)/s \to a$ and $s(\ln N)^2 \to \infty$

then for $j \geq 2$

$$p_{k,k-j+1} \to \binom{k}{j} p^j (1 - p)^{k-j}$$

where $p = e^{-a}$

and $p_{k,k} \to (1 - p)^k + kp(1 - p)^{k-1}$.

p-merger. Flip coins with probability p of heads for each lineage and coalesce all of those with heads. Need at least two heads to get a coalescence.

Simulation results

$N = 10,000, s = 0.1$. Set $r = 0.00516$ so $p_{\text{inb}} \approx 0.4$.

$p_{2\text{inb}} = P(\text{ both lineages escapes the sweep and do not coalesce}).$

$p_{2\text{cinb}} = P(\text{ both lineages escapes the sweep but coalesce}).$

$p_{1B1b} = P(\text{ one lineage escapes but the other does not}).$

$p_{22} = P(\text{ no coalescence }) = p_{2\text{inb}} + p_{1B1b}$

<table>
<thead>
<tr>
<th>Approx.</th>
<th>0.4</th>
<th>0.16</th>
<th>0</th>
<th>0.48</th>
<th>0.64</th>
</tr>
</thead>
<tbody>
<tr>
<td>logistic ODE</td>
<td>0.39936</td>
<td>0.13814</td>
<td>0.09599</td>
<td>0.32646</td>
<td>0.46460</td>
</tr>
<tr>
<td>Moran sim</td>
<td>0.33656</td>
<td>0.10567</td>
<td>0.05488</td>
<td>0.35201</td>
<td>0.45769</td>
</tr>
<tr>
<td>Approx. 2</td>
<td>0.34065</td>
<td>0.10911</td>
<td>0.05100</td>
<td>0.36112</td>
<td>0.47203</td>
</tr>
</tbody>
</table>

Approximation 2

A stick breaking construction that leads to a coalescent with simultaneous multiple collisions.

$\begin{array}{cccccccc}
 a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \\
 l_1 \\
 l_4 \\
 l_5 \\
 l_7 \\
\end{array}$

Pieces of stick are coalesced lineages that escape due to recombination. Sampled individuals = points random on (0,1). Two in the same piece coalesce. l_4 may be marked (×) or not (escapes sweep).
\(M = [2N_s] \) number of lineages with an infinite line of descent
\(\xi_\ell, 2 \leq \ell \leq M \) iid Bernoulli, 1 (recombination) with prob \(r/s \).
\(W_\ell, 2 \leq \ell \leq M \) are beta\((1, \ell - 1)\) (fraction of lineages)
\(V_\ell = \xi_\ell W_\ell, T_\ell = \ell \prod_{i=\ell+1}^{M}(1 - V_i) \)
\(a_\ell = a_{\ell+1} - T_\ell, l_\ell = [a_\ell, a_{\ell+1}] \)

Error is \(O(1/\log^2 N) \) versus \(O(1/\log N) \) for approx 1
Large family sizes

The original biological motivation for Λ-coalescents is that many species have a highly variable number of offspring.

Cannings’ model Suppose that the $2N$ members of the population have offspring $(ν_1, \ldots, ν_{2N})$. The $ν_i$ are exchangeable and sum to $2N$. (Distribution depends on N.)

Möhle (2000). Run time at rate $2N/\text{var}(ν_i)$. Convergence to Kingman’s coalescent occurs if and only if

$$E[ν(ν−1)(ν−2)]/N^2 \to 0$$

In words, if and only if no triple mergers.

Each individual has X_i offspring (independent) then N are chosen to make the next generation. Part (c) of Theorem 4 shows

Theorem. Suppose $EX_i = μ > 1$ and $P(X_i \geq k) \sim Ck^{−α}$ with $1 < α < 2$. Then, when time is run at rate $2N/\text{var}(ν) \approx C′N^{α−1}$, the genealogical process converges to a Λ-coalescent where Λ is the beta$(2 − α, α)$ distribution, i.e.,

$$Λ(dx) \sim x^{1−α}(1−x)^{α−1}B(2−α, α)$$

where $B(a, b) = \Gamma(a)\Gamma(b)/\Gamma(a + b)$, and $\Gamma(a) = \int_0^\infty x^{a−1}e^{−x}dx$ is the usual gamma function.

Genealogy when $α = 1.2$

Genealogy when $α = 1.9 \approx$ Kingman

Arnason (2004) data on cytochrome b in 1278 cod

39 mutations define 59 haplotypes (mutation patterns):
This indicates some sites were hit more than once, for if not, the number of haplotypes = 1 + the number of mutations.

Haplotypes frequencies:

696, 193, 124, 112, 29, 15, 9, 7, 6, 5(3), 4(2), 3(6), 2(7), 1(32)
Site frequency spectrum

J. Berestycki, N. Berestycki, and Schweinsberg (2006a,b).

Theorem Suppose we introduce mutations into the beta coalescent at rate θ, and let $M_{n,k}$ be the number of mutations affecting k individuals in a sample of size n. Then

$$\frac{M_{n,k}}{S_n} \rightarrow a_k = \frac{(2-\alpha)\Gamma(\alpha + k - 2)}{\Gamma(\alpha - 1)k!} \sim C_\alpha k^{\alpha - 3}$$

in probability as $n \rightarrow \infty$.

When $\alpha = 2$ this reduces to the $1/k$ behavior found in Kingman’s coalescent.

When $k = 1$, $a_k = 2 - \alpha$.

Data set 2

Boom, Boulding, and Beckenbach (1994) did a restriction enzyme digest of mtDNA on a sample of 141 Pacific Oysters from British Columbia. They found 51 segregating sites and 30 singleton mutations, resulting in an estimate of

$$\alpha = 2 - \frac{30}{51} = 1.41$$

However, this estimate is biased. If the underlying data was generated by Kingman’s coalescent, we would expect a fraction $1/\ln(141) = 0.202$ of singletons, resulting in an estimate of $\alpha = 1.8$.

Segregating sites

J. Berestycki, N. Berestycki, and Schweinsberg (2006a,b).

Theorem Suppose we introduce infinite sites mutations into the beta coalescent at rate θ, and let S_n be the number of segregating sites observed in a sample of size n. If $1 < \alpha < 2$ then

$$\frac{S_n}{n^{2-\alpha}} \rightarrow \frac{\theta \alpha(\alpha - 1)\Gamma(\alpha)}{2 - \alpha}$$

in probability as $n \rightarrow \infty$.

In Kingman’s coalescent

$$\frac{S_n}{\log n} \rightarrow \theta$$

Simulation mean / formula : slow convergence

Subsampling the Arnason data, $\alpha \approx 1.50$ (prev: 1.54)
Estimation results: Emilia Huerta-Sanchez

Now VIGRE postdoc, U.C. Berkeley Statistics.