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Abstract

We consider particle systems that are perturbations of the voter model and
show that when space and time are rescaled the system converges to a solution
of a reaction diffusion equation in dimensions d ≥ 3. Combining this result
with properties of the PDE, some methods arising from a low density super-
Brownian limit theorem, and a block construction, we give general, and often
asymptotically sharp, conditions for the existence of non-trivial stationary dis-
tributions, and for extinction of one type. As applications, we describe the
phase diagrams of three systems when the parameters are close to the voter
model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala,
(ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman,
and Nowak, and (iii) a continuous time version of the non-linear voter model
of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first application con-
firms a conjecture of Cox and Perkins [8] and the second confirms a conjecture
of Ohtsuki et al [38] in the context of certain infinite graphs. An important
feature of our general results is that they do not require the process to be
attractive.
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1 Introduction and Statement of Results

We first describe a class of particle systems, called voter model perturbations in
[7]. The state space will be {0, 1}Zd

, or after rescaling {0, 1}εZd
, where throughout

this work we assume d ≥ 3. The voter model part of the process will depend on
a symmetric (i.e, p(x) = p(−x)), irreducible probability kernel p : Zd → [0, 1] with
p(0) = 0, covariance matrix σ2I, and exponentially bounded tails so that for some
κ ∈ (0, 1],

p(x) ≤ Ce−κ|x|. (1.1)

Here and in what follows |x| = supi |xi|.
For 1 ≥ ε > 0, x ∈ Z

d and ξ ∈ {0, 1}Zd
define rescalings of p and ξ by pε(εx) =

p(x), and ξε(εx) = ξ(x), so that ξε ∈ {0, 1}εZ
d
. Also define rescaled local densities

f εi by

f εi (εx, ξε) =
∑

y∈εZd

pε(y − εx)1{ξε(y) = i}, i = 0, 1. (1.2)

We will write fi(x, ξ) if ε = 1. For x, ξ as above, introduce the voter flip rates and
rapid voter flip rates given by

cv(x, ξ) = [(1− ξ(x))f1(x, ξ) + ξ(x)f0(x, ξ)], c
v
ε(εx, ξε) = ε−2cv(x, ξ). (1.3)

The processes of interest, ξt ∈ {0, 1}Zd
, are spin-flip systems with rates

coε(x, ξ) = cv(x, ξ) + ε2c∗ε(x, ξ) ≥ 0, (1.4)

where c∗ε(x, ξ) will be a translation invariant, signed perturbation of the form

c∗ε(x, ξ) = (1− ξ(x))hε1(x, ξ) + ξ(x)hε0(x, ξ).

Therefore the rescaled processes, ξε−2t(εx) ∈ {0, 1}εZ
d
, we will study have rates

cε(εx, ξε) = cvε(εx, ξε) + c∗ε(x, ξ) ≥ 0. (1.5)

We assume there is a law q of (Y 1, . . . , Y N0) ∈ Z
dN0 and gεi on {0, 1}N0 , i = 0, 1,

and ε1 ∈ (0,∞], ε0 ∈ (0, 1] so that

gεi ≥ 0, (1.6)

and

hεi (x, ξ) = −ε−2
1 fi(x, ξ)+EY (g

ε
i (ξ(x+ Y 1), . . . ξ(x+ Y N0))), i = 0, 1 (1.7)

for all ξ ∈ {0, 1}Zd
, x ∈ Z

d, ε ∈ (0, ε0].

Here EY is expectation with respect to q and in practice the first term in the above
allows us to take gεi ≥ 0. It is important to have gεi non-negative as we will treat
it as a rate in the construction of a dual process in Section 2. On the other hand,
in the particular examples motivating the general theory hεi will often be negative
(see, e.g., (1.33) below of the Lotka-Volterra models).
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We also suppose that (decrease κ > 0 if necessary)

P (Y ∗ ≥ x) ≤ Ce−κx for x > 0 (1.8)

where Y ∗ = max{|Y 1|, . . . |Y N0 |}, and there are limiting maps gi : {0, 1}N0 → R+

such that
lim
ε↓0
‖gεi − gi‖∞ = 0, i = 0, 1. (1.9)

The condition (1.7) with ε0 < ε1 (without loss of generality) easily implies the
non-negativity in (1.5).

We now show that the conditions (1.7)-(1.9) hold for general finite range conver-
gent translation invariant perturbations without any non-negativity constraint on
the gεi .

Proposition 1.1. Assume there are distinct points y1, . . . , yN0 ∈ Z
d and

ĝεi , ĝi : {0, 1}N0 → R such that

hεi (x, ξ) = ĝεi (ξ(x+ y1), . . . , ξ(x+ yN0)), x ∈ Z
d, ξ ∈ {0, 1}N0 , (1.10)

{x : p(x) > 0} ⊂ {y1, . . . , yN0}, lim
ε↓0
‖ĝεi − ĝi‖∞ = 0 i = 0, 1.

Then (1.7)-(1.9) hold for appropriate non-negative gεi , gi satisfying ‖gεi − gi‖∞ =
‖ĝεi − ĝi‖∞, and Y i = yi.

The elementary proof is given in Section 2.1. In terms of our original rates (1.4)

this shows that our class of models include spin-flip systems ξt ∈ {0, 1}Zd
, t ≥ 0,

with rates
coε(x, ξ) = cv(x, ξ) + ε2c∗(x, ξ) + ε2o(ε) ≥ 0, (1.11)

where p (governing cv) is now finite range, c∗(x, ξ) = h(ξ(x), ξ(x+y1), . . . , ξ(x+ξN0))
is a finite range, translation invariant perturbation and o(ε) means this term goes
to zero with ε uniformly in (x, ξ).

On the other hand, the random Y i’s will also allow certain natural infinite range
interactions. The formulation in terms of random locations will also simplify some
of the arithmetic to come.

Let ξεt , t ≥ 0 be the unique {0, 1}εZd
-valued Feller process with translation

invariant flip rates given by cε(x, ξ) in (1.5) and initial state ξε0 ∈ {0, 1}εZ
d
. More

formally (see Theorem B.3 in [33] and Section 2 of [14]) the generator of ξε is

the closure of Ωεg(ξ) =
∑

x∈εZd

cε(x, ξ)(g(ξ
x)− g(ξ)), (1.12)

on the space of g : εZd → R, depending on finitely many coordinates.

Here ξx is ξ with the coordinate at x flipped to 1 − ξ(x). The condition (B4) of
Theorem B.3 in [33] is trivial to derive from (1.7).

We stress that conditions (1.5)-(1.9) are in force throughout this work,

and call such a process ξε a voter model perturbation.
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Given a process taking values in {0, 1}Zd
, or more generally in {0, 1}εZd

, we say
that coexistence holds if there is a stationary distribution ν with

ν

(

∑

x

ξ(x) =
∑

x

1− ξ(x) =∞
)

= 1. (1.13)

For voter model perturbations it is easy to see this is equivalent to both types being
present ν-a.s.–see Lemma 6.1 at the beginning of Section 6.

We say the i’s take over if for all L,

P (ξt(x) = i for all x ∈ [−L,L]d for t large enough) = 1 (1.14)

whenever the initial configuration has infinitely many sites in state i.
Our main results, Theorems 1.15 and 1.16 in Section 1.6 below, give (often sharp)

conditions under which coexistence holds or one type takes over, respectively, in a
voter model perturbation for small enough ε. Of course these results then hold
immediately for our originally unscaled processes, again for small enough ε.

1.1 Hydrodynamic limit

As d ≥ 3, we see from Theorem V.1.8 of [32] the voter model with flip rates
cv(x, ξ) = cv1(x, ξ) has a one-parameter family of translation invariant extremal

invariant distributions {Pu : u ∈ [0, 1]} on {0, 1}Zd
such that Eu(ξ(x)) = u. We

write 〈g〉u for Eu(g(ξ)). (1.7) and (1.9) imply

lim
ε↓0
‖hεi − hi‖∞ = 0 where (1.15)

hi(x, ξ) = −ε−2
1 fi(x, ξ) +E(gi(ξ(x+ Y 1), . . . , ξ(x+ Y N0))).

Define
f(u) = 〈(1− ξ(0))h1(0, ξ)− ξ(0)h0(0, ξ)〉u. (1.16)

Then f is a polynomial of degree at most N0+1 (see (1.26) and Section 1.8 below).
The non-negativity condition (1.5), the fact that

〈cvε(0, ξ)〉0 = 〈cvε(0, ξ)〉1 = 0, (1.17)

and the convergence (1.15) show that

f(0) ≥ 0, f(1) ≤ 0. (1.18)

Our first goal is to show that under suitable assumptions on the initial conditions,
as ε→ 0 the particle systems converges to the PDE

∂u

∂t
=
σ2

2
∆u+ f(u), u(0, ·) = v(·), (1.19)

The remark after Proposition 2.1 in [2] implies that for any continuous v : Rd → [0, 1]
the equation has a unique solution u, which necessarily takes values in [0, 1].
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For a continuous v as above we will say that a family of probability measures
{λε} of laws on {0, 1}εZd

has local density v if the following holds:

There is an r ∈ (0, 1) such that if aε = ⌈εr−1⌉ε, Qε = [0, aε)
d∩εZd, |Qε| = card (Qε),

and

D(x, ξ) =
1

|Qε|
∑

y∈Qε

ξ(x+ y) for x ∈ aεZd, ξ ∈ {0, 1}εZd
, (1.20)

then for all R, δ > 0,

lim
ε→0

sup
x∈aεZd

|x|≤R

λε(|D(x, ξ)− v(x)| > δ) = 0 . (1.21)

The family of Bernoulli product measures λ̄ε given by

λ̄ε(ξ(wi) = 1, i = 1, . . . , n) =

n
∏

i=1

v(wi) for all n ∈ N and wi ∈ εZd . (1.22)

certainly satisfies (1.21) for all r ∈ (0, 1).

Theorem 1.2. Assume v : Rd → [0, 1] is continuous, and the collection of initial
conditions {ξε0} have laws {λε} with local density v. Let xk ∈ R

d and xkε ∈ εZd,
k = 1, . . . K satisfy

xkε → xk and ε−1|xkε − xk
′

ε | → ∞ as ε→ 0 for any k 6= k′. (1.23)

If u is the solution of (1.19), then for any η ∈ {0, 1}{1,...,L}×{1,...K}, y1, . . . , yL ∈ Z
d

and T > 0,

lim
ε→0

P (ξεT (x
k
ε + εyi) = ηi,k, i = 1, . . . , L, k = 1, . . . K)

=
K
∏

k=1

〈1{ξ(yi) = ηi,k, i = 1, . . . , L}〉u(T,xk). (1.24)

In particular, if xε ∈ εZd satisfies xε → x as ε→ 0, then

lim
ε→0

P (ξεT (xε) = 1) = u(T, x) for all T > 0, x ∈ R
d. (1.25)

De Masi, Ferrari and Lebowitz [11], Durrett and Neuhauser [20] and Durrett
[15] have proved similar results for particle systems with rapid stirring. The local
equilibrium for rapid stirring is a Bernoulli product measure, but in our setting it
is the voter equilibrium. As a result there is now dependence between nearby sites
on the microscopic scale. However, there is asymptotic independence between sites
with infinite separation on the microscopic scale.

It is easy to carry out a variance calculation to improve Theorem 1.2 to the
following L2-convergence theorem (see the end of Section 3 for the proof). If δ > 0
and x ∈ R

d, let Iδ(x) be the unique semi-open cube
∏d

i=1[kiδ, (ki + 1)δ), ki ∈ Z,
which contains x.
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Theorem 1.3. Assume the hypotheses of Theorem 1.2.
Assume δ(ε) ∈ εN decreases to zero so that δ(ε)/ε →∞ as ε ↓ 0. If

ũε(t, x) =
∑

y∈Iδ(ε)(x)
ξεt (y)(ε/δ(ε))

d ,

then as ε→ 0, ũε(t, x)→ u(t, x) in L2 uniformly for x in compacts, for all t > 0.

A low density version of this theorem, in which the limit is random (super-Brownian
motion with drift), was proved in [7] and is discussed in Section 1.8.

To apply Theorem 1.2 to the voter perturbation we will have to evaluate f(u).
This is in principle straightforward thanks to the duality between the voter model
and coalescing random walk which we now recall. Let {B̂x : x ∈ Z

d} denote a rate
1 coalescing random walk system on Z

d with step distribution p and B̂x
0 = x. For

A,B ⊂ Z
d, let ξ̂At = {B̂x

t : x ∈ A}, τ(A) = inf{t : |̂ξAt | = 1} and τ(A,B) be the first
time ξ̂At ∩ ξ̂Bt 6= ∅ (it is∞ if either A or B is empty). The duality between B̂ and the
voter model (see (V.1.7) and Theorem V.1.8 in [32]) implies for finite A,B ⊂ Z

d,

〈
∏

y∈A
ξ(y)

∏

z∈B
(1− ξ(z))〉u

=

|A|
∑

j=0

|B|
∑

k=0

uj(1− u)kP (|ξ̂A∞| = j, |ξ̂B∞| = k, τ(A,B) =∞). (1.26)

The k = 0 term is non-zero only if B = ∅ in which case the above probability is
P (|ξ̂A∞| = j), and similarly for the j = 0 term. It follows from (1.26) and the form
of the perturbation in (1.7) that f(u) is a polynomial of degree at most N0+1 with
coefficients given by certain coalescing probabilities of B̂ (see (1.86) below).

1.2 PDE results

As in Durrett and Neuhauser [20], Theorem 1.2, in combination with results for the
PDE and a block construction, lead to theorems about the particle system. Durrett
[16] surveys results that have been proved by this method in the last 15 years. To
carry out this program we will also need some low density methods taken from the
superprocess limit theorems of Cox and Perkins [7, 8].

To prepare for the discussion of the examples, we will state the PDE results on
which their analysis will be based. The reaction function f : R→ R is a continuously
differentiable function (as already noted, in our context it will be a polynomial).
Assume now, as will be the case in the examples, that f(0) = f(1) = 0. We let u(t, x)
denote the unique solution of (1.19) with continuous initial data v : Rd → [0, 1].

We start with a modification of a result of Aronson and Weinberger [2].

Proposition 1.4. Suppose f(0) = f(α) = 0, f ′(0) > 0, f ′(α) < 0 and f(u) > 0 for
u ∈ (0, α) with 0 < α ≤ 1. There is a w > 0 so that if the initial condition v is not
identically 0, then

lim inf
t→∞

inf
|x|≤2wt

u(t, x) ≥ α.
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We also will need an exponential rate of convergence in this case under a stronger
condition on the initial conditon. We formulate it for f < 0 on (0, 1). The brief
proofs of Propositions 1.4 and 1.5 are given at the beginning of Section 4.

Proposition 1.5. Assume f < 0 on (0, 1) and f ′(0) < 0. There is a w > 0, and
if δ > 0 there are positive constants Lδ, c = cδ, and C = Cδ so that if L ≥ Lδ and
v(x) ≤ 1− δ for |x| ≤ L, then

u(t, x) ≤ Ce−ct for |x| ≤ L+ 2wt.

There are different cases depending on the number of solutions of f(u) = 0 in
(0, 1). In all cases, we suppose that f ′(0) 6= 0 and f ′(1) 6= 0.

Case I: f has zero roots in (0, 1). In this case we can apply Propositions 1.4 (with
α = 1) and 1.5, and their obvious analogues for −f .
Case II: f has one root ρ ∈ (0, 1). There are two possibilities here.

(i) f ′(0) > 0 and f ′(1) < 0 and so the interior fixed point ρ ∈ (0, 1) is attracting.
In this case we will also assume f ′(ρ) 6= 0. Then two applications of Proposition 1.4
show that if v 6≡ 0 and v 6≡ 1

lim
t→∞

sup
|x|≤wt

|u(t, x)− ρ| = 0. (1.27)

(ii) f ′(0) < 0 and f ′(1) > 0, so that 0 and 1 are locally attracting and ρ ∈ (0, 1)
is unstable. In this case the limiting behavior of the PDE is determined by the speed
r of the traveling wave solutions, i.e., functions w with w(−∞) = ρ and w(∞) = 0
so that u(t, x) = w(x− rt) solves the PDE. The next result was first proved in d = 1
by Fife and McLeod [25]. See page 296 and the appendix of [20] for the extension to
d > 1 stated below as Proposition 1.6. The assumption there on the non-degeneracy
of the interior zeros are not necessary (see Fife and McLeod [25]). These references
also show that

sgn(r) = sgn
(

∫ 1

0
f(u)du

)

. (1.28)

|x|2 will denote the Euclidean norm of x and the conditions of Case II(ii) will apply
in the next two propositions.

Proposition 1.6. Suppose
∫ 1
0 f(u)du < 0 and fix η > 0. If δ > 0 there are positive

constants L0
δ , c0 = c0(δ), and C0 = C0(δ) so that if L ≥ L0

δ and v(x) ≤ ρ− δ when
|x|2 ≤ L, then

u(t, x) ≤ Ce−ct for |x|2 ≤ (|r| − η)t.
For the block construction it is useful to have a version of the last result for the L∞

norm, and which adds an L to the region in which the result is valid.

Proposition 1.7. Suppose
∫ 1
0 f(u)du < 0. There is a w > 0, and if δ > 0 there are

positive constants Lδ, c = cδ and C = Cδ so that if L ≥ Lδ and v(x) ≤ ρ − δ for
|x| ≤ L, then

u(t, x) ≤ Ce−ct for |x| ≤ L+ 2wt.
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The short derivation of Proposition 1.7 from Proposition 1.6 is given at the beginning
of Section 4.

In the next three subsections we first motivate our main results on coexistence
and domination by a single type (Theorems 1.15 and 1.16) by illustrating their use
in three distinct families of examples.

1.3 Lotka-Volterra systems

We now apply Theorem 1.2 to a stochastic spatial Lotka-Volterra model introduced
by Neuhauser and Pacala [37]. In addition to the kernel p for the voter model, the
flip rates depend on two non-negative competition parameters, α0 and α1, and are
given by

cLV (x, ξ) =f1(f0 + α0f1)(1− ξ(x)) + f0(f1 + α1f0)ξ(x)

=cv(x, ξ) + (α0 − 1)f21 (1− ξ(x)) + (α1 − 1)f20 ξ(x). (1.29)

In words, a plant of type i at x dies with rate fi(x, ξ)+αif1−i(x, ξ) and is immediately
replaced by the type of a randomly chosen neighboring plant, which will be 1 − i
with probability f1−i(x, ξ). The death rate reflects the effects of competition from
neighboring sites. The constant αi represents the effect of competition on a type
i individual from neighbors of the opposite type. If αi < 0 for both i = 0, 1, then
individuals prefer to be surrounded by the opposite type and ecological arguments
suggest coexistence will hold. Conversely if both αi > 1, we expect no coexistence.

We refer to the associated Feller process (ξt, t ≥ 0) as the LV (α0, α1) process.
Proposition 8.1 of [8] implies that

if α0 ∧ α1 ≥ 1/2 then LV (α0, α1) is monotone (or attractive). (1.30)

Write LV (α) ≤ LV (α′) if LV (α′) stochastically dominates LV (α), that is, if one
can define these processes, ξ and ξ′, respectively, on a common probability space so
that ξ ≤ ξ′ pointwise a.s. Then, as should be obvious from the above interpretation
of αi (see (1.3) of [8]),

0 ≤ α′
0 ≤ α0, 0 ≤ α1 ≤ α′

1, and either α0 ∧ α1 ≥ 1/2 (1.31)

or α′
0 ∧ α′

1 ≥ 1/2, implies LV (α′) ≤ LV (α).

If θi ∈ R, let αi = αε
i = 1+ε2θi and consider the rescaled Lotka-Volterra process

ξεt (x) = ξε−2t(ε
−1x), x ∈ εZd. (1.32)

From (1.29) we see that this process has rates given by (1.5) with

hεi (x, ξ) = hi(x, ξ) = θ1−ifi(x, ξ)
2, i = 0, 1, x ∈ Z

d, ξ ∈ {0, 1}Zd
. (1.33)

To verify (1.7) take 0 < ε1 ≤ (θ−0 )
−1/2 ∧ (θ−1 )

−1/2, N0 = 2, Y 1, Y 2 chosen indepen-
dently according to p, and define for i = 0, 1,

gεi (η1, η2) = gi(η1, η2) = ε−2
1 η1(1− η2) + (ε−2

1 + θ1−i)1(η1 = η2 = i) ≥ 0. (1.34)
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Then

hεi (x, ξ) = −ε−2
1 fi(x, ξ) + ε−2

1 (fi − f2i )(x, ξ) + (ε−2
1 + θ1−i)fi(x, ξ)

2

= −ε−2
1 fi(x, ξ) + E(gεi (ξ(x+ Y 1), ξ(x+ Y 2))),

as required. Therefore ξε is a voter model perturbation.
To calculate the limiting reaction function in this case consider the system of

coalescing random walks {B̂x : x ∈ Z
d} used in the duality formula (1.26). Let

{e1, e2} be i.i.d. with law p(·) and independent of the {B̂x : x ∈ Z
d}. If we abuse

our earlier notation and let 〈·〉u denote expectation on the product space where
(e1, e2) and ξ are independent, and ξ is given the voter equilibrium with density u,
then from (1.16), (1.33) and the fact that fi(0, ξ)

2 = Pe(ξ(e1) = ξ(e2) = i), we have

f(u) = θ0〈(1 − ξ(0))ξ(e1)ξ(e2)〉u − θ1〈ξ(0)(1 − ξ(e1))(1 − ξ(e2))〉u.

In view of (1.26) we will be interested in various coalescence probabilities. For
example,

p(x|y, z) = P (∃t ≥ 0 such that B̂y
t = B̂z

t , and ∀t ≥ 0, B̂y
t 6= B̂x

t and B̂z
t 6= B̂x

t )

and
p(x|y|z) = P (B̂x

t , B̂
y
t and B̂z

t are all distinct for all t).

In general walks within the same group coalesce and those separated by at least one
bar do not. If we define

p2 = p(0|e1, e2), p3 = p(0|e1|e2), (1.35)

where the expected value is taken over e1, e2, then by the above formula for f and
(1.26),

f(u) = θ0u(1− u)p2 + θ0u
2(1− u)p3 − θ1(1− u)up2 − θ1(1− u)2up3

= u(1− u)[θ0p2 − θ1(p2 + p3) + up3(θ0 + θ1)]. (1.36)

To see what this might say about the Lotka-Volterra model introduce

u∗(θ1/θ0) =
θ1(p2 + p3)− θ0p2

p3(θ1 + θ0)
(1.37)

so that f(u) = 0 for u = 0, 1 or u∗(θ1/θ0). If

m0 ≡
p2

p2 + p3
, (1.38)

then u∗(m) increases from 0 to 1 as m increases from m0 to m−1
0 . We slightly abuse

the notation and write u∗ for u∗(θ1/θ0).
To analyze the limiting PDE we decompose the θ0− θ1 plane into 5 open sectors

drawn in Figure 1 on which the above 0’s are all simple.
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Figure 1: Phase diagram near (1,1) for the Lotka-Volterra model with the shape of
f in the regions.
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• If θ ∈ R1, f > 0 on (0, u∗), f < 0 on (u∗, 1), so u∗ ∈ (0, 1) is an attracting fixed
point for the ODE. Then (1.27) shows the PDE solutions will converge to u∗

given a non-trivial initial condition in [0, 1]. As a result we expect coexistence
in the particle system.

• If θ ∈ R2, f < 0 on (0, 1), 0 is an attracting fixed point for the ODE. Propo-
sition 1.4 implies solutions of the PDE will converge to 0 given a non-trivial
initial condition and we expect 0’s to win.

• If θ ∈ R3, f > 0 on (0, 1), 1 is an attracting fixed point for the ODE and so
by the reasoning from the previous case we expect 1’s to win.

