Brownian couplings – my favorite open problems. I. Shy couplings

Krzysztof Burdzy
(I. Benjamini and Z. Chen)

Motivation

Definition of shy coupling

We say that X and Y form a shy coupling if X and Y have the same transition probabilities, (X,Y) is a Markov process and for some starting points, with positive probability,

$$\text{dist}(X_t,Y_t) > c(\omega) > 0 \quad \forall t \geq 0.$$

Theorem

Suppose that $D \subset \mathbb{R}^2$ is open, bounded, strictly convex, and C^2-smooth. Then there are no shy couplings of reflected Brownian motions in D.

Conjectures

There are no shy couplings for reflected Brownian motions in D if D is open, bounded,

- $D \subset \mathbb{R}^n$ and D is convex
- $D \subset \mathbb{R}^2$ and D is simply connected

There exists a shy coupling of reflected Brownian motions in the annulus.
Open problem

Does there exist a shy coupling of reflected Brownian motions in a disc with off-center hole?

Brownian motion on graphs

Theorem

If all vertices of a graph have degree greater than 2 then there exists a shy coupling of Brownian motions on this graph.

Theorem

If the graph is a finite tree then there are no shy couplings of Brownian motions on this graph.

Graphs with symmetries

If there exists an isometry $S : G \rightarrow G$ with $\inf_x \text{dist}(x, S(x)) > 0$ then there exists a shy coupling of reflected Brownian motions on G.

There exists a shy coupling of Brownian motions on this graph. All edges have the same length.
Open problem

Characterize graphs for which shy couplings of Brownian motions exist.

Proofs - outlines

Reflected Brownian motions in convex planar domains.

Extra assumption - there exists a strictly increasing \(\phi: (0, \infty) \to (0, \infty) \) such that

\[
\frac{d}{dt}\left(\sqrt{X_t - Y_t}\right) \geq \phi(|X_t - Y_t|) dt
\]

Let \(f(r) = -r^{-a}, a > 0 \). Apply Ito’s formula to obtain

\[
df(|X_t - Y_t|^2) = dM_t + dV_t
\]

For some \(a, b > 0 \), \(dV_t \leq -b dt \)

Planar convex domains – arbitrary couplings

Idea from “differential games” theory:

\(X_t \) can chase \(Y_t \)

Graphs with no endpoints

Skew Brownian motion: \(X_t = B_t + \beta L^X_t \)

Combinatorial example

\[
\begin{array}{c}
(1,4) \leftrightarrow (2,3) \leftrightarrow (3,5) \leftrightarrow (4,6) \\
(1,2) \leftrightarrow (5,6) \\
(2,1) \leftrightarrow (6,5) \\
(4,1) \leftrightarrow (3,2) \leftrightarrow (5,3) \leftrightarrow (6,4)
\end{array}
\]
Open problem

For given Markov transition probabilities, and an integer n, can one find n Markov processes X^i_t with the given transition probabilities, such that for every pair,

$$dist(X^i_t, X^j_t) > c(\omega) > 0 \quad \forall t \geq 0$$