• On R4∪R5, u
∗ ∈ (0, 1) is an unstable fixed point, while 0 and 1 are attracting

fixed points for the ODE. This is case 2 of Durrett and Levin [19], so we expect
the winner of the competition to be predicted by the direction of movement
of the speed of the decreasing traveling wave solution u(x, t) = w(x− rt) with
w(−∞) = 1 and w(∞) = 0. If r > 0 then 1’s will win and if r < 0 then 0’s will
win. Symmetry dictates that the speed is 0 when θ0 = θ1, so this gives the
dividing line between the two cases and the monotonicity from (1.31) predicts
0’s win on R4 while 1’s win on R5. Alternatively, by (1.28) r has the same
sign as

∫ 1
0 f(u) du which is positive in R5 and negative in R4.

Our next two results confirm these predictions for α close to (1, 1). For 0 ≤ η < 1,
define regions that are versions of R1, R2 ∪ R4 and R3 ∪ R5 shrunken by changing
the slopes of the boundary lines:

Cη =
{

(α0, α1) ∈ [0, 1]2 :
(α0 − 1)(1 − η)

m0
< α1 − 1 <

m0(α0 − 1)

1− η
}

,

Λη
0 =

{

(α0, α1) ∈ (0,∞)2 : 0 < α0 ≤ 1, m0(1− η)(α0 − 1) < α1 − 1,

or 1 ≤ α0, (1 + η)(α0 − 1) < α1 − 1
}

,

Λη
1 =

{

(α0, α1) ∈ (0,∞)2 : 0 < α0 ≤ 1, α1 − 1 <
α0 − 1

m0(1− η)
,

or 1 ≤ α0, α1 − 1 < (1− η)(α0 − 1)
}

.

Theorem 1.8. For 0 < η < 1 there is an r0(η) > 0, non-decreasing in η, so that
for the LV (α):
(i) Coexistence holds for (α0, α1) ∈ Cη and 1− α0 < r0(η).
(ii) If (α0, α1) is as in (i) and να is a stationary distribution of with να(ξ ≡ 0 or ξ ≡
1) = 0, then

sup
x

∣

∣

∣
να(ξ(x) = 1)− u∗

(α1 − 1

α0 − 1

)∣

∣

∣
≤ η.

(i) is a consequence of Theorem 4 of [8], which also applies to more general
perturbations. The main conditions of that result translate into f ′(0) ≥ η and

11
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Figure 2: Coexistence on C, type i takes over on Λi.

f ′(1) ≥ η in our present setting (see (1.88) in Section 1.8 below). (ii) sharpens (i)
by showing that if η is small then the density of 1’s in any nontrivial stationary
distribution is close to the prediction of mean-field theory. Durrett and Neuhauser
[20] prove results of this type for some systems with fast stirring and f(1) < 0.
Neuhauser and Pacala [37] conjectured that coexistence holds for all α0 = α1 < 1
(see Conjecture 1 of that paper) and proved it for αi sufficiently small. Hence (i)
provides further evidence for the general conjecture.

The next result is our main contribution to the understanding of Lotka-Volterra
models. It shows that (i) of the previous result is asymptotically sharp, and verifies
a conjecture in [8] (after Theorem 4 in that work). We assume p has finite support
but believe this condition is not needed.

Theorem 1.9. Assume p(·) has finite support. For 0 < η < 1 there is an r0(η) > 0,
non-decreasing in η, so that for the LV (α):

(i) 0’s take over for (α0, α1) ∈ Λη
0 and 0 ≤ |α0 − 1| < r0(η),

(ii) 1’s take over for (α0, α1) ∈ Λη
1 and 0 ≤ |α0 − 1| < r0(η).

Conjecture 2 of [37] states that 1’s take over for α ∈ Λ0
1, α0 > 1 and 0’s take

over for α ∈ Λ0
0, α0 > 1. Theorem 1.9 establishes this result asymptotically as α

gets close to (1, 1) at least for d ≥ 3.
Together, Theorems 1.8 and 1.9 give a fairly complete description of the phase

diagram of the Lotka-Volterra model near the voter model. In Figure 2 C is the union
over η ∈ (0, 1) of the regions in Theorem 1.8 (i) on which there is coexistence, and Λi,

12



i = 0, 1, is the union over η of the regions in Theorem 1.9 (i) and (ii), respectively, on
which i’s take over, as well as other parameter values for which the same result holds
by monotonicity. For example, if (α0, α1) ∈ Λ1, with α0 ∧ α1 ≥ 1/2, and (α′

0, α
′
1)

has α′
0 ≥ α0 and α′

1 ≤ α1, then by (1.31), (α′
0, α

′
1) ∈ Λ1. Theorem 1.8 (i) and

Theorem 1.9 show that the three mutually exclusive classifications of coexistence,
0’s take over, and 1’s take over, occur on the three regions, C, Λ0 and Λ1, meeting
at (1, 1) along mutually tangential lines with slopes m0, 1 and m−1

0 .

1.4 Evolution of cooperation

Ohtsuki et al [38] considered a system in which each site of a large (N vertex) graph
G is occupied by a cooperator (1) or a defector (0). Simplifying their setting a bit,
we will assume that each vertex in G has k neighbors. The interaction between
these two types is governed by a payoff matrix with real entries

C D

C α β
D γ δ

This means that a cooperator receives a payoff α from each neighboring cooperator
and a payoff β from each neighboring defector, while for defectors the payoffs are γ
and δ from each neighboring cooperator or defector, respectively. The terminology
is motivated by the particular case in which each cooperator pays a benefit b ≥ 0 to
each neighbor at a cost c ≥ 0 per neighbor, while each defector accepts the benefit
but pays no cost. The resulting payoff matrix is then

(

α β
γ δ

)

=

(

b− c −c
b 0

)

. (1.39)

In this case the payoff for D always exceeds that for C irregardless of the state
making the payoff. As a result in a homogeneously mixing population cooperators
will die out. The fact that such cooperative behavior may nonetheless take over in a
spatial competition is the reason for interest in these kind of models in evolutionary
game theory. In a spatial setting the intuition is that it may be possible to the C’s
to form cooperatives which collectively have a selective advantage.

If ni(y) is the number of neighboring i’s for site y ∈ G, i = 0, 1, and ξ(y) ∈ {0, 1}
is the state at site y, then the fitness ρi(y) of site y in state i is determined by its
local payoffs through

ρ1(y) = 1−w + w(αn1(y) + βn0(y)) if ξ(y) = 1 (1.40)

ρ0(y) = 1− w + w(γn1(y) + δn0(y)) if ξ(y) = 0.

Here w ∈ [0, 1] is a parameter determining the selection strength. Clearly for some
w0(α, β, γ, δ, k) > 0, ρi ≥ 0 for w ∈ [0, w0], which we assume in what follows. For
the death-birth dynamics in [38] a randomly chosen individual is eliminated at x
and its neighbors compete for the vacated site with success proportional to their

13



fitness. We consider the continuous time analogue which is the spin-flip system
ξt(x) ∈ {0, 1}, x ∈ G, with rates (write y ∼ x if and only if y and x are neighbors)

c(x, ξ) = (1− ξ(x))r1(x, ξ) + ξ(x)r0(x, ξ),

ri(x, ξ) =

∑

y∼x ρi(y)1(ξ(y) = i)
∑

y∼x ρ1(y)ξ(y) + ρ0(y)(1− ξ(y))
∈ [0, 1]. (1.41)

In [38] the authors use a non-rigorous pair approximation and diffusion approx-
imation to argue that for the cooperator-defector model in (1.39), for large popula-
tion size N and small selection w, cooperators are “favored” if and only if b/c > k.
Here “favored” means that starting with a single cooperator the probability that
cooperators take over is greater than 1/N , the corresponding probability in a selec-
tively neutral model. They also carried out a number of simulations which showed
reasonable agreement for N ≫ k although they noted that b/c > k appeared to be
necessary but not sufficient in general. It is instructive for the reader to consider the
nearest neighbor case on Z starting with cooperators to the right of 0 and defectors
to the left. It is then easy to check that the C/D interface will drift to the left, and
so cooperators take over, if and only if b/c > 2. This was noted in [38] as further
evidence for their b/c > k rule.

Our main result here (Corollary 1.12 below) is a rigorous verification of the
b/c > k rule for general symmetric translation invariant graphs with vertex set Zd

when w is small. More precisely, choose a symmetric (about 0) set N of neighbors
of 0 of size k, not containing 0, and consider the graph with vertex set Zd and x ∼ y
if and only if x− y ∈ N . Assume also that the additive group generated by N is Zd

and
∑

x∈N xixj/k = σ2δij , so that p(x) = k−11(x ∈ N ) satisfies the conditions on

our kernel given in, and prior to, (1.1). Set w = ε2. For x ∈ Z
d and ξ ∈ {0, 1}Zd

, let

f
(2)
i (x, ξ) = k−1

∑

y∼x

1(ξ(y) = i)fi(x, ξ) = k−2
∑

y∼x

∑

z∼y

1(ξ(y) = ξ(z) = i) ∈ [0, 1],

θ1(x, ξ) = (βk − 1)f1(x, ξ) + k(α − β)f (2)1 (x, ξ),

θ0(x, ξ) = (γk − 1)f0(x, ξ) + k(δ − γ)f (2)0 (x, ξ),

φ(x, ξ) = (θ0 + θ1)(x, ξ).

Using (1.40) in (1.41), we get

ri(x, ξ) =
fi + ε2θi
1 + ε2φ

(x, ξ). (1.42)

Note that

|θ1| ∨ |θ0| ∨ |φ|(x, ξ) ≤ 2k(1 + |α|+ |β|+ |γ|+ |δ|) ≡ R, (1.43)

and

f + ε2θ

1 + ε2φ
= f + ε2(θ − fφ) + ε4φ(fφ− θ)

[

∞
∑

0

(−ε2φ)k
]

= f + ε2(θ − fφ) + ε4ψε(f, φ, θ).

14



It follows that ξεt (εx) = ξε−2t(x), x ∈ Z
d (ξ has rates given by (1.41)) has spin-flip

rates given by (1.5) with

hεi (x, ξ) = θi(x, ξ)− fi(x, ξ)φ(x, ξ) + ε2ψε(fi(x, ξ), φ(x, ξ), θi(x, ξ)). (1.44)

If
ε2 < (2R)−1, (1.45)

then one easily from (1.43) that

|ψε((fi, φ, θi)(x, ξ))| ≤ 2R(R+ 1). (1.46)

From this and (1.44) it is clear that the hypotheses of Proposition 1.1 hold with

‖ĝεi − ĝi‖∞ ≤ ε22R(R + 1) (1.47)

and
hi(x, ξ) = (θi − fiφ)(x, ξ), i = 0, 1.

Hence ξεt is a voter model perturbation. This also implies

h0 + h1 = θ0 + θ1 − φ = 0. (1.48)

Some elementary arithmetic and (1.48) lead to

h0(x, ξ) = (γ − β)kf0f1(x, ξ) + k(δ − γ)f (2)0 (x, ξ)

− kf0(x, ξ)[(α − β)f (2)1 + (δ − γ)f (2)0 ](x, ξ),

h1(x, ξ) = −h0(x, ξ). (1.49)

As before, let e1, e2, e3 denote i.i.d. random variables with law p. If Pe denotes
averaging over the ei’s then we have

fi(0, ξ) = Pe(ξ(e1) = i), f
(2)
i (0, ξ) = Pe(ξ(e1) = i, ξ(e1 + e2) = i), (1.50)

fi1(0, ξ)f
(2)
i2

(0, ξ) = Pe(ξ(e1) = i1, ξ(e2) = i2, ξ(e2 + e3) = i2),

and similarly for higher order probabilities. We also continue to let 〈·〉u denote
expectation on the product space where (e1, e2, e3) and the voter equilibrium ξ are
independent. If ξ̂ = 1− ξ, then starting with (1.16) we have,

f(u)

k
=k−1〈ξ̂(0)h1(0, ξ)− ξ(0)h0(0, ξ)〉u = k−1〈h1(0, ξ)〉u,

where in the last equality (1.49) is used to see that what appears to be a quartic
polynomial is actually a cubic. Using (1.50) and some arithmetic we obtain

f(u)

k
=(β − γ)〈ξ̂(e1)ξ(e2)〉u + (α− β)〈ξ̂(e1)ξ(e2)ξ(e2 + e3)〉u (1.51)

+ (γ − δ)〈ξ(e1)ξ̂(e2)ξ̂(e2 + e3)〉u.

To simplify further we will use a simple lemma for coalescing random walk
probabilities (Lemma 1.17 in Section 1.7 below) together with the duality formula
(1.26) to establish the following more explicit expression for f in Section 1.7.
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Lemma 1.10.
f(u)
k = [(β − δ) + k−1(γ − δ)]p(0|e1)u(1− u)

+[(α−β)−(γ−δ)][u(1−u)(p(e1 |e2, e2+e3)+up(e1|e2|e2+e3))].

Rather than try to analyze this cubic as in Section 1.2, assume α − β = γ − δ
(which holds in our motivating example) so that f becomes a quadratic with roots
at 0 and 1. If β − δ > k−1(δ − γ), then f is strictly positive on (0, 1) and so
Proposition 1.4 shows the PDE solutions will converge to 1. If β − δ < k−1(δ − γ),
then f is strictly negative on (0, 1) and so by symmetry the PDE solutions will
converge to 0. As a result for w = ε2 small, in the former case we expect 1’s to take
over and in the latter case we expect 0’s to take over, and this is in fact the case.
The following result is proved in Section 1.7.

Theorem 1.11. Consider the spin-flip system on Z
d (d ≥ 3) with rates given by

(1.41) where α − β = γ − δ. If γ − δ > k(δ − β), then 1’s take over for w > 0
sufficiently small; if γ−δ < k(δ−β), then 0’s take over for w > 0 sufficiently small.

The particular instance of (1.39) follows as a special case.

Corollary 1.12. Consider the spin-flip system on Z
d (d ≥ 3) with rates given by

(1.41) where the payoff matrix is given by (1.39). If b/c > k, then the cooperators
take over for w > 0 sufficiently small, and if b/c < k, then the defectors take over
for w > 0 sufficiently small.

Proof. In this case α− β = γ − δ = b, δ − β = c, and so we have

γ − δ > k(δ − β) iff b > kc iff b/c > k.

1.5 Nonlinear voter models

Molofsky et al. [36] considered a discrete time particle system on Z
2 in which each

site is in state 0 or 1 and

P (ξn+1(x, y) = 1|ξn) = pk

if k of the sites (x, y), (x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1) are in state 1. They
assumed that p0 = 0 and p5 = 1, so that all 0’s and all 1’s were absorbing states and
p1 = 1− p4 and p2 = 1− p3, so that the model was symmetric under interchange of
0’s and 1’s. If the states of adjacent sites were independent then the density would
evolve according to the mean field dynamics

xt+1 = h(xt) = p1 · 5xt(1− xt)4 + p2 · 10x2t (1− xt)3

+ (1− p2) · 10x3t (1− xt)2 + (1− p1) · 5x4t (1− xt) + x5t

Based on simulations and an analysis of the mean-field equation, Molofsky et
al [36] predicted the phase diagram given in Figure 3. To explain this, h(x) = x is a
fifth degree equation with 0, 1/2, and 1 as roots. h′(0) = h′(1) = 5p1 so 0 and 1 are
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Figure 3: Conjectured phase diagram for the discrete time two-dimensional nonlinear
voter model of [36].

locally attracting if 5p1 < 1 and unstable if 5p1 > 1. h′(1/2) = (15−15p1−10p2)/8,
so 1/2 is locally attracting if 15p1 + 10p2 > 7 and unstable if 15p1 + 10p2 < 7.
From the stability properties of 0, 1/2, and 1, it is easy to determine when there
are additional roots α and 1 − α in the unit interval and whether or not they are
stable. The four shapes are given in Figure 4. To make the drawing easier we have
represented the quintic as a piecewise linear function.

The implications of the shape of f(u) (= h(u)−u in the above) for the behavior
for the system will be discussed below in the context of a similar system in continuous
time. There we will see that the division between 4A and 4B is dictated by the speed
of traveling waves for the PDE. Here we have drawn the “Levin line” 6p1 +2p2 = 2
which comes from computing the expected number of 1’s at time 1 when we have
two adjacent 1’s at time 0. Simulations suggest that the true boundary curve exits
the square at (0.024, 1), see page 280 in [36].

For our continuous time model the perturbation rate from the voter model is
determined by four points chosen at random from x+N where N is the set of integer
lattice points in ([−L,L]d − {0}). Let a(i) ≥ 0 be the flip rate at a given site when
i (randomly chosen) neighbors have a type disagreeing with that of the site and
suppose a(0) = 0. Let (Y1, . . . Y4) be chosen at random and without replacement
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Figure 4: Four possible shapes of the symmetric quintic f . Black dots indicate the
locations of stable fixed points.

from N . Then we consider the spin-flip system ξ(x), x ∈ Z
d with rates

c(x, ξ) = cv(x, ξ) + ε2[(1− ξ(x))EY (g1(ξ(x+ Y 1), . . . , ξ(x+ Y 4)))

+ ξ(x)EY (g0(ξ(x+ Y 1), . . . , ξ(x+ Y 4)))],

where

g1(ξ1, . . . , ξ4) = a
(

4
∑

1

ξi

)

, g0(ξ1, . . . , ξ4) = a
(

4−
4
∑

1

ξi

)

.

Then the rescaled system ξεt (εx) = ξtε−2(x), x ∈ Z
d is a voter model perturbation

since the required conditions are trivial (clearly (1.7) holds with ε1 =∞). We call ξ
the nonlinear voter model. General models of this type were introduced and studied
in [4].

We abuse our notation as before and incorporate expectation with respect to an
independent copy of Y = (Y 1, . . . , Y 4) in our voter equilibrium expectation 〈·〉u. If
Y 0 ≡ 0, then a short calculation shows that our reaction function in (1.16) is now

f(u) =

4
∑

j=1

a(j)(qj(u)− qj(1− u)), (1.52)

where

qj(u) =

(

4

j

)

〈
4−j
∏

i=0

(1− ξ(Y i))

4
∏

i=5−j

ξ(Y i)〉u.

Clearly
f(0) = f(1) = f(1/2) = 0 and f(u) = −f(1− u). (1.53)

It does not seem easy to calculate f explicitly, but if L is large, most of the sum comes
from Y i that are well separated and so the ξ values at the above sites should be nearly
independent. To make this precise let A = {Y 5−j , . . . , Y 4}, B = {Y 0, . . . , Y 4−j},
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(1 ≤ j ≤ 4), and note by (1.26) that

qj(u) =

(

4

j

) j
∑

i=1

5−j
∑

k=1

ui(1− u)kP (|ξ̂A∞| = i, |ξ̂B∞| = k, τ(A,B) =∞)

=

(

4

j

)

uj(1− u)5−j + q̂j(u),

where

q̂j(u) =

(

4

j

)

[

−uj(1− u)5−jP (|ξ̂A∪B
∞ | < 5)

+

j
∑

i=1

5−j
∑

k=1

1(i+ k < 5)ui(1− u)kP (|ξ̂A∞| = i, |ξ̂B∞| = k, τ(A,B) =∞)
]

=

5
∑

i=1

di(j, L)u
i.

If η0(L) = P (|ξ̂A∪B
∞ | < 5), that is the probability that there is a coalescence among

the random walks starting at Y 0, . . . , Y 4, then it follows easily from the above that
|di(j, L)| ≤ c0η0(L). Use this in (1.52) to conclude that f(u) = f1(u)+ f2(u), where
f2 includes the (smaller) contributions from the q̂j’s. That is

f2(u) =

5
∑

j=1

e(j, L)uj ,

where
sup

1≤j≤5
|e(j, L)| ≤ c1η0(L), (1.54)

and

f1(u) =− u[a(4)(1 − u)4 + a(3) · 4u(1 − u)3 + a(2) · 6u2(1− u)2 + a(1) · 4u3(1− u)]
+ (1− u)[a(4)u4 + a(3) · 4u3(1− u) + a(2) · 6u2(1− u)2 + a(1) · 4u(1− u)3]

=b1u(1− u)4 + b2u
2(1− u)3 − b2u3(1− u)2 − b1u4(1− u)

where b1 = 4a(1)− a(4) and b2 = 6a(2) − 4a(3). By symmetry we have

f1(0) = f1(1) = f1(1/2) = 0 and f1(u) = −f1(1− u). (1.55)

Clearly η0(L)→ 0 as L→∞, in fact well-known return estimates (such as Lemma 2.6(a)
below with t0 = 0, r0 = 1 and p large) and a simple optimization argument show
that

η0(L) ≤ CδL
−[d(d−2)/(2(d−1))]+δ, δ > 0. (1.56)

To prepare for the next analysis we note that

f ′1(u) =b1[(1− u)4 − 4u(1− u)3] + b2[2u(1 − u)3 − 3u2(1− u)2]
− b2[3u2(1− u)2 − 2u3(1− u)]− b1[4u3(1− u)− u4],
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Figure 5: Phase diagram for the continuous time nonlinear voter model with large
range in d ≥ 3.

and so we have f ′1(0) = f ′1(1) = b1 and f ′1(1/2) = −(6b1 +2b2)/16. A little calculus,
left for the reader, shows

∫ 1/2

0
f1(u) du =

5b1 + b2
192

= −
∫ 1

1/2
f1(u) du. (1.57)

We are now ready to describe the phase diagram for the nonlinear voter. Consult
Figure 5 for a picture. Note that in what follows when L is chosen large, it is
understood that how large depends on ā = (a(1), . . . , a(4)).

(1) f ′1(0) > 0, f ′1(1/2) < 0 and so by (1.54) for large enough L the same is true for
f . In this case 0, 1/2, and 1 are the only roots of f (all simple) and 1/2 is an
attracting fixed point for the ODE. An application of Proposition 1.4 on [0, 1/2]
and a comparison principle, showing that solutions depend monotonically on
their initial data (see Proposition 2.1 of [2]), to reduce to the case where
v ∈ [0, 1/2], shows that any non-trivial solution u of the PDE (1.19) satisfies
lim inft→∞ inf |x|≤2wt u(t, x) ≥ 1/2 for some w > 0. The same reasoning with
0 and 1 reversed shows the corresponding upper bound of 1/2. Therefore any
non-trivial solution of (1.19) will converge to 1/2 and we expect coexistence.

(2) f ′1(0) > 0, f ′1(1/2) > 0 and so by (1.54) for large enough L the same is
true for f . In this case 0, 1/2, 1 are unstable fixed points for the ODE
and there are attracting fixed points for the ODE at a and 1 − a for some
a ∈ (0, 1/2). All are simple zeros of f . Another double application of Proposi-
tion 1.4 now shows that any non-trivial solution u(t, x) to the PDE will have
lim inft→∞ inf |x|≤2wt u(t, x) ≥ a and lim supt→∞ sup|x|≤2wt u(t, x) ≤ 1 − a, so
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we expect coexistence. Simulations in [36], see Figure 7 and the discussion on
page 278 of that work, suggest that in this case there may be two nontrivial
stationary distributions: one with density near a and the other with density
near 1 − a. The symmetry of f about 1/2 is essential for this last possibility
as we note below (see Theorem 1.14).

(3) f ′1(0) < 0, f ′1(1/2) > 0 and so by (1.54) for large enough L the same is true
for f . In this case 0, 1/2, and 1 are the only roots of f (all simple) and
1/2 is an unstable fixed point while 0 and 1 are attracting. In this bistable
case the winner is dictated by the sign of the speed of the traveling wave, but
by symmetry (recall (1.53)) the speed is 0. One would guess that clustering
occurs in this case and there are only trivial stationary distributions, but our
method yields no result.

(4) f ′1(0) < 0, f ′1(1/2) < 0 and so by (1.54) for large enough L the same is true
for f . In this case 0, 1/2, 1 are attracting fixed points and there are unstable
fixed points at a and 1 − a for some a ∈ (0, 1/2) (all simple zeros of f). By
the discussion in Case II in Section 1.2 (with [0, 1/2] and [1/2, 1] in place of
the unit interval) there are traveling wave solutions wi(x − cit), i = 1, 2 with
w1(−∞) = 1, w1(∞) = w2(−∞) = 1/2 and w2(∞) = 0. Symmetry implies
c2 = −c1, but we can have c1 < 0 < c2 (Case 4A) in which case Proposition 1.7
and its mirror image show that solutions to the PDE will converge to 1/2
providing that the initial condition is bounded away from 0 and 1 on a large
enough set. We again use the comparison principle as in Case 1 to assume
the initial data takes values in the appropriate interval, [0, 1/2] or [1/2, 1], and
assume L is large enough so that the integrals of f1 and f on [0, 1/2] (and
hence on [1/2, 1]) have the same sign. Hence we expect coexistence in Case
4A and all invariant distributions to have density near 1/2. If c1 > 0 > c2
(Case 4B) and L is large enough, there is a standing wave solution w0(x) of
the PDE in d = 1 with w0(−∞) = 0, w0(∞) = 1 (see p. 284 in [26]), and our
method yields no result.

Theorem 1.13. Assume (b1, b2) are as in Case 1, 2 or 4A. If L is sufficiently large
(depending on ā) then:
(a) Coexistence holds for ε small enough (depending on L and ā).
(b) In Case 1 or 4A if η > 0 there is an ε0(η, L, ā) so that if 0 < ε ≤ ε0 and ν is
any stationary distribution for the nonlinear voter model satisfying
ν(ξ ≡ 0 or ξ ≡ 1) = 0, then

sup
x

∣

∣

∣
ν(ξ(x) = 1)− 1

2

∣

∣

∣
≤ η.

Remark. The proof is given in Section 1.7.3 below. Case 4A is of particular interest
as there is coexistence even though f ′(0) < 0. Here the low density limit theorem
in [7] shows convergence to super-Brownian motion with drift f ′(0) < 0 (see the
discussion in Section 1.8 below). From this one might incorrectly guess (after an
exchange of limits) that there is a.s. extinction of 0’s for the nonlinear voter model,
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while our proof of coexistence will show that there is positive probability of survival
of 0’s even starting with a single 0.

We next show that more can be said in Case 2 if we break the symmetry. This
also demonstrates how one can handle higher degree reaction functions in the pde
and still apply the general results in the next Section. Consider the nonlinear voter
model ξ as before but now for λ > 0 replace g1 with

g1,λ(ξ1, . . . , ξ4)) = (1 + λ)a
(

4
∑

1

ξi

)

, (1.58)

while g0 is unchanged. To avoid trivialities we assume
∑4

1 a(j) > 0. A short
calculation now shows that if f is as in (1.52), then our reaction function in (1.16)
becomes

f(λ)(u) = f(u) + λ

4
∑

j=1

a(j)qj(u) ≡ f(u) + λf0(u) > f(u) on (0, 1). (1.59)

Decomposing qj(u) as before we get

f(λ)(u) = f1,λ(u) + f2,λ(u),

where

f1,λ(u) = (b1 + 4λa(1))u(1 − u)4 + (b2 + 6λa(2))u2(1− u)3 (1.60)

− (b2 − 4λa(3))u3(1− u)2 − (b1 − λa(4))u4(1− u)
= f1(u) + λf3(u) > f1(u) on (0, 1),

f2,λ(u) =

5
∑

j=1

e(j, L, λ)uj , and sup
1≤j≤5

|e(j, L, λ)| ≤ c2(λ+ 1)η0(L). (1.61)

We also have

f ′1,λ(0) = b1 + 4λa(1), f ′1,λ(1) = b1 − λa(4). (1.62)

Theorem 1.14. Suppose b1 > 0 and 0 < λ < b1/a(4).
(a) Coexistence holds for large L and small enough ε (depending on L, λ and ā).
(b) Assume 3b1 + b2 < 0 and let 1− a′ denote the largest root of f1(u) = 0 in (0, 1).
If η > 0, L > ε1(η, ā)

−1, 0 < λ < ε1(η, ā), 0 < ε < ε0(η, L, λ, ā) and ν is any
stationary distribution satisfying ν(ξ ≡ 0 or ξ ≡ 1) = 0, then

sup
x

∣

∣

∣
ν(ξ(x) = 1)− (1− a′)

∣

∣

∣
≤ η.

See Section 1.7.3 for the proof. For a concrete example, consider a(1) = a(2) = 1,
a(3) = a(4) = 3, which is a version of the majority vote plus random flipping. Then
b1 = 4a(1) − a(4) = 1, b2 = 6a(2) − 4a(3) = −6, and 3b1 + b2 = −3, and so the
hypotheses of (b) hold for small λ > 0. As λ ↓ 0, the density of any invariant
measure approaches 1− a the largest root of f1(u) = 0, while symmetric reasoning
shows that if λ ↑ 0, the densities will approach a. Of course the closer λ gets to 0,
the smaller we must make ε to obtain the conclusion of Theorem 1.14, so we are not
able to prove anything about the case λ = 0.
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1.6 General Coexistence and Extinction Results

Our results for the three examples will be derived from general results with hy-
potheses concerning properties of the limiting PDE. In this subsection, we state
those results and give an overview of the contents of the rest of the paper. We work
with a voter model perturbation ξεt (x), x ∈ εZd, t ≥ 0 throughout.

In Section 2 we first introduce a family of Poisson processes (“graphical repre-
sentation”) which we use to define our process ξεt (x) on x ∈ εZd. Using this and
working backwards in time we define a “dual process” X which is a branching coa-
lescing random walk with particles jumping at rate ε−2 according to pε(x) = p(x/ε)
and with a particle at x giving birth to particles at x + εY 1, . . . x + εY N0 when
a reaction occurs at x. The ideas in the definition of the dual are a combination
of those of Durrett and Neuhauser [20] for systems with fast stirring and those of
Durrett and Zähle [23] for biased voter models that are small perturbations of the
voter model.

Duality allows us to compute the value at z at time T by running the dual process
Xε backwards from time T to time 0 starting with one particle at z at time T . Most
of the work in Section 2 is to use coupling to show that for small ε, Xε is close to
a branching random walk X̂ε. Once this is done, it is straightforward to show (in
Section 3) that as ε → 0 the dual converges to a branching Brownian motion X̂0,
and then derive Theorem 1.2 which includes convergence of P (ξεt (x) = 1) to the
solution u(t, x) of a PDE.

Our general coexistence result will be based on the following assumption about
solutions to the PDE. The coexistence results for the models discussed in the pre-
vious section are obtained by verifying this assumption in the particular cases.

Assumption 1. Suppose that there are constants 0 < v0 < u∗ ≤ u∗ < v1 < 1, and
w,Li > 0, so that
(i) if u(0, x) ≥ v0 when |x| ≤ L0, then lim inft→∞ inf |x|≤wt u(t, x) ≥ u∗.
(ii) if u(0, x) ≤ v1 when |x| ≤ L1, then lim supt→∞ sup|x|≤wt u(t, x) ≤ u∗.

We also will need a rate of convergence in (1.9), namely for some r0 > 0,

1
∑

i=0

‖gεi − gi‖∞ ≤ c1.63εr0 . (1.63)

Assumption 1 shows that the limiting PDE in Theorem 1.3 will have solutions
which stay away from 0 and 1 for large t. A “block construction” as in [14] will be
employed in Section 6 to convert this information about the PDE into information
about the particle systems. In effect, this allows us to interchange limits as ε → 0
and t → ∞ and conclude the existence of a nontrivial stationary distribution, and
also show that any stationary distribution will have particle density restricted by
the asymptotic behavior of the PDE solutions at t =∞.

Both Theorem 1.15 and 1.16 below will be formulated for the voter model pertur-
bations on εZd, but the conclusions then follow immediately for the original unscaled
particle systems in (1.4).
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Theorem 1.15. Suppose Assumption 1 and (1.63). If ε > 0 is small enough, then
coexistence holds and the nontrivial stationary distribution ν may be taken to be
translation invariant.

If η > 0 and ε > 0 is small enough, depending on η, then any stationary distri-
bution ν such that

ν
(

∑

x

ξ(x) = 0 or
∑

x

(1− ξ(x)) = 0
)

= 0 (1.64)

satisfies ν(ξ(x) = 1) ∈ (u∗ − η, u∗ + η) for all x.

Note that in the second assertion we do not require that ν be translation invari-
ant.

Results that assert 0’s will take over will require a stronger pde input:

Assumption 2. There are constants 0 < u1 < 1, c2, C2, w > 0, L0 ≥ 3 so that for
all L ≥ L0, if u(0, x) ≤ u1 for |x| ≤ L then for all t ≥ 0

u(t, x) ≤ C2e
−c2t for all |x| ≤ L+ 2wt.

Finally we need to assume that the constant configuration of all 0’s is a trap for
our voter perturbation, that is,

gε1(0, . . . , 0) = 0, or equivalently hε1(0, 0) = 0, for 0 < ε ≤ ε0 , (1.65)

where 0 is the zero configuration in {0, 1}Zd
. This clearly implies f(0) = 0 and is

equivalent to it if gε1 does not depend on ε, as is the case in some examples. Recall
the definition of “i”s take over” from (1.14) and that q is the law of (Y 1, . . . , Y N0).

Theorem 1.16. Suppose Assumption 2, (1.63), (1.65), p(·) and q(·) have finite
support, and f ′(0) < 0. Then for ε small the 0’s take over.

We believe the theorem holds without the finite range assumptions on p and q.
By Proposition 1.1 in the above finite support setting, it suffices to assume (1.10) in
place of (1.7), and also assume (1.63) holds for the ĝεi , ĝi appearing in (1.10) instead
of the gεi , gi.

In order to show that 0’s take over, say, we will need several additional argu-
ments. The pde results will only ensure we can get the particle density down to a
low level (see Section 4) but clearly we cannot expect to do better than the error
terms in this approximation. To then drive the population to extinction on a large
region with high probability we will need to refine some coalescing random walk
calculations from the low density setting in Cox and Perkins [8]–see Section 7 and
especially Lemma 7.6. This is then used as input for another percolation argument
of Durrett [13] to guarantee that there are no particles in a linearly growing region.
Since there was an error in the original proof of the latter we give all the details
here in Sections 5 and 7.3.

Quantifying the outline above, the first step in the proof of Theorem 1.16, taken
in Section 4 is to use techniques of Durrett and Neuhauser [20] to show that if ξε0 has
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density at most u1 on [−L,L]d then at time T1 = c1 log(1/ε) the density is at most εβ

on [−L−wT1, L+wT1]
d (see Lemma 4.2). Here β is a small parameter. The second

step, taken in Section 7, is to show that if one waits an additional T2 = c2 log(1/ε)
units of time then there will be no particles in [−L−wT1 +AT2, L+wT1 −A2T2]

d

at time T1 + T2. The first step here (Lemma 7.6) is to show that if we start a
finite (rescaled) block of ones of density at most εβ then with probability at least
1− εβ/2 it will be extinct by time C log(1/ε). Here it is convenient that arguments
for the low density regime of [7] (density εd−2) continue to work all the way up to
εβ and also that the PDE arguments can be used to reduce the density down to
εβ . In short, although the precise limit theorems, Theorem 1.2 and Corollary 1.8
in [7] apply in disjoint regimes (particle densities of 1 and εd−2, respectively) the
methods underlying these results apply in overlapping regimes which together allow
us to control the underlying particle systems completely. Of course getting 1’s to be
extinct in a large block does not give us what we want. The block construction in
[20] is suitably modified to establish complete extinction of 1’s on a linearly growing
set. A comparison result of [34], suitably modified to accommodate our percolation
process, is used to simplify this construction.

1.7 Application to the examples

1.7.1 Lotka-Volterra systems

Proof of Theorem 1.9. (i) Let 0 < η < 1 and consider first

α0 = αε
0 = 1− ε2, α1 = αε

1 = 1−m0(1− η)ε2,

so that in the notation of Section 1.3 we have set θ0 = −1, θ1 = −m0(1 − η). The
rescaled Lotka-Volterra process ξε is a voter model perturbation and from (1.36) we
have

f(u) = −u(1− u)[ηp2 + up3(1 +m0(1− η))] < 0 on (0, 1).

Proposition 1.5 verifies Assumption 2 in Theorem 1.16 and f ′(0) < 0 is obvious.
(1.63) is trivial (gεi = gi) and (1.65) is immediate from (1.34). The finite range
assumption on q = p×p is immediate from that on p. Theorem 1.16 implies 0’s take
over for ε small. Therefore when 0 < 1−α0 ≤ r0(η) and α1 = 1+m0(1−η)(α0−1),
then 0’s take over for LV (α). The monotonicity in (1.31) shows this is also the case
for α1 ≥ 1 +m0(1− η)(α0 − 1) and α0 as above.

Next consider

α0 = αε
0 = 1 + ε2, α1 = αε

1 = 1 + (1 + η)ε2 that is, θ0 = 1, θ1 = 1 + η.

In this case we have

f(u) = u(1− u)[p2 − (1 + η)(p2 + p3) + up3(2 + η)],

and so, assuming without loss of generality (by (1.31)) 1 + η < m−1
0 , from (1.37) f

has a zero, and an unstable fixed point for the ODE, at

u∗ =
(1 + η)(p2 + p3)− p2

p3(2 + η)
∈
(1

2
, 1
)

.
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It follows that
∫ 1
0 f(u)du < 0 and Proposition 1.7 establishes Assumption 2. As

above, Theorem 1.16 and (1.31) show that 0’s take over if 0 < α0 − 1 is sufficiently
small and α1 ≥ 1 + (1 + η)(α0 − 1).

(ii) Interchange the roles of 0 and 1 in (i).

Proof of Theorem 1.8. We slightly extend the setting in Section 1.3 and for η ∈
(0, 1 −m0) consider

αε
0 = 1− ε2, αε

1 = 1 + ε2θε1, where − θε1 ∈
[ m0

1− η ,
1− η
m0

]

, lim
ε↓0

θε1 = θ1. (1.66)

Then the rescaled Lotka-Volterra model ξε in (1.32) remains a voter model pertur-
bation but now gε0 may now depend on ε. From (1.36) we have

f(u) = u(1− u)[−p2 − θ1(p2 + p3) + up3(−1 + θ1)],

which has a zero, and attracting fixed point for the ODE, at

u∗(−θ1) =
θ1(p2 + p3) + p2
p3(θ1 − 1)

∈ (0, 1). (1.67)

Proposition 1.4 and its mirror image, with 0 and 1 reversed, establish Assumption 1
with u∗ = u∗ = u∗(−θ1) (see (1.27)). Theorem 1.15 therefore shows that for 0 <
ε < ε0(η)

coexistence holds, and if ν is a stationary distribution satisfying (1.68)

ν(ξ ≡ 0 or ξ ≡ 1) = 0, then sup
x
|ν(ξ(x) = 1)− u∗(−θ1)| < η.

Suppose first that (ii) of Theorem 1.8 fails. Then there is a sequence εn ↓ 0,
(αεn

0 , α
εn
1 ) and κ > 0 so that (1.66) holds with ε = εn, and there is a stationary

measure νn for ξεn satisfying νn(ξ ≡ 0 or ξ ≡ 1) = 0 and such that

sup
x
|νn(ξ(x) = 1) − u∗(−θεn1 )| > κ.

Since u∗(−θεn1 ) → u∗(−θ1), if we choose η < κ this contradicts (1.68) for large n,
and so proves (ii). The proof of (i) is similar using the first part of (1.68). That is,
if (i) fails, there is a sequence εn ↓ 0 so that coexistence fails for αεn

i as in (1.66),
contradicting the first part of (1.68).

1.7.2 Evolution of cooperation

Here is the result on coalescing probabilities which will help us simplify the formula
(1.51) for the reaction function f . The notation is as in Section 1.4.

Lemma 1.17. (a) p(e1|e2) = p(0|e1).
(b) p(e1|e2 + e3) =

(

1 + 1
k

)

p(0|e1).
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Proof. Let B̃x
t denote a rate 2 random walk with kernel p starting at x, and note

that for x 6= 0, B̂x − B̂0 has the same law as B̃x until it hits 0. Note also that for
x 6= 0, P (B̃x

t 6= 0 ∀ t ≥ 0) =
∑

y p(y)P (B̃
x+y
t 6= 0 ∀ t ≥ 0).

For (a),

p(0|e1) =
∑

x1

p(x1)P (B̃
x1
t 6= 0 for all t ≥ 0)

=
∑

x1

∑

x2

p(x1)p(x2)P (B̃
x1+x2
t 6= 0 for all t ≥ 0) (use x1 6= 0)

=
∑

x1

∑

x2

p(x1)p(x2)P (B̃
x1−x2
t 6= 0 for all t ≥ 0) (by symmetry)

= p(e1|e2).

For (b), let Tj(x) be the time of the jth jump of B̃x. Then using symmetry,

p(e1|e2 + e3) =
∑

x1,x2,x3

p(x1)p(x2)p(x3)P (B̃
x1+x2+x3
t 6= 0 for all t ≥ 0)

=
∑

x1

p(x1)P (B̃
x1
t 6= 0 for all t ≥ T2(x1)).

Now using the above and first equality in the proof of (a),

p(e1|e2 + e3)− p(0|e1) =
∑

x1

p(x1)P (B̃
x1
T1

= 0, B̃x1
t 6= 0 for all t ≥ T1(x1))

= k−1
∑

x1

p(x1)P (B̃
0
t 6= 0 for all t ≥ T1)

= k−1p(0|e1).

The result follows.

Proof of Lemma 1.10. We first rewrite (1.51) as

f(u)

k
=(β − γ)〈ξ̂(e1)ξ(e2)〉u + (γ − δ)〈ξ(e1)ξ̂(e2)ξ̂(e2 + e3) + ξ̂(e1)ξ(e2)ξ(e2 + e3)〉u

+ ((α − β)− (γ − δ))〈ξ̂(e1)ξ(e2)ξ(e2 + e3)〉u
=I + II + III. (1.69)

Some elementary algebra shows that

II = (γ − δ)〈ξ(e1)− ξ(e1)ξ(e2)− ξ(e1)ξ(e2 + e3) + ξ(e2)ξ(e2 + e3)〉u. (1.70)

Note that (1.26) and Lemma 1.17(a) imply

〈ξ(e1)ξ(e2)〉u =u2p(e1|e2) + u(1− p(e1|e2))
=u2p(0|e1) + u(1− p(0|e1))
=〈ξ(0)ξ(e1)〉u = 〈ξ(e2)ξ(e2 + e3)〉u,
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the last by translation invariance. Using this in (1.70) and again applying (1.26),
we get

I + II = (β − γ)u(1− u)p(e1|e2) + (γ − δ)[u− 〈ξ(e1)ξ(e2 + e3)〉u] (1.71)

= (β − γ)u(1− u)p(e1|e2)
+ (γ − δ)[u − u2p(e1|e2 + e3)− u(1− p(e1|e2 + e3))]

= u(1− u)[(β − γ)p(e1|e2) + (γ − δ)p(e1|e2 + e3)]

= u(1− u)p(0|e1)[(β − γ) + (1 + k−1)(γ − δ)],

where Lemma 1.17 is used in the last equality. A straightforward application of
(1.26) allows us to find the coefficients of the cubic III in (1.69) and we obtain the
required expression for f(u)/k.

Proof of Theorem 1.11. This is now an easy application of Theorem 1.16. Assume
γ − δ < k(δ − β). Then Lemma 1.10 shows that f(u) = c1u(1 − u) for c1 < 0.
Proposition 1.5 shows that Assumption 2 of Theorem 1.16 is valid for any u1 ∈ (0, 1).
The condition (1.63) holds with r0 = 2 by (1.47) (recall ‖gεi − gi‖∞ = ‖ĝεi − ĝi‖∞ by
Proposition 1.1). The condition (1.65) is clear from the expression for hε1 in (1.44).
Since f ′(0) < 0 is clear from the above, and w = ε2, Theorem 1.16 completes the
proof in this case. The case where the inequality is reversed follows by a symmetrical
argument, or, if you prefer, just reverse the roles of 0 and 1.

1.7.3 Nonlinear voter models

Proof of 1.13. Consider Case 4A first. As pointed out in this Case in Section 1.5, for
L sufficiently large we may employ the mirror image of Proposition 1.7 on [0, 1/2]
with ρ = a, the unique root of f in (0, 1/2), and Proposition 1.7 on [1/2, 1] with
ρ = 1− a, along with the comparison principle (Proposition 2.1 in [2]), to see that
Assumption 1 holds for ε < ε0(η) with u∗ = 1

2−η, u∗ = 1
2+η, v0 = δ, and v1 = 1−δ.

(1.63) is trivial because gεi = gi. Theorem 1.15 now implies (a) and (b) in this case.
The proofs in Cases 1 and 2 are similar using Proposition 1.4 (note all the zeros are
simple in these cases) to verify Assumption 1 (see the discussion in these cases in
Section 1.5).

Proof of 1.14. (a) The conditions on b1 and λ imply that f ′1,λ(0) > 0 and f ′1,λ(1) >
0. Coexistence for large L and small ε is now established as in Case 2 (or 1) of
Theorem 1.13–see the discussion in Section 1.5.
(b) By taking λ and L−1 small, depending on (η, ā), we see from (1.60), (1.61),
(1.62), and our conditions on the bi that f(λ)(u) = 0 will have 3 simple roots in
(0, 1), p1(λ) < p2(λ) < p3(λ), within η/4 of the respective roots

a′ < 1/2 < 1− a′

of f1(u) = 0. As (1.63) is again obvious, we now verify Assumption 1 of Theorem 1.15
with u∗ = 1−a′+ η

2 , u∗ = 1−a′− η
2 , v0 ∈ (p2, u∗), and v1 ∈ (u∗, 1) (η is small so these
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intervals are non-empty). The result would then follow by applying Theorem 1.15.
The upper bound (ii) in Assumption 1 is an easy application of Proposition 1.5,
with the interval (p3, 1) in place of (0, 1), and the comparison principle.

For the lower bound (i) in Assumption 1, we use a result of Weinberger [42]. To
state the result we need some definitions. His habitat H will be R

d in our setting
and his space B is the set of continuous functions from H to [0, π+]. In our case
π+ = 1. His result is for a discrete iteration un+1 = Q(un), where in our case Q(u)
is solution to the PDE at time 1 when the initial data is u. His assumption (3.1)
has five parts:

(i) if u ∈ B then Q(u) ∈ B.

(ii) If Ty is translation by y then Q(Tyu) = TyQ(u).

(iii) Given a number α, let Q(α) be the constant value of Q(uα) for uα ≡ α. There
are 0 ≤ π0 < π1 ≤ π+ so that if α ∈ (π0, π1) then Q(α) > α. Q(π0) = π0 and
Q(π1) = π1.

(iv) u ≤ v implies Q(u) ≤ Q(v).

(v) If un ∈ B and un → u uniformly on bounded sets then Q(un)(x)→ Q(u)(x).

Clearly (i) and (ii) hold in our application. For (iii) we let π0 = p2(λ) and π1 =
p3(λ). (iv) a consequence of PDE comparison principles, see, e.g., Proposition 2.1
in Aronson and Weinberger (1978). (v) follows from the representation of solutions
of the PDE in terms of the dual branching Brownian motion (see Lemma 3.3).

The next ingredient for the result is

S = {x ∈ R
d : x · ξ ≤ c∗(ξ) for all ξ ∈ Sd−1},

where Sd−1 is the unit sphere in R
d. c∗(ξ) is the wave speed in direction ξ defined

in Section 5 of [42]. Due to the invariance of the PDE under rotation, all our speeds
are the same, c∗ = ρ, and S is a closed ball of radius ρ or the empty set. Here is
Theorem 6.2 of [42].

Theorem 1.18. Suppose (i)–(v) and that the interior of S is nonempty. Let S ′′ be
any closed and bounded subset of the interior of S. For any γ > π0, there is an rγ
so that if u0(x) ≥ γ on a ball of radius rγ and if un+1 = Q(un) then

lim inf
n→∞

min
x∈nS′′

un(x) ≥ π1. (1.72)

To be able to use this result, we have to show that ρ > 0. Note that here
we require lower bounds on the wave speed of solutions to the reaction diffusion
equation in one spatial dimension. This is because traveling wave solutions in the
direction ξ of the form w(x · ξ − ρt) correspond to traveling waves w in one spatial
dimension. Recall that in the decomposition (1.59) f(u) is odd about u = 1/2, and
for large L has f ′(1/2) > 0 by 3b1+ b2 < 0. The latter shows f has 3 simple zeros in
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(0, 1) at a < 1/2 < 1− a. The strict inequality in (1.59) on (0, 1) now easily implies
(compare the negative and positive humps separately)

∫ p3

p1

f(λ)(u)du >

∫ 1−a

a
f(u)du = 0. (1.73)

So by the discussion in part II(ii) of Section 1.2 there is a one-dimensional decreasing
traveling wave solution to (1.19) (with f = f(λ)) over (p1, p3) with positive wave
speed r2(λ).

To consider traveling waves over (0, p1(λ)), we note that Kolmogorov, Petrovsky,
and Piscounov [31] have shown that if we consider

∂u

∂t
=
σ2

2
∆u+ f(u)

in one dimension where f satisfies

f(0) = f(1) = 0, f(u) > 0 for 0 < u < 1, f ′(u) ≤ f ′(0) for 0 < u ≤ 1 (1.74)

then there is a traveling wave solution with speed
√

2σ2f ′(0) and this is the minimal
wave speed. For this fact one can consult Bramson [3] or Aronson and Weinberger
[1]. However, the intuition behind the answer is simple: the answer is the same as
for the linear equation

∂u

∂t
=
σ2

2
∆u+ f ′(0)u

which gives the mean of branching Brownian motion. For more on this connection,
see McKean [35].

Now let g1 ≤ g2 be C1 functions on [0, 1] such that

0 < g2 ≤ f(λ) on (0, p1), g1 = g2 = f(λ) on [p1, 1],

g′2(0) ∈
(

0,
r2(λ)

2

2σ2

)

, g′2(u) ≤ g′2(0) on [0, p1], (1.75)

and for some 0 < p0 < p1,

g1(0) = 0, g1 < 0 on (0, p0), g1 > 0 on (p0, p1),

∫ p1

0
g1(t) dt > 0, g′1(0) < 0. (1.76)

The existence of such functions is elementary. By the KPP result above, the minimal
wave speed over (0, p1(λ)) for the g2 equation is

c2 =
√

2σ2g′2(0) < r2(λ). (1.77)

By Theorem 2.4 and Corollary 2.3 of [25] (or the discussion in part II(ii) of Sec-
tion 1.2) there is a unique traveling wave solution u(t, x) = w(x−c1t) (w decreasing)
to the g1 equation with unique wave speed c1 > 0 (since the integral in (1.76) is
positive) and range (0, p1). Note here and elsewhere that the traveling waves w in
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[25] are increasing and so our wave speeds have the opposite sign. By a comparison
theorem for wave speeds (Proposition 5.5 of [42]) we may conclude that

c2 ≥ c1. (1.78)

The hypothesis of the above comparison result is easily verified using g1 ≤ g2 and
the standard comparison principle (e.g. Proposition 2.1 of [2]). It follows from
(1.77) and (1.78) that c1 < r2(λ) which are the wave speeds of the g1 equation over
(0, p1) and (p1, p3), respectively. We can therefore apply Theorem 2.7 of [25] to
conclude the existence of a traveling wave over (0, p3(λ)) for the g1 equation with
speed r1(λ) ∈ (c1, r2(λ)). The wave and its speed are both unique by Corollary 3.3
of [25]. Since f(λ) ≥ g1 on [0, p3], another application of Proposition 5.5 of [42] shows
that ρ ≥ r1(λ) and in particular ρ > 0.

Using (1.72), we have proved that for 0 < 2w = ρ,

lim inf
n→∞

inf
|x|≤2wn

u(n, x) ≥ p3(λ) ≥ 1− a′ − η

4
,

providing that u(0, x) ≥ v0 for |x| ≤ rv0 . The same reasoning gives the same
conclusion with nτ in place of n for any τ > 0. Taking τ small enough, a simple
interpolation argument (use the weak form of the reaction diffusion equation and
smoothing properties of the Brownian semigroup) now gives Assumption 1(i) with
u∗ = 1− a′− η

2 where the 2w in the above helps a bit in this last interpolation step.

1.8 Comparison with low density superprocess limit theorem

To make a comparison between our hydrodynamic limit theorem (Theorem 1.3) and
the superprocess limit theorem of Cox and Perkins [7] we will write our perturbation
terms in a different form, which will also be useful in Section 7. Define

ΞS(η) =
∏

i∈S
ηi for η = (η1, . . . , ηN0) ∈ {0, 1}N0 , S ∈ P̂N0 = {subsets of {1, . . . , N0}},

and

χ(A, x, ξ) =
∏

y∈A
ξ(x+ y), x ∈ Z

d, ξ ∈ {0, 1}Zd
,

A ∈ PN0 = {subsets of Zd of cardinality at most N0}.

By adding an independent first coordinate to Y we may assume Y 1 has law p. If

g̃εi (ξ1, . . . , ξN0) = −ε−2
1 1(ξ1 = i) + gεi (ξ1, . . . , ξN0), (1.79)

and g̃i is as above without the superscript ε, then

lim
ε↓0
‖g̃εi − g̃i‖∞ = 0, (1.80)
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and we may rewrite (1.7) as

hεi (x, ξ) = EY (g̃
ε
i (x+ Y 1, . . . , x+ Y N0)), i = 0, 1, (1.81)

and similarly without the ε’s. It is easy to check that {ΞS(·) : S ∈ P̂N0} is a basis for
the vector space of functions from {0, 1}N0 to R and so there are reals β̂ε(S), δ̂ε(S),
S ∈ P̂N0 , such that

g̃ε1(η) =
∑

S∈P̂N0

β̂ε(S)ΞS(η), g̃ε0(η) =
∑

S∈P̂N0

δ̂ε(S)ΞS(η), (1.82)

and similarly without the ε’s. If S ∈ P̂N0 , let Y
S = {Y i : i ∈ S}, where Y ∈ Z

dN0

has law q as usual. Let EY denote expectation with respect to Y . It is easy to use
(1.81) to check that

hε1(x, ξ) =
∑

S∈P̂N0

β̂ε(S)EY (χ(Y
S , x, ξ)) =

∑

A∈PN0

βε(A)χ(A, x, ξ) (1.83)

hε0(x, ξ) =
∑

S∈P̂N0

δ̂ε(S)EY (χ(Y
S , x, ξ)) =

∑

A∈PN0

δε(A)χ(A, x, ξ), (1.84)

where for A ∈ PN0 ,

βε(A) =
∑

S∈P̂N0

β̂ε(S)P (Y
S = A), δε(A) =

∑

S∈P̂N0

δ̂ε(S)P (Y
S = A). (1.85)

Analogous equations to (1.83), (1.84) and (1.85) hold without the ε’s.
Now use (1.83) and (1.84) without the ε’s, and (1.26) to see that

f(u) ≡ 〈(1 − ξ(0)h1(0, ξ)− ξ(0)h0(0, ξ)〉u

=
∑

A∈PN0

[

β(A)
[

|A|
∑

j=1

uj(1− u)P (|ξ̂A∞| = j, τ(A, {0}) =∞)
]

(1.86)

+ β(∅)(1 − u)− δ(A)
[

|A∪{0}|
∑

j=1

ujP (|ξ̂A∪{0}
∞ | = j)

]]

, (1.87)

which is a polynomial of degree at most N0+1 as claimed in Section 1.1. If β(∅) = 0,
then f(0) = 0 and

f ′(0) =
∑

A∈PN0

β(A)P (τ(A) <∞, τ(A, {0}) =∞)−δ(A)P (τ(A∪{0}) <∞). (1.88)

From (1.82) one easily derives

β̂ε(S) =
∑

V⊂S

(−1)|S|−|V |g̃ε1(1V ), δ̂ε(S) =
∑

V⊂S

(−1)|S|−|V |g̃ε0(1V ), (1.89)
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and similarly without the ε’s. Therefore

|β̂ε(S)− β̂(S)|+ |δ̂ε(S)− δ̂(S)| ≤ 2N0(‖g̃ε1 − g̃1‖∞ + ‖g̃ε0 − g̃0‖∞), (1.90)

and so

∑

A∈PN0

|βε(A)− β(A)|+ |δε(A)− δ(A)| ≤ 22N0(‖g̃ε1 − g̃1‖∞ + ‖g̃ε0 − g̃0‖∞). (1.91)

Our spin-flips are now recast as

cε(εx, ξε) = ε−2cv(x, ξ) +
∑

A∈PN0

χ(A, x, ξ)[βε(A)(1 − ξ(x)) + δε(A)ξ(x)],

which is precisely (1.17) of [7] with ε = N−1/2. If we assume

gε1(0) = 0 (and hence g̃ε1(0) = β̂ε(∅) = 0) for small ε, (1.92)

and the voter kernel p has finite support, then using the fact that the right-hand side
of (1.91) approaches 0 as ε→ 0 (by (1.80)), it is easy to check that all the hypotheses
of Corollary 1.8 of [7] hold. Alternatively, in place of the finite support assumption on
p one can assume the weaker hypothesis (P4) of Corollary 1.5 of [8], and then apply
that result. These results state that for ε as above if Xε

t = ε2
∑

x∈εZd ξεt (x)δx and
Xε

0 → X0 weakly in the space MF (R
d) of finite measures on R

d, then Xε converges
weakly in the Skorokhod space ofMF (R

d)-valued paths to a super-Brownian motion
with drift θ = f ′(0) (as in (1.88)). In this result we are starting O(ε−2) particles
on a grid of ε−d (d ≥ 3) sites per unit volume, so it is a low density limit theorem
producing a random limit, whereas Theorem 1.3 is a high density limit theorem
producing a pde limit. The latter result gives a natural explanation for the drift
θ in the super-Brownian limit which was defined by the right-hand side of (1.88)
in [7]. Namely, under (1.92), in the low density limit we would expect a drift of
limu→0 f(u)/u = f ′(0), which of course happens to equal the summation in (1.88).
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2 Construction, Duality and Coupling

In this section, we first introduce a family of Poisson processes which we use to
define ξt on εZ

d, a “dual process” X and a “computation process” ζ. The duality
equation (2.17) below gives a representation of ξt(x) in terms of (X, ζ). Next we
show that for small ε, (X, ζ) is close to the simpler (X̂, ζ̂), where X̂ is a branching
random walk system with associated computation process ζ̂. Finally we show by a
strong invariance principle that for small ε, (X̂, ζ̂) is close to a branching Brownian
motion and its associated computation process.

However, our first task will be to prove Proposition 1.1 and reduce to the case
where ε1 =∞ in (1.7).

2.1 Preliminaries

Proof of Proposition 1.1. Let p = min{p(yi) : p(yi) > 0}, choose ε0 > 0 so that
M = sup0<ε≤ε0 ‖ĝε0‖∞ ∨ ‖ĝε1‖∞ <∞ and then choose ε1 > 0 so that

ε−2
1 p > M. (2.1)

For 0 < ε < ε0 define gεi on {0, 1}N0 by

gεi (ξ1, . . . , ξN0) = ε−2
1

N0
∑

1

1(ξj = i)p(yj) + ĝεi (ξ1, . . . , ξN0), i = 0, 1, (2.2)

and define gi by the same equation without the ε’s. Clearly ‖gεi − gi‖∞ = ‖ĝεi −
ĝi‖∞ → 0 as ε → 0. We may assume y1 = 0. By replacing ĝεi with ĝεi 1(ξ1 = 1 − i)
and redefining hεi analogously (this will not affect (1.5)), we may assume

ĝεi (ξ1, . . . , ξN0) = 0 if ξ1 = i. (2.3)

We now show that gε1 ≥ 0. Assume first

N0
∑

1

ξip(yi) = 0. (2.4)

Choose ξ ∈ {0, 1}Zd
so that ξ(yi) = ξi. If ξ(0) = 0, then by (1.5), (1.10), and (2.2),

0 ≤ cε(0, ξε) = ĝε1(ξ(y1), . . . , ξ(yN0)) = gε1(ξ1, . . . , ξN0).

If ξ(0) = 1, then ξ1 = ξ(0) = 1 and by (2.3), gε1(ξ1, . . . , ξN0) = 0. Assume next that

N0
∑

1

ξip(yi) > 0.

Then the above sum is at least p and so

gε1(ξ1, . . . , ξN0) ≥ ε−2
1 p− ‖ĝε1‖∞ ≥ ε−2

1 p−M > 0,
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the last by (2.1). This proves gε1 ≥ 0 and a similar argument shows gε0 ≥ 0. Finally
(1.7) with Y i = yi is immediate from (1.10) and the definition of gεi .

We claim we may assume without loss of generality that ε1 =∞ in (1.7), that is,
the first term in the right-hand side of (1.7) is absent. To see why, let ε̃−2 = ε−2−ε−2

1

for ε < ε1, and use (1.7) in (1.5) to rewrite the spin-flip rates of ξε as

cε(εx, ξε) = ε̃−2cv(x, ξ) + (1− ξ(x))h̃εi (x, ξ) + ξ(x)h̃ε0(x, ξ),

where
h̃εi (x, ξ) = EY (g

ε
i (ξ(x+ Y 1), . . . , ξ(x+ Y N0))). (2.5)

So by working with h̃εi in place of hεi throughout, we may use (2.5) in place of (1.7)
and effectively set ε1 = ∞. Note first that this does not affect the definition of the
reaction term f(u) in the PDE (1.19) since the terms involving ε−2fi(x, ξ) cancel
in (1.16). The only cost is that ε−2 is replace with ε̃−2. The ratio of these terms
approaches 1 and so not surprisingly this only affects some of the proofs in a trivial
manner. Rather than carry this ε̃−2 with us throughout, we prefer to use ε and so

henceforth set ε1 =∞ in (1.7). (2.6)

2.2 Construction of ξt

Define c∗ = c∗(g) by
c∗ = sup

0<ε≤ε0/2
‖gε1‖∞ + ‖gε0‖∞ + 1. (2.7)

To construct the process, we use a graphical representation. For x ∈ εZd, introduce
independent Poisson processes {T x

n , n ≥ 1} and {T ∗,x
n , n ≥ 1} with rates ε−2 and c∗,

respectively. Recall pε(y) = p(y/ε) for y ∈ εZd and let qε(y) = q(y/ε) for y ∈ εZdN0 .
For x ∈ εZd and n ≥ 1, define independent random variables Zx,n with distribution
pε, Yx,n = (Y 1

x,n, . . . , Y
N0
x,n ) with distribution qε, and Ux,n uniform on (0, 1). These

random variables are independent of the Poisson processes and all are independent
of an initial condition ξ0 ∈ {0, 1}εZ

d
.

At times t = T x
n , n ≥ 1 (called voter times), we set ξt(x) = ξt−(x + Zx,n). To

facilitate the definition of the dual, we draw an arrow from (x, T x
n )→ (x+Zx,n, T

x
n ).

At times t = T ∗,x
n , n ≥ 1 (called reaction times), if ξt−(x) = i we set ξt(x) = 1− i if

Ux,n < gε1−i(ξt−(x+ Y 1
x,n), . . . , ξt−(x+ Y N0

x,n ))/c
∗, and otherwise ξt(x) = ξt−(x).

At these times, we draw arrows from (x, T ∗,x
n ) → (x + Y i

x,n, T
∗,x
n ) for 1 ≤ i ≤ N0.

We write a * next to (x, T ∗,x
n ) and call these *-arrows. It is not hard to use ideas of

Harris [29] to show that under the exponential tail conditions on p and q, (1.1) and
(1.8), this recipe defines a pathwise unique process. This reference assumes finite
range interactions but the proof applies in our infinite range setting as there are
still finitely many sites that need to be checked at each reaction time. To verify
this construction and to develop a useful dual process we now show how to compute
the state of x at time t by working backwards in time. It is easy to verify that
ξ is the unique in law {0, 1}Zd

-valued Feller process with rates given by (1.3) and
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(1.5), or more precisely has generator as in (1.12). For example one can recast the
graphical representation in terms of SDE’s driven by Poisson point processes and
use stochastic calculus as in Proposition 2.1(c) of [8] (it is easy to verify condition
(2.3) of that reference in our current setting).

We use Bε,x to denote a continuous time random walk with jump rate ε−2 and
jump distribution pε starting at x ∈ εZd and drop dependence on x if x = 0. We
also assume

{Bε,x : x ∈ εZd} are independent random walks distributed as above. (2.8)

It will be convenient to extend the Poisson times to the negative time line indexed
by non-positive integers, and hence have {T x

n , n ∈ Z}, {T ∗,x
n , n ∈ Z} with the as-

sociated {Zx,n, n ∈ Z} and {(Yx,n, Ux,n), n ∈ Z}, respectively. At times it is useful
to work with the associated independent Poisson point processes of reaction events
Λx
r (dt, dy, du) (x ∈ εZd) on R×εZdN0× [0, 1]) with points {(T ∗,x

n , Yx,n, Ux,n)} and in-
tensity c∗dt×qε×du, and also the independent Poisson point processes of walk steps
Λx
w(dt, dz) (x ∈ εZd) on R× εZd with points {(T x

n , Zx,n)} and intensity ε−2dt× pε.

2.3 The Dual X

Fix T > 0 and a vector of M +1 distinct sites z = (z0, . . . , zM ), each zi ∈ εZd. Our
dual process X = Xz,T starts from these sites at time T and works backwards in
time to determine the values ξT (zi). X will be a coalescing branching random walk
with X0 = (z0, . . . , zM ,∞, . . . ) taking values in

D = {(X0,X1, . . . ) ∈ D([0, T ],Rd ∪ {∞})Z+ :

∃K0 ∈ Z+ s.t. Xk
t =∞ ∀t ∈ [0, T ] and k > K0}.

Here∞ is added to Rd as a discrete point, D([0, T ],Rd∪{∞}) is given the Skorokhod
J1 topology, and D is given the product topology.

For X = (X0,X1, . . . ) ∈ D, let K(t) = max{i : Xi
t 6= ∞}, define i ∼t i

′

iff Xi
t = Xi′

t 6= ∞, and choose the minimal index j in each equivalence class in
{0, . . . K(t)} to form the set J(t). We also introduce

I(t) = {Xi
t : i ∈ J(t)} = {Xi

t : X
i
t 6=∞}.

Durrett and Neuhauser [20] call I(t) the influence set because it gives the locations
of the sites we need to know at time T − t, to compute the values at z0, . . . , zM at
time T .

To help digest the definitions, the reader should consult Figure 6, which shows
a realization of the dual starting from a single site when N0 = 3. If there were no
reaction times T ∗,x

n then the coordinates Xj
t , j ∈ J(t) follow the system of coalescing

random walks dual to the voter part of the dynamics. Coalescing refers to the fact

that if Xj
s = Xj′

s for some s and j, j′, then Xj
t = Xj′

t for all t ∈ [s, T ]. Jumps
occur when a particle in the dual encounters the tail of an arrow in the graphical
representation. That is, if j ∈ J(s−) and x = Xj

s− has T−s = T x
n then Xj

s = x+Zx
n.
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ζt J(T ) = {4, 1, 0, 10, 2, 12, 3}

Figure 6: An example of the dual with N0 = 3.
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It coalesces with Xi
s = x+Zx

n if such an i exists, meaning that i∨ j is removed from
J(s−) to form J(s). If Bε is a rate ε−2 random walk on εZd with step distribution
pε then the coalescing random walks in the dual X follow coalescing copies of Bε.

To complete the definition, we have to explain what happens at the reaction
times. Put R0 = 0, and for m ≥ 1 let Rm be the first time t > Rm−1 that a particle
in the dual encounters the tail of a *-arrow. If

j ∈ J(Rm−) and x = Xj
Rm− has T −Rm = T x,∗

n for some n, (2.9)

we let µm = j denote the parent site index. In the example in Figure 6 µ1 = 0,
µ2 = 1, µ3 = 3, and µ4 = 2.

We create N0 new walks by setting Y i
m = Y i

x,n, 1 ≤ i ≤ N0,

K(Rm) = K(Rm−1) +N0 , and

X
K(Rm−1)+i
Rm

= x+ Y i
m, i = 1, . . . , N0 .

(2.10)

The values of the other coordinates Xj′ , j′ ∈ J(Rm−), j′ 6= µm remain unchanged.
Each “new” particle immediately coalesces with any particle already at the site
where it is born, and we make the resulting changes to J(Rm−) to construct
J(Rm) ⊃ J(Rm−). To compute ξT (z

i), we will also need the random variables

Um = Ux,n where x, m, and n are as in (2.9). (2.11)

This computation is described in the next subsection.
K(s) changes only at reaction times and always increases by exactly N0, so

K(s) =M +mN0, for s ∈ [Rm, Rm+1). (2.12)

Let Ft be the right-continuous (time reversed) filtration generated by the graphical
representation restricted to [T − t, T ), but excluding the {Ux,n}. More precisely Ft

is the right-continuous filtration generated by

{Λx
w([T − s, T )×A) : s ≤ t, x ∈ εZd, A ⊂ εZd}, (2.13)

{Λx
r ([T − s, T )×B × [0, 1]) : s ≤ t, B ⊂ εZdN0 , x ∈ εZd}.

The {Rm} are then (Ft)-stopping times and X is (Ft)-adapted. Since
P (Rm+1 −Rm ∈ ·|FRm) is stochastically bounded below by an exponential random
variable with mean (c∗(M +mN0))

−1, Rm ↑ ∞ a.s. (recall our graphical variables
were extended to negative values of time) and the definition of X is complete.

Note that

µm is FRm −measurable and δYm,Um = Λ
Xµm

Rm−
r ({T −Rm} × ·). (2.14)

As the above time reversed Poisson point processes are also Poisson point processes,
one may easily see that

{Ym} are iid with law qε and Ym is FRm −measurable, (2.15)

and
{Um} are iid uniform on [0, 1] and are independent of F∞. (2.16)
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2.4 The computation process ζ

Given an initial time t0 ∈ [0, T ), the coalescing branching random walk {Xs, s ∈
[0, T − t0]}, the sequence of parent indices {µm}, the sequence of uniforms {Um},
and a set of initial values in {0, 1}, ζt0(j) = ξt0(X

j
T−t0

), j ∈ J(T − t0), we will define
{ζr(k), r ∈ [0, T ], 0 ≤ k ≤ K((T − r)−)} so that

ζr(k) = ξr(X
k
T−r) for all r ∈ [t0, T ] and k ≤ K((T − r)−) . (2.17)

The left hand limits here reflect the fact that we have reversed the direction of time
from that of X.

In general we consider a general initial state ζt0(j) ∈ {0, 1}, j ∈ J(T − t0). First
we complete this initial state by setting ζt0(k) = ζt0(j) if k ∼T−t0 j ∈ J(T − t0).
Suppose that for some m ≥ 1, Rm is the largest reaction time smaller than T − t0.
The values ζr(k) do not change except at times T −Rn, so ζr = ζt0 for r < T −Rm.
We decide whether or not to flip the value of ζ at µm at time t − Rm as follows.
Define Vm ∈ {0, 1}N0 by

V j
m = ζ(T−Rm)−(M + (m− 1)N0 + j) , j = 1, . . . , N0. (2.18)

Letting i = ζ(T−Rm)−(µm) we set

ζ(T−Rm)(µm) =

{

1− i if Um ≤ g1−i(Vm)/c∗

i otherwise.
(2.19)

To update the dual now, for k ≤M+(m−1)N0 = K((T−(T−Rm))−) and k 6= µm,

if k ∼Rm µm set ζT−Rm(k) = ζT−Rm(µm) . (2.20)

Otherwise we keep ζ(T−Rm)(k) = ζ(T−Rm)−(k).
The values ζr(k) remain constant for r ∈ [T − Rm, T − Rm−1). Coming to

r = T −Rm−1, if m− 1 ≥ 1 we proceed as above. When we reach r = T −R0 = T
we end by setting ζT = ζT−. If ξt0(j) = ξ(Xj

T−t0
) for j ∈ J(T − t0), the verification

of (2.17) is an easy exercise from the definitions of X and ζ.

2.5 Branching random walk approximation X̂

Due to the transience of random walk in dimensions d ≥ 3, and the fact that the
random walk steps are occurring at a fast rate in X when ε is small, any coalescing
in X will occur soon after a branching event and close to the branching site. As in
Durrett and Zähle [23], such births followed quickly by coalescing are not compatible
with weak convergence of the dual. Thus we need a way to excise these events from
X. As in [23] we define a (non-coalescing) branching random walk X̂ and associated
computation process ζ̂. Later we will couple (X, ζ) and (X̂, ζ̂) so that they are close
when ε is small.

For m ∈ N, Πm denotes the set of partitions of {0, . . . ,m} and for each π ∈ Πm,
J0(π) is the subset of {0, . . . ,m} obtained by selecting the minimal element of each
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cell of π. Write i ∼π j if i and j are in the same cell of π. Let {B̂Y i
, i = 0, . . . N0}

be the rate one coalescing random walk system on Z
d with step distribution p and

initial points at Y 0 = 0, Y 1, . . . , Y N0 where (Y 1, . . . , Y N0) has law q. Let ν0 denote
the law on ΠN0 of the random partition associated with the equivalence relation
i ∼ j iff B̂Y i

(t) = B̂Y j
(t) for some t ≥ 0. For ε > 0 let νε denote the law on

ΠN0 of the random partition associated with the equivalence relation i ∼ε j iff
B̂Y i

(ε−3/2) = B̂Y j
(ε−3/2). Note that ε−3/2 = ε1/2ε−2 so this is a short amount of

time for the sped up process. For later use when we define the branching Brownian
motion Z we note that since ε−3/2 →∞,

νε converges weakly to ν0 as ε ↓ 0 . (2.21)

As before we will have a fixed T > 0 and distinct sites z0, . . . , zM in εZd. Our
branching random walk X̂ will have paths in D and an associated set of indices
Ĵ(t) = {j : X̂j

t 6= ∞}. Let π0 ∈ ΠM be defined by the equivalence relation i ∼ j
iff B̂ε−1zi(ε−3/2) = B̂ε−1zj(ε−3/2). In words, π0 will be used to “mimic” the initial
coalescence in X of the particles starting at zi before any reaction events occur.

For n ≥ 1 let πn ∈ ΠN0 be iid with law νε and independent of π0. From {πn} we
inductively define a sequence of nonempty subsets {Ĵn} of Z+ by Ĵ0 = J0(π0) and
for n ≥ 0

Ĵn+1 = Ĵn ∪ {M + nN0 + j : j ∈ J0(πn+1) \ {0}}. (2.22)

Set R̂0 = 0 and conditional on {πn} let {R̂n+1 − R̂n : n ≥ 0} be independent
exponential random variables with means (c∗|Ĵn|)−1, and let {µ̂n} be an independent
sequence of independent random variables where µ̂n, n ≥ 1, is uniformly distributed
over Ĵn−1. µ̂n is the index of the particle that gives birth at time R̂n.

To define X̂ inductively we start with

X̂j
0 = zj if j ∈ Ĵ0 = Ĵ(0) and ∞ otherwise. (2.23)

On [R̂n, R̂n+1), the X̂
j : j ∈ Ĵn follow independent copies of Bε starting at X̂j

R̂n
.

At R̂n+1 we define

X̂j

R̂n+1
=















X̂j

R̂n+1−
if j ∈ Ĵn = Ĵ(R̂n) ,

X̂
µ̂n+1

R̂n+1−
if j ∈ Ĵn+1 − Ĵn ,

∞ otherwise.

Note that offspring are no longer displaced from their parents and that coalescence
reduces the number of particles born at time R̂n+1, but otherwise no coalescence
occurs as Ĵ(t) = Ĵn on [R̂n, R̂n+1). Thus, conditional on the sequence {πn}, X̂ is
a branching random walk starting with particles at zj , j ∈ J0(π0), with particle

branching rate c∗ and giving birth to |πn| − 1 particles on top of the parent X̂ µ̂n

R̂n

(who also survives) at the nth branch time R̂n.
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2.6 Computation process ζ̂

As we did for X, for t0 ∈ [0, T ) we now define an computation process {ζ̂r(k) : 0 ≤
k ≤ K̂((T − r)−), r ∈ [t0, T ]} for X̂ . Here K̂(s) = M + mN0 if s ∈ [R̂m, R̂m+1).
Given are the branching random walks {X̂s, s ∈ [0, T − t0]}, the associated sequence
{πn, R̂n, µ̂n}, a sequence of iid random variables {Ûn}, uniformly distributed on
[0, 1] and independent of (X̂, {πn, R̂n, µ̂n : n ∈ N}), and a set of initial values
ζ̂t0(j), j ∈ Ĵ(T − t0). In the next section when we couple (X, ζ) and (X̂, ζ̂) we
will set Ûn equal to Un defined in (2.11). Define an equivalence relation ≈R̂n

on
{0, . . . ,M + nN0} by

M + (m− 1)N0 + j ≈R̂n
M + (m− 1)N0 + i (1 ≤ i, j ≤ N0, 1 ≤ m ≤ n) iff j ∼πm i,

M + (m− 1)N0 + j ≈R̂n
µ̂m (1 ≤ j ≤ N0, 1 ≤ m ≤ n) iff j ∼πm 0, (2.24)

j ≈R̂n
i, (0 ≤ i, j ≤M) iff j ∼π0 i.

Finally if R̂n ≤ t < R̂n+1 define i ≈t j iff i ≈R̂n
j for 0 ≤ i, j ≤ M + nN0. To

prepare for the proof of Lemma 2.10, note that the definition of ζ̂ that follows is
just the definition of ζ with hats added and ≈t used in place of ∼t.

First we complete the initial state ζ̂t0 by setting ζ̂t0(k) = ζ̂t0(j) if k ≈T−t0 j ∈
Ĵ(T − t0), k ≤ K(T − t0) = K((T − t0)−) a.s. Suppose that for some m ≥ 1, R̂m is
the largest branch time smaller than T − t0. The values ζ̂r(k) do not change except
at times T − R̂n, so ζ̂r = ζ̂t0 for t < T − R̂m. We decide whether or not to flip the
value of ζ̂ at µ̂m at time t− R̂m as follows. Define V̂m ∈ {0, 1}N0 by

V̂ j
m = ζ̂(T−R̂m)−(M + (m− 1)N0 + j) , j = 1, . . . , N0. (2.25)

Letting i = ζ̂(T−R̂m)−(µ̂m) we set

ζ̂(T−R̂m)(µ̂m) =

{

1− i if Ûm ≤ gε1−i(V̂m)/c∗

i otherwise.
(2.26)

To update ζ̂ now, for k ≤M + (m− 1)N0 and k 6= µ̂m,

if k ≈R̂m
µ̂m set ζ̂T−R̂m

(k) = ζ̂(T−R̂m)(µ̂m) , (2.27)

and for the remaining values of k ≤M + (m− 1)N0 keep

ζ̂T−R̂m
(k) = ζ̂(T−R̂m)−(k).

The values ζ̂r(k) remain constant for r ∈ [T − R̂m, T − R̂m−1). Coming to
r = T − R̂m−1, if m− 1 ≥ 1 we proceed as above. When we reach r = T − R̂0 = T
we end by setting ζ̂T = ζ̂T−.
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2.7 Coupling of (X, ζ) and (X̂, ζ̂)

We now give a construction of X̂, ζ̂ which will have the property that with high
probability for small ε, (i) X and X̂ are close and (ii) given identical inputs, ζ and
ζ̂ will compute the same result. As before, T > 0 and z = (z0, . . . , zM ), zi ∈ εZd are
fixed. Recall the reaction times Rm, the uniform random variables Um from (2.11),
and the natural time-reversed filtration Ft used in the construction of the dual X
given in (2.10).

The following general definition will be used to construct the partitions {πn :
n ∈ Z+} needed to define X̂ ,(distributed as in Section 2.5) in terms of the graph-
ical representation. Let V be an Ft-stopping time (think of V = Rm), and let
γ0 . . . , γM ′ ∈ εZd ∈ εZd be FV -measurable. Let {B̂ε,γi : i = 0, . . . ,M ′} ⊂ εZd

be the rescaled coalescing random walk system, starting at time V at locations
γ0, . . . , γM ′ , determined by the {T x

n } in the graphical representation. That is,
{B̂ε,γi : i = 0, . . . ,M ′} are as described in Figure 6 but now starting at time T − V
at sites γ0, . . . , γ

′
M . For each t > 0 let πV,γ(t) ∈ ΠM ′ be the random partition of

{0, . . . ,M ′} associated with the equivalence relation i ∼ i′ iff B̂ε,γi(t) = B̂ε,γi′ (t). We
call πV,γ(t) the random partition at time V+twith initial condition γ = (γ0, . . . , γM ′)
at time V .

Let π0 = π0,z(
√
ε) ∈ ΠM be the random partition of {0, . . . ,M} at time

√
ε with

initial condition z = (z0, . . . , zM ) at time 0, and note that its law is the same as the
law of the π0 described just before (2.21). For m ≥ 1 let

γm = (Xµm

Rm
,Xµm

Rm
+ Y 1

m, . . . ,X
µm

Rm
+ Y N0

m )

and {π′m,m ∈ N} be an iid sequence with law νε and chosen independent of F∞.
For m ∈ N, define

πm =

{

πRm,γm(
√
ε) if Rn > Rn−1 +

√
ε for all 1 ≤ n ≤ m

π′m otherwise.
(2.28)

By the translation invariance and independent increments properties of the Poisson
point processes used in the graphical representation and also (2.15), πm is indepen-
dent of FRm−1+

√
ε∨σ(π′n, n < m) ≡ F̄m−1, and has law νε defined just before (2.21).

It is also easy to check that πm is F̄m-measurable (m ≥ 0) and so {πm,m ≥ 0} are
independent and distributed as in Section 2.5.

For m ∈ N let

τ ′m = inf{s ≥ Rm−1 : ∃i 6= j both in J(Rm−1−), or
i ∈ J(Rm−1−) \ {µm−1}, j ∈ J(Rm−1) \ J(Rm−1−), so that Xi

s = Xj
s},

τm = inf{s ≥ Rm−1 +
√
ε : inf

i 6=j∈J(s)
|Xi

s −Xj
s | ≤ ε7/8},

Y ∗
m = max{|Y i

m| : i = 1, . . . , N0}.
We introduce the time, Tb, that one of four possible “bad events” occurs:

Tb =min{Rm : m ≥ 1, Rm ≤ Rm−1 +
√
ε or Y ∗

m ≥
ε

κ
log(1/ε)}

∧min{τm : m ≥ 1, τm < Rm} ∧min{τ ′m : m ≥ 2, τ ′m ≤ Rm−1 +
√
ε}.
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Here min ∅ = ∞ To see why the last two minima should be large, note that after
a birth of N0 particles from particle µm at time Rm, we expect some coalescence
to occur between the parent and its children. After time

√
ε, particles should all

be separated by at least ε7/8 and remain that way until the next reaction time
when again there may be coalescing within the family producing offspring but no
other coalescing events. The qualifier m ≥ 2 is needed in the last minimum because
we have no control over the spacings between particles at time 0. The collision
of particles 2 and 7 in Figure 6 is an example of a bad event that enters into the
definition of τ ′4. We assume throughout that

0 < ε < ε1(κ) so that
ε

κ
log(1/ε) < ε7/8/2. (2.29)

Given {πm} we now construct X̂ and Â(s) = ((µ̂n, R̂n)1(R̂n ≤ s))n∈N (with the
law described in Section 2.5) initially up to time T̂ = Tb ∧ T̂b, where

T̂b = min{R̂m : m ≥ 1, R̂m − R̂m−1 ≤
√
ε}.

Once one of the five bad events (implicit in the definition of T̂ ) occurs, we will give
up and continue the definition of the branching random walk using independent
information. The coupling of X and X̂ will be through our definition of {πn} and
also through the use of the random walks steps ofXj to define corresponding random
walk steps in X̂j whenever possible, as will be described below.

We begin our inductive construction by setting R̂0 = 0, Ĵ(0) = J0(π0), and
define X̂0 as in (2.23). Note that

Ĵ(0) = J(
√
ε) = J0(π0) if R1 >

√
ε. (2.30)

Assume now that (X̂, Â) has been defined on [0, Rm∧ T̂ ]. Assume also that Rm < T̂
implies the following for all 1 ≤ i ≤ m:

R̂i = Ri, µ̂i = µi, (2.31)

Ĵ(Ri) = Ĵ(Ri−1) ∪ {M + (i− 1)N0 + j : j ∈ J0(πi) \ {0}}. (2.32)

Ĵ(Ri−1) = Ĵ(s) ⊂ J(s) for all s ∈ [Ri−1, Ri). (2.33)

Ĵ(s) = J(s) = J(Ri−1 +
√
ε) for all s ∈ [Ri−1 +

√
ε,Ri), (2.34)

The m = 0 case of the induction is slightly different, due for example to
the special nature of π0, so let us assume m ≥ 1 first. To define (X̂, Â) on
(Rm ∧ T̂ , Rm+1 ∧ T̂ ] we may assume Rm(ω) < T̂ (ω) and so (2.31)-(2.34) hold by
induction. On (Rm, (Rm +

√
ε) ∧ Rm+1 ∧ T̂ ] let (X̂, Â) evolve as in Section 2.5

conditionally independent of F∞ given {πn}. Here it is understood that the unused
partitions {πi : i > m} are used to define the successive branching events as in
(2.22).
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Next, to define (X̂, Â) on ((Rm +
√
ε) ∧ Rm+1 ∧ T̂ , Rm+1 ∧ T̂ ] we may assume

Rm(ω) +
√
ε < Rm+1 ∧ T̂ (ω). By the definition of T̂b this implies R̂m+1 > Rm +

√
ε

and so for all s ∈ [Rm, Rm +
√
ε],

Ĵ(s) = Ĵ(Rm) = Ĵ(Rm−1) ∪ {M + (m− 1)N0 + j : j ∈ J0(πm) \ {0}}
= J(Rm−1 +

√
ε) ∪ {M + (m− 1)N0 + j : j ∈ J0(πm) \ {0}}.

(2.35)

In the first equality we used (2.32) and in the second we used (2.33) and (2.34) with
s = Rm−1 +

√
ε. The fact that τm ≤ Rm (since Tb > Rm +

√
ε) shows there are no

coalescings of X on [Rm−1 +
√
ε,Rm) and so

J(Rm−1 +
√
ε) = J(Rm−). (2.36)

Again use Tb > Rm +
√
ε together with (2.29) to see that Y ∗

m ≤ ε
κ log(1/ε) ≤ ε7/8

2 ,
and so the spacings of the previously existing particles at time Rm ≤ τm ensures
that none of the N0 new particles at time Rm will land on a previously occupied
site. Therefore if

J1(Ym) = {1 ≤ j ≤ N0 : Y
j
m /∈ {Y i

m : 0 ≤ i < j}},

then
J(Rm) = J(Rm−) ∪ {M + (m− 1)N0 + j : j ∈ J1(Ym)}.

The fact that Rm+1 ∧ τ ′m+1 > Rm +
√
ε means that X has no branching events in

(Rm, Rm +
√
ε] and X has no particles coalescing on [Rm, Rm +

√
ε] except those

involving Xµm

Rm
+ Y i

m, i = 0, . . . , N0. Therefore, the definition of πm ensures that

J(Rm +
√
ε) = J(Rm−) ∪ {M + (m− 1)N0 + j : j ∈ J0(πm) \ {0}}.

= Ĵ(s) for all s ∈ [Rm, Rm +
√
ε], (2.37)

where in the last line we have used (2.35) and (2.36). For s ∈ [Rm +
√
ε,Rm+1 ∧ T̂ )

we have s < τm+1 and so

|Xj
s−Xk

s | > ε7/8 for all j 6= k both in J(s), for all s ∈ [Rm+
√
ε,Rm+1∧T̂ ). (2.38)

In particular X can have no coalescings on the above interval and so J(s) = J(Rm+√
ε) for s ∈ [Rm+

√
ε,Rm+1∧ T̂ ). On (Rm+

√
ε,Rm+1∧ T̂ ] let (X̂j

s , j ∈ Ĵ(s)) follow
the random walk steps and branching events of {Xj : j ∈ J(s)} (of course there is
at most one of the latter at time Rm+1 providing Rm+1 ≤ T̂ ). In particular we are
setting

Ĵ(s) = J(s) = J(Rm+
√
ε) for s ∈ [Rm+

√
ε,Rm+1 ∧ T̂ ) or s = T̂ < Rm+1. (2.39)

(2.38) shows that the random walk steps and branching events for distinct particles
ofX on (Rm+

√
ε,Rm+1∧T̂ ] are independent. In addition, these steps and branching

events are independent of the random walk increments used to define {πn}. This
shows that X̂ evolves like the branching random walk described in Section 2.5 on
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(Rm, Rm+1∧T̂ ), and on (Rm, Rm+1∧T̂ ] if either T̂ < Rm+1, or Rm+
√
ε ≥ Rm+1∧T̂ .

(In the latter case the first part of the above construction did the job and in the
former case there is no reaction event to define at T̂ ∧Rm+1 = T̂ .) So to complete
the construction at t = Rm+1 ∧ T̂ we may assume

Rm +
√
ε < Rm+1 ≤ T̂ . (2.40)

The above definition shows that R̂m+1 = Rm+1, we use (2.32) with i = m + 1 to
define Ĵ(Rm+1) and we set µ̂m+1 = µm+1. Clearly µ̂m+1 is uniform on Ĵ(Rm) =
J(Rm +

√
ε) (given {πn}) and is independent of {µ̂n : n < m}. In addition the

branching events used to define {µ̂n} are independent of the random walk steps used
to define {πn}. This completes our inductive definition of (X̂, Â) on [0, Rm+1 ∧ T̂ ].

Next we complete the inductive step of the derivation of (2.31)-(2.34) for m+ 1
under (2.40) which is in fact weaker than the Rm+1 < T̂ condition. (2.39) implies
(2.34) for i = m + 1, and (2.31) and (2.32) hold by definition. On {Rm +

√
ε <

Rm+1 ≤ T̂} J can only decrease on [Rm, Rm+
√
ε] due to coalescings of the random

walks, while Ĵ is constant on this interval by (2.37). The inclusion (2.33) therefore
follows from the equality in (2.34).

To complete the inductive construction of (X̂, Â) on each [0, Rm ∧ T̂ ] and proof
of (2.31)=(2.34) it remains to give the m = 0 step of the construction and verify
the m = 1 case of the induction. Both follow by making only minor changes in
the above induction step. For example, (2.30) is used in place of the (now non-
existent) induction hypothesis (2.32) both in defining X̂ on the initial interval and
in obtaining (2.37) for m = 0.

Since Rm ↑ ∞ a.s. we have defined (X̂, Â)(s) on [0, T̂ ] and to complete the
definition we let it evolve conditionally independently (given {πn}) for s ≥ T̂ .

The above construction and (2.16) show that

(X, {πn}, {µn}, X̂ , {µ̂n}, {R̂n}) is independent of {Un}, (2.41)

where {Un} are the uniforms from (2.11). Therefore the computation process ζ̂ for
the above X̂ may be defined as in Section 2.6 but with Ûn = Un.

Lemma 2.1. (a) For all m ∈ Z+, Rm < Tb and R̂m < T̂b imply Rm = R̂m < T̂ .
(b) For all m ∈ N, if

Gm = {ω :
(

∧mi=1Ri −Ri−1

)

∧
(

∧m+1
i=2 τ

′
i −Ri−1

)

>
√
ε,

Ri ≤ τi ∀i ≤ m,max
i≤m

Y ∗
i <

ε

κ
log(1/ε),∧mi=1R̂i − R̂i−1 >

√
ε},

then Gm ⊂ {R̂m = Rm < T̂}.

Proof. (a) The implication is trivial for m = 0 so assume it for m and assume
also Rm+1 < Tb, R̂m+1 < T̂b. By induction we have Rm = R̂m < T̂ . Since
Rm+1 ∧ R̂m+1 > Rm +

√
ε, we also know T̂ > Rm +

√
ε. The construction of X̂ on

(Rm +
√
ε,Rm+1 ∧ T̂ ] shows that the next reaction time of X̂ on this interval must

be Rm+1 (if it exists) and so T̂b ≥ Rm+1. Since Tb > Rm+1 by hypothesis we get
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(Rm +
√
ε,Rm+1 ∧ T̂ ] = (Rm +

√
ε,Rm+1]. Hence our construction of X̂ on this

interval shows R̂m+1 = Rm+1 and so the result follows for m+ 1.
(b) The first four conditions in the definition of Gm imply

Tb ≥ Rm+1 ∧ τ ′m+2 ∧ τm+1 > Rm.

The last condition implies T̂b > R̂m. Now apply (a).

As an immediate consequence of the above and our inductive proof of (2.31)-
(2.34) we get the following:

Lemma 2.2.

Gm ⇒ Rm < T̂ ⇒ for all 1 ≤ i ≤ m (2.31)− (2.34) hold.

OnGm and on the intervals [Rm−1+
√
ε,Rm) our definition of X̂ and Lemma 2.1(b)

shows that the movement of particles in X and X̂ are coupled (they take identical
steps) but on [Rm−1, Rm−1 +

√
ε) they move independently. To bound the discrep-

ancies that accumulate during these intervals we use:

Lemma 2.3. If ω ∈ Gm, then

sup{|X̂j
s −Xj

s | : j ∈ Ĵ(s), s ∈ [0, Rm)} (2.42)

≤ (m− 1)
ε

κ
log(1/ε) +

m−1
∑

l=0

sup
j∈Ĵ(Rl),s∈[Rl,Rl+

√
ε]

|X̂j
s − X̂j

R̂l
|+ |Xj

s −Xj
Rl
|.

Proof. Suppose first that m > 1 and we are on Gm. By the coupling of the spatial
motions noted above, for j ∈ Ĵ(Rm−1)

sup
s∈[Rm−1,Rm)

|X̂j
s −Xj

s | = sup
s∈[Rm−1,Rm−1+

√
ε]

|X̂j
s −Xj

s |

≤ |X̂j
Rm−1

−Xj
Rm−1

|+ sup
s∈[Rm−1,Rm−1+

√
ε]

|X̂j
s − X̂j

Rm−1
|

+ sup
s∈[Rm−1,Rm−1+

√
ε]

|Xj
s −Xj

Rm−1
|.

On Gm, a newly born particle to Xj
Rm−1− may jump a distance at most ε

κ log(1/ε)

from its parent, while for X̂j
Rm−1− it will be born on its parent site, so the above is

at most

sup
k∈J(Rm−1−)

|X̂k
Rm−1− −Xk

Rm−1−|+
ε

κ
log(1/ε)

+ sup
s∈[Rm−1,Rm−1+

√
ε]

|X̂j
s − X̂j

Rm−1
|+ sup

s∈[Rm−1,Rm−1+
√
ε]

|Xj
s −Xj

Rm−1
|.

Things are simpler when m = 1 because there are no initial jumps to worry about
and so the second term in the above is absent. The required bound now follows by
induction in m and the fact that Gm is decreasing in m.
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2.8 Bounding the probability of bad events

Here and in what follows it is useful to dominate X with a branching random walk
X̄, also with paths in D and with the same initial state. Particles in X̄ follow
independent copies of Bε and with rate c∗ give birth to N0 particles located at
Bε

t + Y i
m, i = 1, . . . , N0, where B

ε
t is the location of the parent particle. At the

mth birth time R̄m we use XM+(m−1)N0+i, i = 1, . . . , N0 to label the new particles,
so that if J̄(t) = {j : Xj

t 6= ∞}, then J̄(R̄m) = {0, . . . ,M + mN0}. Coalescence
is avoided in X̄ by having the coalescing particle with the larger index have its
future steps and branching events dictated by an independent copy of the graphical
representation. This will ensure that J(t) ⊂ J̄(t) and {Xj(t) : j ∈ J(t)} ⊂ {X̄j(t) :
j ∈ J̄(t)} for all t ≥ 0.

Let NT = min{m : Rm > T} and define N̄T in the same way, using the branching
times {R̄m}. Let

cb = c∗N0 ≥ 1 . (2.43)

We will also need to separate the particles in X̂ and so define

τ̂m = inf{s ≥ R̂m−1 +
√
ε : inf

i 6=j∈Ĵ(s)
|X̂i

s − X̂j
s | ≤ ε7/8},m ∈ N. (2.44)

Lemma 2.4. There is a constant c2.4 so that for all T > 0 and n ∈ N

(a) P (NT > n) ≤ P (N̄T > n) ≤ ecbT (M + 1)(nN0)
−1.

(b) P (min1≤m≤NT
Rm −Rm−1 ≤

√
ε or min1≤m≤NT

R̂m − R̂m−1 ≤
√
ε)

≤ c2.4ecbT (M + 1)ε1/6.

Proof. (a) The first inequality follows from the domination of X by X̄ . For the
second one note that E(J̄(T )) = (M + 1)ecbT and conclude

P (N̄T > n) ≤ P (|J̄(T )| ≥M + 1 + nN0)

≤ (M + 1 + nN0)
−1(M + 1)ecbT .

(b) Let Z be a mean one exponential random variable. The domination of X by
X̄ shows that for any n ≥ 1,

P

(

min
1≤m≤NT

Rm −Rm−1 ≤
√
ε

)

≤ P
(

min
1≤m≤N̄T

R̄m − R̄m−1 ≤
√
ε

)

≤ P (N̄T > n) +

n
∑

m=1

P
( Z

M + 1 + (m− 1)N0
≤ √ε

)

≤ ecbT (M + 1)(nN0)
−1 +

n
∑

m=1

(M + 1 + (m− 1)N0)
√
ε,

by (a). Now set n = ⌈ε−1/6⌉ and note that the sum is at most (M+1)n
√
ε+n2N0

√
ε.

A similar calculation gives the same upper bound for the R̂m’s.

Lemma 2.5. There is a constant c2.5 so that for all T > 0

P (Y ∗
m >

ε

κ
log(1/ε) for some m ≤ NT ) ≤ c2.5ecbT (M + 1)ε1/2
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Proof. By (a) of Lemma 2.4, P (NT > n) ≤ ecbT (M + 1)(nN0)
−1. Using (1.8) gives

P (Y ∗
m >

ε

κ
log(1/ε) for some m ≤ n) ≤ nCε.

Taking n = ⌈ε−1/2⌉ now gives the desired result.

The following facts about random walks will be used frequently.

Lemma 2.6. Let Zs denote a continuous time rate 2 random walk on Z
d jumping

with kernel p, and starting at x ∈ Z
d under P x, and Bε be our continuous time

rescaled copy of Z, starting at z ∈ εZd under Pz.
(a) For any t0 ≥ 0, r0 ≥ 1, x ∈ Z

d and p ≥ 2,

P x(|Zs| ≤ r0 for some s ≥ t0) ≤ c2.6
∫ ∞

t0

[

[(|x|−r0)+]−p(sp/2∨s)
]

∧
[

(s∨1)−d/2rd0

]

ds.

(b) supx P
x(|Zs| ≤ ε−1/8 for some s ≥ ε−3/2) ≤ c2.6ε3/8.

(c) For any z ∈ εZd, r0 ≥ 1

Pz(|Bε
s | ≤ r0ε for some s ≥ 0) ≤ c2.6(|z|ε−1)−(2/3)(d−2)r

2(d+1)/3
0 .

Proof. (a) Use T (t0, y) ≤ ∞ to denote the time of the first visit of Z to y after time
t0, and let

G =

∫ ∞

0
P 0(Zs = 0) ds

be the expected time at 0 (which is finite since d ≥ 3). Then

∫ ∞

t0

P x(Zs = y) ds = Ex
(

1{T (t0, y)(ω) <∞}
∫ ∞

T (t0,y)(ω)
P y(Zs−T (t0,y)(ω) = y) ds

)

= GP x(T (t0, y) <∞).

Summing over |y| ≤ r0 for r0 ≥ 1 and rearranging, we get

P x(|Zs| ≤ r0 for some s ≥ t0) ≤ G−1
∑

|y|≤r0

∫ ∞

t0

P x(Zs = y) ds

= G−1

∫ ∞

t0

P x(|Zs| ≤ r0)ds. (2.45)

A martingale square function inequality shows that for p ≥ 2,

P x(|Zs| ≤ r0) ≤ P 0(|Zs| ≥ (|x| − r0)+) ≤ c((|x| − r0)+)−p)(sp/2 ∨ s). (2.46)

A local central limit theorem (see, e.g. (A.7) in [6]) shows that

P x(|Zs| ≤ r0) ≤ c(s ∨ 1)−d/2rd0 . (2.47)

Use the above two inequalities to bound the integrand in (2.45) and derive (a).
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(b) Set r0 = ε−1/8 and t0 = ε−3/2 in (a) and use only the second term in the infimum
inside the integral. The right-hand side is cε−(d/8)−(3/2)+(3d/4) . To complete the
proof we note that exponent is smallest when d = 3.

(c) We may assume without loss of generality that r0 ≤ |z|ε−1/2 = M/2 (or the

bound is trivial) and so t1 = M4/3r
2/3
0 ≥ 1. Apply (a) with p = 2d and break the

integral at t1 to see that the probability in (c) is

P zε−1
(|Zs| ≤ r0 for some s ≥ 0) ≤ c

[

∫ t1

0
M−2d(sd ∨ s)ds +

∫ ∞

t1

s−d/2rd0ds
]

≤ c(M−2dtd+1
1 + t

1−(d/2)
1 rd0)

≤ cM−(2/3)(d−2)r
2(d+1)/3
0 .

Lemma 2.7. P (τm < Rm or τ̂m < R̂m for some 1 ≤ m ≤ NT )
≤ c2.7ecbT (M + 1)2ε3/32.

Proof. To bound P (τm < Rm for some 1 ≤ m ≤ NT ), we start with

P (τm < Rm|FRm−1) ≤ P (Rm > Rm−1 +
√
ε, ∃i 6= j both in J(Rm−1 +

√
ε), s.t.

inf√
ε+Rm−1≤s≤Rm

|Xi
s −Xj

s | ≤ ε7/8|FRm−1).

Now i 6= j both in J(Rm−1 +
√
ε) and Rm > Rm−1 +

√
ε imply i, j ∈ J(Rm−1) and

Xi
s 6= Xj

s for all s ∈ [Rm−1, Rm−1 +
√
ε]. Therefore, the above is at most

∑

i 6=j∈J(Rm−1)

P (Xi
s −Xj

s 6= 0, ∀s ∈ [Rm−1, Rm−1 +
√
ε], (2.48)

|Xi
s −Xj

s | ≤ ε7/8 ∃s ≥ Rm−1 +
√
ε|FRm−1).

If Z as in Lemma 2.6, we may use (b) of that result to bound the above by

|J(Rm−1)|2 sup
z0 6=0

P z0(|Zs| ≤ ε−1/8 ∃s ≥ ε−3/2)

≤ (M + 1 + (m− 1)N0)
2 · cε3/8

Using Lemma 2.4(a), we conclude

P (τm < Rm for some 1 ≤ m ≤ NT )

≤ ecbT (M + 1)(nN0)
−1 +

n
∑

m=1

(M + 1 + (m− 1)N0)
2cε3/8.

To bound the sum we note that for a, b ≥ 1,

n
∑

m=1

(a+ (m− 1)b)2 ≤
∫ n

0
(a+ xb)2 dx =

1

3b
[(a+ nb)3 − a3] ≤ ca2(nb)3.
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Taking n = ⌈ε−3/32/N0⌉ gives the desired bound. A similar calculation (in fact there
is some simplification) gives the same upper bound for

P (τ̂m < R̂m for some 1 ≤ m ≤ NT .)

Lemma 2.8.

P ( min
1≤m≤NT

τ ′m+1 −Rm ≤
√
ε) ≤ c2.8ecbT (M + 1)2ε1/40.

Proof. Define Sm ⊃ Gm as Gm (in Lemma 2.1) but without the lower bounds on
∧m+1
i=2 τ

′
i −Ri−1 or ∧mi=1R̂i − R̂i−1. Note that Sm ∈ FRm and if ω ∈ Sm, then

|Xi
Rm
−Xj

Rm
| ≥ ε7/8 for all distinct i, j ∈ J(Rm−). (2.49)

In addition, since Y ∗
m ≤ ε

κ log(1/ε) we have that for all i ∈ J(Rm−) − {µm}, j ∈
J(Rm)− J(Rm−)

|Xi
Rm
−Xj

Rm
| ≥ ε7/8 − ε

κ
log(1/ε) ≥ ε7/8/2 (2.50)

since ε < ε1(κ) (recall (2.29)).
If T0 is the return time to zero of the random walk Z in Lemma 2.6, we have

(see P 26.2 in [41] for d = 3 and project down for d > 3)

P z0(T0 <∞) ≤ c|z0|−1. (2.51)

Use (2.49), (2.50), and (2.51) with scaling, and the bound

|J(Rm−)| ≤M + 1 + (m− 1)N0

to see that on Sm ∈ FRm ,

P
(

τ ′m+1 −Rm ≤
√
ε|FRm

)

≤ c[(M + 1 + (m− 1)N0)
2ε1/8 + (M + 1 + (m− 1)N0)N0ε

1/8]

≤ c(M + 1)2m2N2
0 ε

1/8. (2.52)

Using the bound in Lemma 2.4(a), we conclude

P

(

min
1≤m≤NT

τ ′m+1 −Rm ≤
√
ε, SNT

)

≤ P (NT > n) +

n
∑

k=1

P (NT = k, Sk, min
1≤m≤k

τ ′m+1 −Rm ≤
√
ε)

≤ c2.4ecbT (M + 1)(nN0)
−1 +

n
∑

k=1

k
∑

m=1

P (Sm, τ
′
m+1 −Rm ≤

√
ε).

Using (2.52) now, the above sum is at most

cN2
0 (M + 1)2nε1/8

n
∑

m=1

m2 ≤ c(M + 1)2n4ε1/8.

Take n = ⌈ε−1/40⌉ and use Lemmas 2.4, 2.5, and 2.7 to bound P (Sc
NT

) to get the
desired result.
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2.9 When nothing bad happens, (X, ζ) and (X̂, ζ̂) are close

The next result gives a concrete bound on the difference between X and X̂ and
deals with the final interval [Rm, Rm ∧ T ]. Let

Ḡm = Gm ∩ {T̂ ≥ R̂m}, m ∈ N,

and for 0 < β ≤ 1/2, define

G̃β
T = ḠNT

∩ {sup
s≤T

sup
j∈Ĵ(s)

|Xj
s − X̂j

s | ≤ ε1/6}

∩ {T /∈ ∪NT−1
m=0 [Rm, Rm + 2εβ ]}. (2.53)

Allowing smaller β values will be useful in Sections 3 and 4, but for now the reader
may take β = 1/2.

Lemma 2.9. There is a c2.9 and ε2.9(κ) > 0 so that for any T ≥ 2εβ , 0 < ε <
ε2.9(κ),

P ((G̃β
T )

c) ≤ c2.9ecbT (M + 1)2ε
1
40

∧β
3 .

On G̃β
T we have Ĵ(s) = J(s) for all s ∈ [T − εβ , T ], and |X̂i

T − X̂
j
T | ≥ ε7/8 for all

i 6= j in Ĵ(T ).

Proof. Dependence on β will be suppressed. For s as above, Lemma 2.2 implies
Ĵ(s) = J(s) on G̃T since s ∈ [RN(T )−1 +

√
ε,RN(T )) on G̃T . The last assertion of

the Lemma holds on G̃T because on G̃T , τ̂N(T ) ≥ R̂N(T ) and

T ∈ [RN(T )−1 +
√
ε,RN(T )) = [R̂N(T )−1 +

√
ε, R̂N(T )).

Lemmas 2.4, 2.5, 2.7, and 2.8 imply

P (Ḡc
NT

) ≤ cecbT (M + 1)2ε1/40. (2.54)

To deal with the first additional good event in G̃T , we note that by Lemma 2.3

P (GNT
, sup
s≤T

sup
j∈Ĵ(s)

|Xj
s − X̂j

s | > ε1/6) ≤ P (NT > n)

+ P
(

(n − 1)
ε

κ
log(1/ε) +

n−1
∑

i=0

sup
j∈Ĵ(Ri)

sup
s∈[Ri,Ri+

√
ε]

|X̂j
s − X̂j

Ri
|+ |Xj

s −Xj
Ri
| > ε1/6

)

By (a) in Lemma 2.4 the first term is at most ecbT (M + 1)(nN0)
−1. If

(n− 1)
ε

κ
log(1/ε) < ε1/6/2, (2.55)

then it enough to bound

P

(

n−1
∑

i=0

sup
j∈J(Ri)

sup
s∈[Ri,Ri+

√
ε]

|X̂j
s − X̂j

Ri
|+ |Xj

s −Xj
Ri
| > ε1/6

2

)

≤
n−1
∑

i=0

(M + 1 + iN0)2P
(

sup
s≤√

ε

|Bε
s | >

ε1/6

4n

)

≤ c(M + 1)n2N0 · n2ε−2/6ε1/2,
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by the L2 maximal inequality for martingales. If n = ⌈ε−1/40⌉ (so that (2.55) holds
for ε < ε2.9(κ)) the above gives

P

(

ḠNT
, sup

s≤T
sup

j∈Ĵ(s)
|Xj

s − X̂j
s | > ε1/6

)

≤ cecbT (M + 1)ε1/15. (2.56)

The domination of X by X̄ ensures that

∪NT−1
m=0 [Rm, Rm + 2εβ ] ⊂ ∪N̄T−1

m=0 [R̄m, R̄m + 2εβ ].

Therefore (recall T > 2εβ) for any ℓ ∈ N

P (T ∈ ∪NT−1
m=0 [Rm, Rm + 2εβ ])

≤ P (N̄T > ℓ) + P (T ∈ ∪ℓ−1
m=1[R̄m, R̄m + 2εβ ]).

Lemma 2.4(a) shows that the first term is at most ecbT (M +1)(ℓN0)
−1. Conditional

on FR̄m−1
, R̄m − R̄m−1 is an exponential random variable with rate (M + 1+ (m−

1)N0)c
∗, so the second term is at most

E

(

ℓ
∑

m=1

P (T − 2εβ − R̄m−1 ≤ R̄m − R̄m−1 ≤ T − R̄m−1|FR̄m−1
)

)

≤ 2εβ
ℓ
∑

m=1

((M + 1 + (m− 1)N0)c
∗) ≤ cecbT (M + 1)ℓ2εβ .

Taking ℓ = ⌈ε−β/3⌉ then using (2.54) and (2.56) gives the desired bound on P (G̃c
T ).

The next ingredient required for the convergence theorem is:

Lemma 2.10. Assume T > 2εβ , t0 ∈ [0, εβ ], and ω ∈ G̃β
T . If ζ̂t0(j) = ζt0(j) for all

j ∈ Ĵ(T − t0), then ζ̂T (i) = ζT (i), i = 0, . . . ,M . In particular if ζ̂t0(j) = ξt0(X
j
T−t0

)

for j ∈ J(T − t0), then ζ̂T (i) = ξT (zi) for i = 0, . . . ,M .

Remark 2.1. By Lemma 2.9, J(T−t0) = Ĵ(T−t0) on G̃β
T , and so all the necessary

inputs required for both computations are prescribed in the above result.

Proof. The last statement is immediate from the first and (2.17) with r = T .

By the definition of GNT
⊃ G̃β

T and Lemma 2.2 there is a unique n < NT so that

Rn +
√
ε ≤ T − εβ ≤ t− t0 < T < Rn+1 (2.57)

and

R̂m = Rm and µ̂m = µm for m ≤ n+ 1, K̂(s) = K(s) for s ∈ [0, T ]. (2.58)

As was noted in Section 2.6 the inductive definitions of ζ and ζ̂ are identical except
the latter has hats on the relevant variables and uses ≈t in place of ∼t. The above
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shows that in our current setting the relevant variables are the same with or without
hats (recall we are using Ûn = Un in our coupled construction of ζ̂) and so it remains
to show the equivalence relations are the same and we do this now for the initial
extensions. That is, we extended ζ̂t0 to {0, . . . ,K(T − t0)} by ζ̂t0(k) = ζ̂t0(j) if
k ≈T−t0 j ∈ Ĵ(T − t0) = J(T − t0) (see the above Remark) and extended ζt0 in
the same way but if k ∼ j ∈ J(T − t0) which means Xj

T−t0
= Xk

T−t0
, and so we

now show these equivalencies are the same and hence so are the extensions. Note
that in applying (2.24) to extend ζ̂t0 we are using πm = πRm,γm(

√
ε) for m > 0 and

π0 = π0,z(
√
ε). This means two indices j, k in a family which has branched at time

R̂m = Rm, 0 ≤ m ≤ n (if m = 0 this means two initial indices) are equivalent (in the
≈ sense) at time T − t0 if their corresponding X paths coalesce by time Rm +

√
ε.

Lemma 2.2 implies that on G̃β
T there are no coalescing events in [0, T − t0] (in fact

on [0, T ]) except for those in [Rm, Rm +
√
ε], involving a common family born at

Rm, for m ≤ n. Therefore, the above condition is equivalent to Xj
T−t0

= Xk
T−t0

and
the required result is proved.

The Lemma now follows easily by induction up the tree of X. In place of the
above we must show equivalence of the equivalencies used in (2.20) and (2.27) at
times Rm. Note here that for the indices of interest in (2.20) and (2.27) this is
equivalent to the corresponding equivalencies at times Rm−1 +

√
ε and this follows

as above for m ≥ 1.

2.10 The branching Brownian motion and computation process

We now define a branching Brownian motion X̂0 starting at x ∈ R
d with paths in

D. Let {π0n, n ≥ 1} be an iid sequence of partitions with law ν0 (defined in the
second paragraph of Section 2.5). Particles in X̂0 branch at rate c∗ and at the nth
branching time, |π0n| − 1 particles are born at the location of the parent who also
remains alive. After birth, particles in X̂0 move as independent Brownian motions
in R

d with variance parameter σ2. To couple X̂0 with the branching random walk
X̂ε from Section 2.5 we need two preliminary lemmas which allow us to couple
the corresponding particle motions and offspring numbers, respectively, of the two
branching processes.

Lemma 2.11. We may define our scaled random walk Bε and a d-dimensional
Brownian motion B with variance σ2, starting at 0, on the same space so that for
some constant c2.11

P

(

sup
t≤T
|Bε

t −Bt| ≥
√
ε

)

≤ c2.11Tε.

Proof. Apply Theorem 2.3(i) of Chapter 1 of [10] with H(x) = x6, to see we may
define the unscaled random walk B1 (rate 1, step distribution p) and a Brownian
motion as above, B′ on the same space so that for all S > 0 and r ≥ 1

P

(

sup
s≤S
|B1

s −B′
s| ≥ r

)

≤ cSr−6. (2.59)
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Although the above reference applies to discrete time random walks, we apply it to

the step distribution
∑N(1)

i=1 Xi, where {Xi} are iid p(·) and N(1) is an independent
Poisson(1) random variable. We arrive at the above after a short interpolation
calculation for B1.

To get the desired result from (2.59) we set Bε
t = εB1

ε−2t, Bt = εB̃′
ε−2t and use

r = ε−1/2 to conclude that

P (sup
t≤T
|Bε

t −Bt| ≥
√
ε) ≤ P (sup

t≤T
|εB1

ε−2t − εB′
ε−2t| ≥

√
ε)

≤ P ( sup
t≤ε−2T

|B1
t −B′

t| ≥ ε−1/2)

≤ cε−2Tε3 = cTε

which proves the desired result.

Lemma 2.12. For each ε > 0 we may construct the sequence {π0n : n ≥ 1} on the
same space as {πεn : n ≥ 1} so that

P (πεn 6= π0n) ≤ c2.12ε3/4.

Proof. The obvious way to couple πεn and π0n is to use the same system of rate one
coalescing random walks {B̂Y i

: i = 0, . . . , N0}. If Z is as in Lemma 2.6, then by
(2.45) and (2.47)

P (πεn 6= π0n) ≤ sup
x
P x(Zs = 0 for some s ≥ ε−3/2)

≤ c(ε−3/2)−1/2 = cε3/4.

Let xε ∈ εZd for ε > 0 and assume xε → x ∈ R
d. Our goal now is a joint

construction of (X̂ε, X̂0) started from (xε, x), and associated computation processes
(ζ̂ε, ζ̂0) with the property that if ζ̂ε, ζ̂0 have the same inputs then they will have the
same outputs with probability close to one.

The branching random walk X̂ε starting with a single particle at xε, along with
the associated index sets Ĵε(·), branch times {R̂ε

m}, and parent variables µ̂εm}, are
constructed as in Section 2.5 using the sequence {πεm} in Lemma 2.12. There is
no initial coalescing step now as we are starting with a single particle. We use the
coupled sequence {π0n : n ≥ 1} to define the offspring numbers, branching times
{R0

n : n ≥ 1}, index sets J0(·) and parent variables {µ0n : n ≥ 1} with the same
conditional laws (given {π0m}) as in the definition of X̂ε. We may couple these two
constructions so that for all n ∈ Z+, on the set

G0,ε
n = {π0m = πεm for all 0 ≤ m < n},

we have

R̂ε
m = R0

m, µ̂
ε
m = µ0m, and J

0(s) = Ĵε(s) for all s < R0
m, for all m ≤ n. (2.60)
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Define N0
t = inf{m : R0

m > t}. Using these sequences we follow the prescription in
Section 2.5 for constructing X̂ but substituting Brownian motion paths for random
walk paths. Couple these random walks and Brownian motions as in Lemma 2.11
at least as long as the branching structure of the two are the same. Note that if
there are n branching events up to time T there are at most 1 + nN0 independent
random walk segments and Brownian motions of length at most T to couple (recall
our labeling scheme from Section 2.5). In addition to the errors in Lemma 2.11
there will be a small error from the difference in initial positions at time 0, and so
we get

P (G0,ε
N0

T
, sup
s≤T

sup
j∈J0(s)

|X̂0,j
s − X̂ε,j

s | ≥ |xε − x|+
√
ε) (2.61)

≤ P (N0
T > n) + (1 + nN0)c2.11Tε+ c2.12nε

3/4.

The first time πεn 6= π0n we declare the coupling a failure and complete the
definition of X̂0

t for t ≥ R0
n using random variables independent of X̂ε.

Fix T > 0 and t0 ∈ [0, T ). Given X̂0
t , J

0(t), 0 ≤ t ≤ T , the sequences {π0n},
{R0

n}, {µ0n} an independent sequence of iid uniform [0, 1] random variables {U0
m},

and initial inputs {ζt0(j) : j ∈ J0(T − t0)}, we define a computation process ζ̂0t , t0 ≤
t ≤ T . The definition is analogous to that of ζ̂t given in Subsection 2.6 for X̂ε

started at a single point, but we use g1−i in place of gε1−i in (2.26). That is, as in
(2.25), (2.26), we have

V 0,j
m = ζ̂0(T−R0

m)−((m− 1)N0 + j), j = 1, . . . , N0,

and if i = ζ̂0(T−R0
m)−(µ

0
m), we have

ζ̂0
(T−R̂m)

(µ0m) =

{

1− i if U0
m ≤ g1−i(V̂

0
m)/c∗

i otherwise.
(2.62)

We further couple ζ̂0 and ζ̂ε by using the same sequence of independent uniforms:
{U0

m} = {Um} in their inductive definitions. Just as in (2.41) we can show that
this sequence is independent of all the other variables used to define X̂0 and ζ̂0, as
required. We let F̂0

t denote the right-continuous filtration generated by X̂0, X̂ε and
Â0(t) = ((R0

m, µ
0
m, π

0
m, Um)1(R0

m ≤ t))m∈N as well as its counterpart for X̂ε.

Notation. G̃0,ε
T = G0,ε

N0
T
∩ {sups≤T supj∈J0(s) |X̂0,j

s − X̂ε,j
s | ≤ |xε − x|+

√
ε},

Ḡ0,ε
T = G̃0,ε

T ∩
{

Um /∈
[

gi(ξ)∧gεi (ξ)
c∗ ,

gi(ξ)∨gεi (ξ)
c∗

]

for all ξ ∈ {0, 1}N0 ,m < N0
T , i = 0, 1

}

.

Lemma 2.13. (a) On G̃0,ε
T , we have

R̂ε
m = R0

m, µ̂
ε
m = µ0m, π

ε
m = π0m, for all m ≤ N0

T , and Ĵε(s) = J0(s) for all s ≤ T.
(b) P ((G̃0,ε

T )c) ≤ c2.13ecbT ε3/8.
(c) On Ḡ0,ε

T we also have for any t0 ∈ [0, T ), if ζ̂0t0(j) = ζ̂εt0(j) for all j ∈ J0(T − t0),
then ζ̂0T (0) = ζ̂εT (0).

(d) P ((Ḡ0,ε
T )c) ≤ c2.13ecbT

[

ε3/8 +
√

∑1
i=0 ‖gεi − gi‖∞

]

.
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Proof. (a) is immediate from (2.60) and the definition of G̃0,ε
T .

(b) follows from (2.61) and the now familiar bound P (N0
T > n) ≤ ecbT

nN0
, by setting

n = ⌈ε−3/8⌉.
(c) On Ḡ0,ε

T , we see from (a) and the inductive definitions of ζ̂0 and ζ̂ε, that all the

variables used to define ζ̂0T (0) and ζ̂
ε
T (0) coincide. Therefore these outputs can only

differ due to the use of gi−1 in (2.62) and the use of gεi−1 in (2.26). By induction we

may assume V̂m = V 0
m and the additional condition defining Ḡ0,ε

T now ensures that
these two steps produce the same outputs.
(d) The additional condition defining Ḡ0,ε

T fails with probability at most (recall
c∗ ≥ 1)

P (NT > n) + n2N0

[

1
∑

i=0

‖gi − gεi ‖∞
]

≤ ecbT

nN0
+ n2N0

[

1
∑

i=0

‖gi − gεi ‖∞
]

.

Now let n = ⌈∑1
i=0 ‖gi − gεi ‖∞⌉−1/2 and use (b) to complete the proof.
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3 Proofs of Theorems 1.2 and 1.3

3.1 Proof of Theorem 1.2

We start with a key estimate giving the product structure in Theorem 1.2. This
relies on the fact that duals starting at distant points with high probability will not
collide. For some results we will need a quantitative estimate. Let xkε ∈ εZd, yi ∈ Z

d

and zεik = zik = xkε + εyi, for 0 ≤ i ≤ L and 1 ≤ k ≤ K. Set

∆ε = min
1≤i,i′≤L,1≤k 6=k′≤K

|zik − zi′k′ |ε−1.

The notation is taken to parallel that in Theorem 1.2 and hypothesis (1.23) of that
result implies

lim
ε

∆ε =∞. (3.1)

Let X = Xz,T be the dual process starting at z for the time period [0, T ], with
associated computation process ζt which has initial inputs ζ0(j) = ξε0(X

j
T ), j ∈ J(T ).

Let zk = (zik, i = 0, . . . , L) and consider the duals Xzk ,T , 1 ≤ k ≤ K defined as in
Section 2 with their associated uniforms {Uk

m} and parent variables {µkm}. These
duals are naturally embedded in Xz,T , and although the numbering of the particles
may differ, we do have

{Xz,j
t : j ∈ J(t)} = ∪Kk=1{Xzk ,j

t : j ∈ Jzk(t)}, t ∈ [0, T ]. (3.2)

Define

Vz,T,ε = inf{t ∈ [0, T ] :Xzk ,T,j
t = X

zk′ ,T,j
′

t (3.3)

for some 1 ≤ k 6= k′ ≤ K, j ∈ Jzk(t), j′ ∈ Jzk′ (t)},

where inf ∅ =∞.

Lemma 3.1. P (Vz,T,ε <∞) ≤ c3.1(K,L)ecbT (∆ε)
−(d−2)/(d+3).

Proof. We may dominate Xzk,T by the branching random walks X̄zk,T from Sec-
tion 2.8. By Lemma 2.4(a), if {Y ∗

m} are iid, equal in law to Y ∗, and independent of
Bε in what follows, then for R ≥ 1,

P (V <∞)

≤ P (max
k≤K

N̄ zk
T > n)

+
∑

1≤k 6=k′≤K

P (|X̄zk ,j
t − X̄zk′ ,j

′

t | = 0 ∃j ∈ J̄zk(t), j′ ∈ J̄zk′ (t), t ≤ T, N̄ zk
T ∨ N̄

zk′
T ≤ n).

The first term is bounded by KecbTn−1 and the second term is at most

∑

1≤k 6=k′≤K;0≤i,i′≤L

(1 + nN0)
2Pzk,i−zk′i′ (|B

ε
2t| ≤

n
∑

m=1

ε|Y ∗
m| ∃t ≤ T )

≤
∑

1≤k 6=k′≤K;0≤i,i′≤L

(1 + nN0)
2
[

nCe−κR + Pzki−zk′i′ (|Bε
2t| ≤ nεR ∃t ≤ T )

]

,
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where we used (1.8) in the last line. By Lemma 2.6(c), the probability in the last

term is at most c2.6∆
−(2/3)(d−2)
ε (nR)2(d+1)/3, and so if δ = ∆

−(2/3)(d−2)
ε ,

P (V <∞) ≤ cK2(L+ 1)2ecbTN2
0

[

n−1 + n3e−κR + δ(nR)2(d+1)/3
]

.

Now, optimizing over n and R, set cd = 12
2d+5 , κR = cd log(1/δ) and n = ⌈eκR/4⌉.

Here we may assume without loss of generality that ∆ε ≥ M(κ) so that R ≥ 1. A
bit of arithmetic now shows the the above bound becomes

P (V <∞) ≤ c(K,L)ecbT δ3/(2d+6),

and the result follows.

We suppose now that the assumptions of Theorem 1.2 are in force. That is,
T > 0 is fixed, ξε0 has law λε satisfying the local density condition (1.21) for a fixed
r ∈ (0, 1), and (1.23) holds. It is intuitively clear that the density hypothesis is
weakened by reducing r. To prove this, note that the boundedness of the density
and uniformity in x of the convergence in (1.21) shows that the contribution to the
density on larger blocks from smaller blocks whose density is not near v is small in
L1. We may therefore approximate the mass in a large block by the mass in smaller
sub-blocks of density near v, and use the fact that the contributions close to the
boundary of the large block is negligible to derive the density condition (1.21) for
the larger blocks. As a result we may assume that r < 1/4.

By inclusion-exclusion, it suffices to prove for −1 ≤ Lk ≤ L,

lim
ε→0

P (ξεT (x
k
ε + εyij ) = 1, j = 0, . . . , Lk, k = 1, . . . K)

=

K
∏

k=1

〈1{ξ(yij ) = 1, j = 0, . . . , Lk}〉u(T,xk). (3.4)

Allowing k-dependence in Lk and general subsets of the yi’s is needed for the
inclusion-exclusion, but to reduce eyestrain we will set ij = j and Lk = L in what
follows. The general case requires only notational changes. By the duality equation
(2.17),

P (ξεT (zik) = 1, i = 0, . . . , L, k = 1, . . . ,K) (3.5)

= P (ζT (i, k) = 1, i = 0, . . . , L, k = 1, . . . ,K),

so (3.4) is then equivalent to

P (ζT (i, k) = 1, i = 0, . . . , L, k = 1, . . . ,K)

→
K
∏

k=1

〈1{ξ(yi) = 1, i = 0, . . . , L}〉u(T,xk) as ε→ 0. (3.6)

The proof of (3.6) uses the approach of [20], pp. 304-306.
To work with the left-hand side of (3.6) we need the following preliminary result

to simplify the initial inputs ζ0. Define

β = 1.9r and tε = εβ . (3.7)
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Lemma 3.2. Assume ξε0 is independent of the rescaled random walks {Bε,w : w ∈
εZd} as in (2.8). Then for any n ∈ N and k > 0,

lim
ε→0

sup
|w1|,...,|wn|≤k,wi∈εZd

wi 6=wj for i 6=j

∣

∣

∣
E
(

n
∏

i=1

ξε0(B
ε,wi
tε )

)

−
n
∏

i=1

v(wi)
∣

∣

∣
= 0 .

Proof. For z1, . . . , zn ∈ aεZd define

Γ(z1, . . . , zn) = {Bε,wi
tε ∈ zi +Qε for 1 ≤ i ≤ n} ,

and γ(wi, zi) = P (Bε,wi
tε ∈ zi + Qε), so that P (Γ(z1, . . . , zn)) =

∏n
i=1 γ(wi, zi). Let

G be the union of the events Γ(z1, . . . , zn) over distinct z1, . . . , zn ∈ aεZd such that
|zi − wi| ≤ k

√
tε for 1 ≤ i ≤ n. We claim that P (Gc) is small for k large enough.

To see this, fix δ > 0 and choose k large enough so that

P (|Bε,wi
tε − wi| ≥ (k − 1)

√
tε) = P (|Bε,0

tε | > (k − 1)
√
tε) < δ/n . (3.8)

By a standard estimate (and also since r < 1/4), for wi as above and i 6= j,

P (|Bε,wi
tε −Bε,wj

tε | ≤ 2aε) ≤ c|Qε|P (Bε,0
2tε

= 0) ≤ c|Qε|(ε−2tε)
−d/2 ≤ cε(d−1)3/4 ,

which implies

P (|Bε,wi
tε −Bε,wj

tε | ≤ 2aε for some 1 ≤ i < j ≤ n) ≤ Cn2ε(d−1)3/4 . (3.9)

By (3.9) and (3.8),
P (Gc) ≤ Cn2ε(d−1)3/4 + δ . (3.10)

Now consider the decomposition

E
(

n
∏

i=1

ξε0(B
ε,wi
tε );G

)

=
∑

z1,...,zn

E
(

n
∏

i=1

ξε0(B
ε,wi
tε ); Γ(z1, . . . , zn)

)

(3.11)

where the sum is taken over only those (z1, . . . , zn) used in the definition of G. A
typical term in this sum takes the form

∑

e1,...,en∈Qε

E
(

n
∏

i=1

ξε0(zi + ei)1(B
ε,wi
tε = zi + ei)

)

=
∑

e1,...,en∈Qε

E
(

n
∏

i=1

ξε0(zi + ei)
)

n
∏

i=1

P (Bε,wi
tε = zi + ei) .

Since
√
tε ≫ aε, the probabilities P (Bε,wi

tε = zi + ei) = P (Bε,0
tε = zi − wi +

ei) are almost constant over ei ∈ Qε. In fact, a calculation, using the version
of the local central limit theorem in the Remark after P7.8 in [41] to expand
P (Bε,0

tε = zi − wi + ei) = P (B0
ε−2tε

= (zi − wi + ei)/ε), shows that

lim
ε→0

sup
e,e′∈Qε

|zi−wi|≤k
√
tε

P (Bε,0
tε = zi − wi + e)

P (Bε,0
tε = zi − wi + e′)

= 1 (3.12)
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The continuous time setting is easily accommodated, for example by noting that
along multiples of a fixed time it becomes a discrete time random walk.

Consequently, for all sufficiently small ε > 0, we have k
√
tε < 1 and uniformly

in |wi| ≤ k, |zi − wi| ≤ k
√
tε and e ∈ Qε,

1− δ ≤ |Qε|P (Bε,wi
tε = zi + e)

γ(wi, zi)
≤ 1 + δ . (3.13)

Using this bound and the fact that the zi are distinct we have

∑

e1,...,en∈Qε

E
(

n
∏

i=1

ξε0(zi + ei)
)

n
∏

i=1

P (Bε,wi
tε = zi + ei)

≤
∑

e1,...,en∈Qε

E
(

n
∏

i=1

ξε0(zi + ei)
)(1 + δ)n

|Qε|n
n
∏

i=1

γ(wi, zi)

= (1 + δ)nE
(

n
∏

i=1

D(zi, ξ
ε
0)
)

P (Γ(z1, . . . , zn)) .

The continuity of v implies that for small enough ε, for all |w| ≤ k and |z−w| ≤
k
√
tε, |v(w) − v(z)| < δ. Also for sufficiently small ε and z ∈ aεZd, |z| ≤ k + 1, we

have P (D(z, ξε0) > v(z) + δ) ≤ δ/n. Thus

E
(

n
∏

i=1

D(zi, ξ
ε
0)
)

≤ δ +
n
∏

i=1

(v(zi) + δ) ≤ δ +
n
∏

i=1

(v(wi) + 2δ) .

Returning to the decomposition (3.11), the above bounds imply that for sufficiently
small ε,

E
(

n
∏

i=1

ξε0(B
ε,wi
tε );G

)

≤ (1 + δ)n
[

δ +
n
∏

i=1

(v(wi) + 2δ)
]

∑

z1,...,zn

P (Γ(z1, . . . , zn))

≤ (1 + δ)n
[

δ +

n
∏

i=1

(v(wi) + 2δ)
]

.

Let ε→ 0 and then δ → 0 above and in (3.10) to obtain

lim sup
ε→0

sup
|w1|,...,|wn|≤k

(

E
(

n
∏

i=0

ξε0(B
ε,wi
tε )

)

−
n
∏

i=1

v(wi)
)

≤ 0 .

A similar argument gives a reverse inequality needed to complete the proof.

We break the proof of (3.6) into three main steps. Introduce

S = T − tε = T − εβ.
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Step 1. Reduction to Bernoulli inputs and K = 1.
Let X̃ = X̃z,T be the modification of the dual in which particles ignore reaction
and coalescing events on [S, T ], and let ζ̃t be the associated computation process
with inputs ζ̃0(j) = ξε0(X̃

j
T ). That is, X̃t = Xt for t ∈ [0, S], and during the time

period [S, T ], X̃j
t , j ∈ J(S) follows the same path as Xj

t until the first time a reac-
tion or coalescence occurs, at which time all the X̃j

t switch to following completely
independent Bε random walks.

On the event G̃β
T defined in (2.53) there are no reaction or coalescing events

during [S, T ]. Thus, X̃t = Xt for all t ∈ [0, T ] on G̃β
T , so it follows from Lemma 2.9

that
P (ζt 6= ζ̃t for some t ∈ [0, T ]) ≤ c2.9[(L+ 1)K]2ecbT ε

1
40

∧β
3 . (3.14)

Let ψε(x) = P ε
tεξ

ε
0(x), where

P ε
t f(x) = E(f(x+Bε

t )), x ∈ εZd, is the semigroup of Bε, (3.15)

and let W1,W2, . . . be an iid sequence of uniforms on the interval [0, 1], indepen-
dent of ξε0 and the random variables used in Section 2. We will use this sequence
throughout the rest of this section and also in Section 4. Define a second computa-
tion process ζ∗t , tε ≤ t ≤ T , for X̃ , with inputs

ζ∗tε(j) = 1{Wj ≤ v(X̃j
S)}, j ∈ J(S). (3.16)

It is clear that conditional on σ(ξε0)∨F∞, the variables ζ∗tε(j), j ∈ J(S), respectively
ζ̃tε(j), j ∈ J(S), are independent Bernoulli with means v(X̃j

S), respectively ψε(X̃
j
S).

Let X̄ = X̄z,T be the branching random walk dominating X which was introduced
in Section 2.8. If we fix δ > 0, then using Lemma 2.4(a) it is not hard to see that
there exist n, k such that for all ε sufficiently small,

P (|J̄(S)| ≤ n and |X̄ε
j (S)| ≤ k for all j ∈ J(S)) > 1− δ. (3.17)

It now follows from (3.17), Lemma 3.2 and the definitions of X̃, ζ̃0 and ζ∗tε that for
any b : Z+ → {0, 1},

|P (ζ̃tε(j) = bj , j ∈ J(S))− P (ζ∗tε(j) = bj, j ∈ J(S))|
≤ E(|P (ζ̃tε(j) = bj , j ∈ J(S)|FS ∨ σ(ξε0))− P (ζ∗tε(j) = bj , j ∈ J(S))|FS ∨ σ(ξε0))|)
→ 0 as ε→ 0.

As a consequence, since both ζ̃t, ζ
∗
t , tε ≤ t ≤ T are defined relative to X̃ with

identical {Um}, {µm} and {Rm}, by conditioning on the input values, the above
implies

P (ζ̃T (i, k) = 1, i = 0, . . . , L, k = 1, . . . ,K)

− P (ζ∗T (i, k) = 1, i = 0, . . . , L, k = 1, . . . ,K)→ 0 as ε→ 0. (3.18)

Let ζ∗,zkt be the computation process associated with Xzk,T , 1 ≤ k ≤ K with

inputs as in (3.16). That is, for j ∈ Jzk(S) there exists a j′ ∈ J(S) with Xj′

S = Xzk ,j
S
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(by (3.2)) and we set ζ∗,zktε (j) = 1{Wj′ ≤ v(Xzk ,j
S )}. Up to time V = Vz,T,ε the duals

Xzk,T , k ≤ K, use independent random walk steps and branching mechanisms, and
on {V = ∞} the computation processes ζ∗,zk also use independent uniforms and
parent variables as well as independent inputs at time tε. It follows that (see below)

|P (ζ∗T (i, k) = 1, i = 0, . . . , L, k = 1, . . . ,K)

−
K
∏

k=1

P (ζ∗,zkT (i) = 1, 0 ≤ i ≤ L)|

≤ P (V <∞)→ 0 as ε→ 0. (3.19)

The last limit follows from Lemma 3.1 and (3.1). Perhaps the easiest way to see
the first inequality is to extend Xzk ,T

t to t ∈ [V, T ] by using independent graphical
representations and define the corresponding computation processes ζ

′∗,zk using in-
dependent collections of {Wj}’s for the inputs at time tε. The resulting computation
processes ζ

′∗,zk are then independent, each ζ
′∗,zk is equal in law to ζ∗,zk , and the

two are identical for all k on {V =∞}. On this set we also have

{ζ∗T (i, k) : i, k} = {ζ∗,zkT (i) : i, k},

and so (3.19) follows. It is therefore enough to set K = 1 and drop the superscript
k. Altering our notation to z = (zi), zi = xε + εyi where xε → x, it suffices now to
prove

P (ζ∗T (i) = 1, 0 ≤ i ≤ L)→ 〈1{ξ(yi) = 1, 0 ≤ i ≤ L}〉u(T,x) as ε→ 0. (3.20)

Step 2. Reduction to L = 0. Let X̂ = X̂z,T , 0 ≤ t ≤ T be the branching random
walk started at z, with associated computation process ζ̂t, tε ≤ t ≤ T . We suppose
that X and X̂ are coupled as in Subsection 2.7, and that ζ̂t has initial inputs

ζ̂tε(j) = 1{Wj ≤ v(X̂j
S)}, j ∈ Ĵ(S).

On the event G̃β
T , J(S) = Ĵ(S) and all the differences |Xj

S−X̂
j
S |, j ∈ J(S) are small.

It therefore follows from (3.17) (if we take Y i = 0 X̄ will stochastically dominate
X̂), the continuity of v, the definitions of ζ∗tε and ζ̂tε , and Lemma 2.9 that

P (G̃β
T , ζ

∗
tε(j) = ζ̂tε(j) for all j ∈ J(S))→ 1 as ε→ 0. (3.21)

By Lemma 2.10, on the event in (3.21), the outputs ζ∗T and ζ̂T agree, and conse-
quently

P (ζ∗T (i) = 1, 0 ≤ i ≤ L)− P (ζ̂T (i) = 1, 0 ≤ i ≤ L)→ 0 as ε→ 0. (3.22)

Using the branching structure we can now reduce to the case L = 0. To see this,
let X̂zi,T be the branching random walk started from zi = xε + εyi, with associated
computation process ζ̂zit , tε ≤ t ≤ T with initial inputs ζ̂zitε (j) which, conditional on
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X̂zi
t , 0 ≤ t ≤ S are independent with means v(X̂zi,j

S ). The branching property and

definition of X̂0 in (2.23) imply (recall νε from just above (2.21))

P (ζ̂T (i) = 1, i = 0, . . . , L) =
∑

π∈ΠL

νε(π)
∏

j∈J(π)
P (ζ̂

zj
T (0) = 1).

Since zj → x as ε→ 0 for i = 0, . . . , L, if we can establish

P (ζ̂xε
T (0) = 1)→ û(T, x) as ε→ 0, (3.23)

for some û : R+ × R
d → [0, 1], then the convergence νε ⇒ ν0 implies

P (ζ̂T (i) = 1, i = 0, . . . , L)→
∑

π∈ΠL

ν0(π)(û(T, x))
|π|

= 〈1{ξ(yi) = 1, 0 ≤ i ≤ L}〉û(T,x) as ε→ 0 , (3.24)

where (1.26) is used in the last line. Combining this with (3.22) gives the desired
result (3.20) but with û in place of u, that is, we get

P (ζ∗T (i) = 1, 0 ≤ i ≤ L)→ 〈1{ξ(yi) = 1, 0 ≤ i ≤ L}〉û(T,x) as ε→ 0. (3.25)

We first turn now to the proof of (3.23).

Step 3. Convergence and identification of the limit. Let X̂0 be the branching Brow-
nian motion started at x ∈ R

d run over the time period [0, T ], with associated
computation process ζ̂0t , tε ≤ t ≤ T with inputs

ζ̂0tε(j) = 1{Wj ≤ v(X̂0,j
S )}, j ∈ J0(S).

Using the obvious analogue of (3.17) for X̂0, the continuity of v and the definitions
of ζ̂tε and ζ̂0tε , Lemma 2.13 (and the uniform convergence of gεi to gi) implies

P (Ḡ0,ε
T , ζ̂tε(j) = ζ̂0tε(j) for all j ∈ J0(S))→ 1 as ε→ 0. (3.26)

By Lemma 2.13(c), on the event in (3.26), ζ̂T (0) = ζ̂0T (0), and thus

P (ζ̂xε
T (0) = 1)− P (ζ̂0T (0) = 1)→ 0 as ε→ 0, (3.27)

where we note that both quantities in the above depend on ε. If we take the initial
inputs for the computation process ζ̂0 = ζ̂0,∗ at time 0 to be

ζ̂0,∗0 (j) = 1{Wj ≤ v(X0,j
T )}, j ∈ J0(T ), (3.28)

it is now routine to see that P (ζ̂0tε = ζ̂0,∗tε )→ 1 as ε→ 0, and so by (3.27)

lim
ε→0

P (ζ̂xε
T (0) = 1) = P (ζ̂0,∗T (0) = 1) ≡ û(T, x). (3.29)

This proves (3.23), hence (3.24) and so to complete the proof of (3.20), and hence
Theorem 1.2, we only need show û = u:
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Lemma 3.3. Let X̂0
t , 0 ≤ t ≤ T be the branching Brownian motion started at

x ∈ R
d, with associated computation process ζ̂0,∗t , 0 ≤ t ≤ T with initial inputs as in

(3.28). Then
P (ζ̂0,∗T (0) = 1) = u(T, x),

where u is the solution of the PDE (1.19).

Proof. This is very similar to the proof in Section 2(e) of [20]. Recall P ε
t is the

semigroup of Bε. Let x ∈ R
d and xε ∈ εZd satisfy |x − xε| ≤ ε and let ξε be our

rescaled particle system where {ξε0(εy) : y ∈ Z
d} are independent Bernoulli random

variables with means {v(εy) : y ∈ Z
d}. If

dε(εy, ξε) = −ξ(y)hε0(y, ξ) + (1− ξ(y))hε1(y, ξ), y ∈ Z
d, ξ ∈ {0, 1}Zd

, (3.30)

then the martingale problem for ξε shows that (cf. (2.25) of [20])

E(ξεT (xε)) = E(P ε
T ξ

ε
0(xε)) +

∫ T

0
Exε × E(dε(B

ε
T−s, ξ

ε
s)) ds, (3.31)

where Bε
0 = xε under Pxε . Our hypotheses on ξε0 imply

E(P ε
T ξ

ε
0(xε)) = P ε

T v(xε)→ PT v(x) as ε→ 0,

where Pt is the d-dimensional Brownian semigroup with variance σ2. Recall we have
proved ((3.24) and the preceding results) that

lim
ε→0

P (ξεT (xε + εyi) = ηi, i = 0, . . . , L) = 〈1{ξ(yi) = ηi, i = 0, . . . , L}〉û(T,x).

Now use the above with Fubini’s theorem, the uniform convergence of gεi in (1.9)
and the coupling of Bε and B in Lemma 2.11 to conclude that

lim
ε→0

Exε × E(dε(B
ε
T−s, ξ

ε
s))

= lim
ε→0

Exε × E × EY

(

−ξεs(Bε
T−s)g

ε
0(ξ

ε
s(B

ε
T−s + εY 1), . . . , ξs(B

ε
T−s + εY N0))

+ (1− ξεs(Bε
T−s))g

ε
1(ξ

ε
s(B

ε
T−s + εY 1), . . . , ξεs(B

ε
T−s + εY N0)

)

= Ex

(

〈−ξ(0)h0(0, ξ) + (1− ξ(0))h1(0, ξ)〉û(s,BT−s)

)

= Ex(f(û(s,BT−s)),

the last by (1.16). Now use the above to take limits in (3.31) to show that û solves
the weak form of (1.19). As in Lemma 2.21 of [20] it follows that û solves (1.19)
and so equals u.

The following asymptotic independence result follows easily from Step 1 in the
above argument.
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Proposition 3.4. If K ∈ N, there is a c3.4(K) so that if z1, . . . , zK ∈ εZd satisfy
infj 6=k |zj − zk| ≥ ε1/4 and ξε0 is deterministic, then

|E(

K
∏

k=1

ξεT (zk))−
K
∏

k=1

E(ξεT (zk))| ≤ c3.4(K)ecbT ε1/8.

Proof. Define V = Vz,T,ε as in (3.3) but now with zk ∈ εZd, that is L = 0. Use the
dual equation (7.11) and argue just as in the derivation of (3.19) to see that

|E(
K
∏

i=1

ξεT (zi))−
K
∏

i=1

E(ξεT (zi))| ≤ P (V <∞).

The fact that ξε0 is deterministic makes the independence argument simpler in this
setting. Now use Lemma 3.1 and the separation hypothesis on the zk’s to bound
the right-hand side of the above by

c3.1(K, 0)e
cbT ε(3/4)(d−2)/(d+3) ≤ c3.1(K, 0)ecbT ε1/8.

3.2 Proof of Theorem 1.3

Proof. Let t > 0 and choose η(ε) ↓ 0 so that η(ε)/ε → ∞ and η(ε)/δ(ε) → 0.
Recall Iδ(x) is the semi-open cube containing x defined prior to Theorem 1.3. Write
E((ũδ(t, x)− u(t, x))2) =

=
( ε

δ(ε)

)2d ∑

x1,x2∈Iδ(x)
E(ξεt (x1)ξ

ε
t (x2)− u(t, x)(ξεt (x1) + ξεt (x2)) + u(t, x)2).

The contribution to the above sum from |x1 − x2| ≤ η(ε) is trivially asymptotically
small, uniformly in x, as ε → 0. Theorem 1.2 shows that the expectation in the
above sum goes to zero uniformly in x1, x2 ∈ Iδ(x), |x1 − x2| ≥ η(ε), x ∈ [−K,K]d

as ε→ 0. The result follows.
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4 Achieving low density

The first step in the proof of Theorem 1.16 is to use the convergence to the partial
differential equation in Theorem 1.2, and more particularly the estimates in the
proof, to get the particle density in (1.20) low on a linearly growing region.

As we will now use the partial differential equation results in Section 1.2, we
begin by giving the short promised proofs of Propositions 1.4 , 1.5 and 1.7.

Proof of Proposition 1.7. Set η = |r|/3 and let L0
δ , C0 and c0 be the constants in

Proposition 1.6, and define

Lδ = L0
δ , c1 = c0, tδ = L0

δ · 3
√
d/|r|, C1 = (C0 ∨ 1)ec0tδ .

Suppose t ≥ tδ, L ≥ Lδ and |x| ≤ L+ (|r|/3)t/
√
d. Then we may write x = x0 + y,

where

|y| ≤ 2|r|
3

t√
d

and |x0| ≤ L−
|r|t
3
√
d
≤ L− |r|tδ

3
√
d
= L− L0

δ . (4.1)

For t ≥ 0 and z ∈ R
d define ũ(t, z) = u(t, x0 + z). If |z| ≤ L0

δ , then |x0 + z| ≤
|x0| + L0

δ ≤ L, which implies that ũ(0, z) ≤ ρ − δ. Applying Proposition 1.6 to ũ,

and recalling the bound on |y| in (4.1), which implies |y|2 ≤ 2|r|
3 t we have that for

t ≥ tδ, and |x| ≤ L+ (|r|/3)t/
√
d

u(t, x) = ũ(t, y) ≤ C0e
−c0t ≤ C1e

−c1t .

Since the right-hand side above is at least 1 if t ≤ tδ, the above bound follows for
all t ≥ 0, and we have proved the result with w = |r|/6

√
d.

Proof of Proposition 1.5. Extend f |[0,1] to a smooth function f̃ on [0, 1+ δ0] so that

f̃ > 0 on (1, 1 + δ0), f̃(1 + δ0) = 0, f̃ ′(1 + δ0) < 0 and
∫ 1+δ0
0 f̃(u)du < 0. The

situation is now as in Proposition 1.7 with 0, 1 and 1 + δ0 playing the roles of 0, ρ
and 1. As the solutions take values in [0, 1] the extension will not affect the solutions
and the Theorem follows from Proposition 1.7.

Proof of Proposition 1.4. The version of Proposition 1.5 with the roles of 0 and 1
reversed, applied on the interval (0, α) shows there are positive constants L, c, and
C so that if u(0, x) ≥ α/2 for |x| ≤ L, then

u(t, x) ≥ α− Ce−ct for |x| ≤ L+ 2wt.

It is here that we need f ′(α) < 0, corresponding to f ′(0) < 0 in Proposition 1.5. By
Theorem 3.1 of Aronson and Weinberger [2] there is a T0 so that

u(T, x) ≥ α/2 for |x| ≤ L and T ≥ T0.

Therefore we have

u(t+ T0, x) ≥ α− Ce−ct for |x| ≤ L+ 2w(t+ T0)− 2wT0,
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and so for t ≥ 2T0,

u(t, x) ≥ α− CecT0e−ct for |x| ≤ L+wt.

The result follows as we may replace w with 2w.

Recall the parameter r ∈ (0, 1), and definitions of aε, tε, Qε, and D(x, ξ) in
(1.20). We first show the density D(x, ξεT ) is close to its mean.

Lemma 4.1. Let T > 0 and assume ξε0 is deterministic.
(a) If 0 < r < 5

24 , then for all x ∈ aεZd,

E((D(x, ξεT )− E(D(x, ξεT )))
2) ≤ C4.1ecbT ε1/8.

(b) If 0 < r ≤ 1/(16d) and C = y + [−L,L]d for y ∈ R
d, then for all η > 0,

P
(

sup
x∈C∩aεZd

|D(x, ξεT )− E(D(x, ξεT ))| ≥ η
)

≤ C4.1ε1/16LdecbT η−2.

Proof. (a) Note that

|{(z1, z2) ∈ (x+Qε)
2 : |z1 − z2| ≤ ε1/4}| (4.2)

≤ (2ε−3/4 + 1)d|Qε| ≤ cd|Qε|2(ε
1
4
−r)d.

If Σx
z denotes the sum over

z ∈ {(z1, z2) ∈ (x+Qε)
2 : |z1 − z2| > ε1/4}, (4.3)

then by (4.2) and Proposition 3.4 with K = 2,

E((D(x, ξεT )− E(D(x, ξεT )))
2)

≤ |Qε|−2
[

cd|Qε|2(ε
1
4
−r)d +

∑x
z [E(

2
∏

k=1

ξεT (zk))−
2
∏

k=1

E(ξεT (zk))]
]

≤ cdε(
1
4
−r)d + 4c3.4(2)e

cbT ε1/8

≤ C4.1ecbT ε1/8, (4.4)

where our condition on r is used in the last line.
(b) Note that

|C ∩ aεZd| ≤ cdLda−d
ε ≤ cdLdε−rd ≤ cdLdε−1/16.

The result now follows from (a) and Chebychev’s inequality.

We recall the following hypothesis from Section 1.6:

Assumption 2. There are constants 0 < u1 < 1, c2, C2, w > 0, L0 ≥ 3 so that for
all L ≥ L0, if u(0, x) ≤ u1 for |x| ≤ L then for all t ≥ 0

u(t, x) ≤ C2e
−c2t for all |x| ≤ L+ 2wt.
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We also recall the following condition from the same Section: For some r0 > 0,

1
∑

i=0

‖gεi − gi‖∞ ≤ c1.63εr0 . (4.5)

We say that ξ ∈ {0, 1}εZd
has density at most κ (respectively, in [κ1, κ2]) on

A ⊂ R
d iff D(x, ξ) ≤ κ (respectively D(x, ξ) ∈ [κ1, κ2]) for all x ∈ (aεZ

d) ∩ A. We
set (recall (3.7))

r =
1

16d
, hence β =

1.9

16d
, tε = ε1.9/(16d), T = A4.2 log(1/ε), and S = T − tε, (4.6)

where A4.2 = c−1
b

(

1
100d ∧ r0

4

)

.

Lemma 4.2. Suppose Assumption 2 and (4.5) hold. Let u2 ∈ (0, u1) and

γ4.2 =
(

c2
cb
∧ 1
)(

1
120d ∧ r0

5

)

. There is an ε4.2 > 0, depending on (u1, u2, w, c2, C2)

and satisfying

ε
γ4.2
4.2 ≤ u2, (4.7)

so that if 0 < ε ≤ ε4.2 and 2 + L0 ≤ L ≤ ε−.001/d, then whenever ξε0 has density at

most u2 in [−L,L]d,

P (ξεT has density at most ε
γ4.2 in [−L− wT,L+ wT ]d|ξε0) ≥ 1− ε.05.

Note that (4.7) allows us to iterate this result and obtain the conclusion on succes-
sively larger spatial regions at multiples of T .

The proof of the above Lemma will require some preliminary lemmas.

Lemma 4.3. If pεt (y) = ε−dP (Bε
t = y), y ∈ εZd, then for 0 < ε ≤ 1,

|pεt(x)− pεt (x+ y)| ≤ c4.3|y|t−(d+1)/2 for all x, y ∈ εZd and t > 0.

Proof. This is a standard local central limit theorem; for d = 2 this is Lemma 2.1
of [5] and the same proof applies in higher dimensions.

Recall (from (3.15)) that P ε
t is the semigroup associated with Bε.

Lemma 4.4. There is a c4.4 such that if 1 > α > β/2, then for 0 < ε ≤ 1,

|P ε
tεξ(x)− P ε

tεξ(x
′)| ≤ c4.4ε(2α−β)/(2+d)

for all x, x′ ∈ εZd such that |x− x′| ≤ 2εα and all ξ ∈ {0, 1}εZd
.
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Proof. Let −∞ < δ ≤ α, ∆ = x − x′ and assume |∆| ≤ 2εα. Apply Lemma 4.3 to
see that

|P ε
tεξ(x)− P ε

tεξ(x
′)|

≤
∑

z∈εZd

|P (Bε
tε = z)− P (Bε

tε = z +∆)|

≤
∑

|z|≤3εδ

c4.3ε
d|∆|t−(d+1)/2

ε + P (|Bε
tε | > 3εδ) + P (|Bε

tε | ≥ 3εδ −∆)

≤ cε(δ−1)dεd+αε−β(d+1)/2 + 2P (|Bε
tε | > εδ).

If we use Chebychev to bound the last summand by ctεε
−2δ = cεβ−2δ and optimize

over δ (setting δ = β
2 −

α−(β/2)
2+d < β

2 < α), we obtain the required upper bound.

Lemma 4.5. For any η > 0 there is an ε4.5(η) > 0 so that if 0 < ε ≤ ε4.5,

u ∈ [0, 1], L > 1, and ξ ∈ {0, 1}εZd
has density at most u in [−L,L)d, then

P ε
tεξ(x) ≤ u+ η for all x ∈ [−L+ 1, L− 1]d ∩ εZd . (4.8)

Proof. By translation invariance it suffices to prove that for small enough ε > 0 and
all x ∈ [−aε, aε]d ∩ εZd, if ξ has density at most u in [−1, 1)d then P ε

tεξ(x) ≤ u+ η.
(This addresses the uniformity in L.) Argue as in the upper bound in (3.13) to see
that for ε < ε0(η),

|Qε|P (Btε = z + e)

P (Bε,x
tε ∈ z +Qε)

≤ 1 +
η

2
for all z ∈ aεZd, |z − x| ≤ 1 and e ∈ Qε.

We therefore have

P ε
tεξ(x) ≤ P (|B

x,ε
tε | ≥ 1/2)

+
∑

z∈aεZd

1(|z − x| ≤ 3/4)
∑

e∈Qε

ξ(z + e)
1 + (η/2)

|Qε|
P (Bε,x

tε ∈ z +Qε)

≤ 4σ2dtε +
∑

z∈aεZd

1(|z − x| ≤ 3/4)u(1 +
η

2
)P (Bε,x

tε ∈ z +Qε)

≤ 4σ2dtε + u+
η

2
≤ u+ η,

for ε < ε1(η).

We are ready for the Proof of Lemma 4.2.

Proof. By the conditioning we may fix a deterministic ξε0 as in the statement of
Lemma 4.2. In light of Lemma 4.1 our first and main goal is to bound E(D(x, ξεT ))
for a fixed x ∈ aεZ

d ∪ [−L − wT,L + wT ]d. Let z ∈ x + Qε. Let X̃z,T be the
modification of the dual Xz,T , starting with a single particle at z, in which particles
ignore branching and coalescing events on [S, T ] by following their own random walk
and switching to independent random walk mechanisms when a collision between
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particles occurs. Hence Xi
S = X̃i

S for all i ∈ J(S), and on [S, T ] the particles
in X̃z,T follow independent copies of Bε. Let ζ̃ε be the associated computation
process, defined just as ζε is for Xz,T , with initial values ζ̃ε0(j) = ξε0(X̃

j
T ), j ∈ J(S)

(for X̃z,T the index set is constant on [S, T ]). On G̃β
T , T /∈ ∪NT−1

m=0 [Rm, Rm + 2εβ ],
with β < 1/2, and so

[S, T ] ∩ (∪NT−1
m=0 [Rm, Rm +

√
ε]) = ∅. (4.9)

Therefore on G̃β
T , X

z,T has no branching or coalescing events on [S, T ], and so
X̃z,T = Xz,T on [0, T ]. This also means (by (2.17)) that, given the common inputs
ζε0(j) = ζ̃ε0(j) = ξε0(X

j
T ), j ∈ J(T ) = J(S) we have

ζ̃εT (0) = ζεT (0) = ξεT (z) on G̃
β
T . (4.10)

Let ψε(x) = P ε
tεξ

ε
0(x). Conditional on FS , {X̃j

T − X̃j
S : j ∈ Ĵ(S)} are iid with

law P0(B
ε
tε ∈ ·), and so, conditional on FS , {ζ̃εT−S(j) = ξε0(X̃

j
T ) : j ∈ J(S)} are

independent Bernoulli rv’s with means {ψε(X
j
S) : j ∈ J(S)}. Recall {Wj} is an

iid sequence of uniform [0, 1] rv’s independent of F∞ (that is of our graphical con-
struction). Let {ζ̃ε,∗t (j) : j ∈ J(T − t), T − S ≤ t ≤ T} be the computation process
associated with X̃z,T but with initial inputs ζ̃ε,∗T−S(j) = 1(Wj ≤ ψε(X

j
S) : j ∈ J(S)}.

Then {ζ̃εt : T − S ≤ t ≤ T} and {ζ̃ε,∗t : T − S ≤ t ≤ T} have the same law

because the joint law of their Bernoulli inputs and the processes X̃z,T
t , t ≤ S and

((µm, Um)1(Rm ≤ t), t ≤ S) used to define them are the same. Therefore by (4.10)

|P (ξεT (z) = 1)− P (ζ̃ε,∗T (0) = 1)|
= |P (ξεT (z) = 1)− P (ζ̃εT (0) = 1)| ≤ P ((G̃β

T )
c). (4.11)

Consider now the branching random walk X̂ starting with a single particle at z
and coupled with Xz,T as in Section 2.7, together with its computation process {ζ̂ε :
t ∈ [T−S, T ]} with initial inputs ζ̂T−S(j) = 1(Wj ≤ ψε(X̂

j
S)), j ∈ Ĵ(S). Conditional

on F∞, these inputs are independent Bernoulli rv’s with means {ψ(X̂j
S) : j ∈ Ĵ(S)}.

The computation processes ζ̃ε,∗ and ζε are identical on [T − S, T ] if given the same

inputs at time T − S. Therefore Lemma 2.10 shows that on G̃β
T ζ̂εT (0) and ζ̃ε,∗T (0)

will coincide if given the same inputs at time T − S. Therefore
|P (ζ̂T (0) = 1)− P (ζ̃ε,∗T (0) = 1)|
≤ P ((G̃β

T )
c) + E(P (ζ̂εT−S(j) 6= ζ̃ε,∗T−s(j) ∃j ∈ Ĵ(S)|F∞)1(G̃β

T ))

≤ P ((G̃β
T )

c) + E
(

∑

j∈Ĵ(S)
|ψε(X̂

j
S)− ψε(X

j
S)|1( sup

j∈Ĵ(S)
|Xj

S − X̂
j
S | ≤ ε1/6)

)

. (4.12)

Use Lemma 2.9 to bound the first term above and Lemma 4.4 with α = 1/6 > β/2
to bound the second, and combine this with (4.11) to conclude that (use d ≥ 3)

|P (ξεT (z) = 1)− P (ζ̂εT (0) = 1)| ≤ 2c2.9e
cbT εβ/3 + E(|Ĵ(S)|)c4.4ε(1/3−β)/(2+d))

≤ 2c2.9ε
1/(40d) + ecbSc4.4ε

(1/3−β)/(2+d)

≤ (2c2.9 + c4.4)ε
1/(40d). (4.13)
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To prepare with the coupling with the branching Browian motion we must extend
ψε(x) = P ε

tεξ
ε
0(x) from εZd to R

d in an appropriate manner. Since ξε0 has density at
most u2 in [−L,L]d, Lemma 4.5 shows that for ε ≤ ε4.5(u1−u2) we may extend ψε

in a piecewise linear manner so that

ψε(x) ≤ u11(|x| ≤ L− 2) + 1(|x| > L− 2) for all x ∈ R
d. (4.14)

In addition, using Lemma 4.4 with α = 1/6, we may assume the above extension
also satisfies

|ψε(x)− ψε(x
′)| ≤ c4.4ε

(1/3)−β
2+d for x, x′ ∈ R

d such that |x− x′| ≤ ε1/6. (4.15)

Now consider the branching Brownian motion X̂0 starting with a single particle
at z, coupled with X̂ε as in Section 3. Consider also its associated computation
process ζ̂0 on [T − S, T ] starting with conditionally independent Bernoulli inputs
{ζ̂0T−S(j) = 1(Wj ≤ ψε(X̂

0,j
S )) : j ∈ Ĵ0(S)}. We may argue as in the derivation of

(4.13), but now using Lemma 2.13, (4.5), and (4.15) in place of Lemmas 2.9 and
4.4, to conclude after some arithmetic using d ≥ 3,

|P (ζ̂εT (0) = 1)− P (ζ̂0T (0) = 1)| ≤ ecbT c2.13(ε3/8 + c1.63ε
r0/2) + c4.4ε

1/(40d). (4.16)

By Lemma 3.3 (we have shifted time by T − S), P (ζ̂0T (0) = 1) = uε(S, z), where uε
is the solution of the PDE (1.19) with initial condition uε(0, ·) = ψε. Now combine
this with (4.13) and (4.16) to see that for small enough ε as above

E(ξεT (z)) ≤ cε(1/(40d))∧(r0/4) + uε(S, z). (4.17)

Now use the bound on the initial condition (4.14) and Assumption 2 in the above
to conclude that for |z| ≤ L− 2 + 2wS, and small ε

E(ξεT (z)) ≤ cε(1/(40d))∧(r0/4) + C2e
−c2S ≤ εγ′

, (4.18)

where γ′ =
(

c2
cb
∧ 1
)(

1
110d ∧ r0

4

)

> γ4.2 and we used the definition of S and some

arithmetic. By taking ε smaller if necessary we may assume 2wS − 3 ≥ wT and so
the above holds for |z| ≤ L+ 1 + wT . This shows that

E(D(x, ξεT )) ≤ εγ
′

for x ∈ aεZd ∩ [−L− wT,L+ wT ]d. (4.19)

Finally apply the above and Lemma 4.1 to conclude that for small enough ε

P
(

sup
x∈[−L−wT,L+wT ]d∩aεZd

D(x, ξεT ) ≥ εγ4.2
)

≤ P ( sup
x∈[−L−wT,L+wT ]d∩aεZd

|D(x, ξεT )− E(D(x, ξεT ))| ≥ εγ4.2/2)

≤ C4.1ε1/16(L+ wT )decbT 4ε
−2γ4.2

≤ Cε1/16ε−.001ε−1/100dε−1/120d ≤ ε.05.
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Our next goal is to show that the dual process only expands linearly in time.
The first ingredient is a large deviations result. Recall the dominating branching
random walk {X̄ε,j(t) : j ∈ J̄ε(t)} introduced at the beginning of Section 2.8 which
satisfies

{Xε,j
s : j ∈ Jε(s)} ⊂ {X̄ε,j

s : j ∈ J̄ε(s)}.
If ‖Xε

s‖∞ = sup{|Xε,j(s)| : j ∈ Jε(s)} and similarly for ‖X̄ε
s‖∞, then the above

domination implies
‖X̄ε

s‖∞ ≥ ‖Xε
s‖∞ for all s, ε. (4.20)

Recall c∗ is as in (2.7).

Lemma 4.6. Assume X̄ε starts from one particle at 0. For each R > 0 there is an
ε4.6(c

∗, R) > 0, nonincreasing in each variable, so that for 0 < ε ≤ ε4.6 and t > 0,

P (‖X̄ε
s‖∞ ≥ 2ρt for some s ≤ t) ≤ (4d+ 1) exp(−t(γ(ρ)− cb)) for all 0 < ρ ≤ R,

where γ(ρ) = min{ρ/2, ρ2/3σ2}. Moreover, if ρ ≥ max{4cb, 2σ2}, then the above
bound is at most (4d+ 1) exp(−tρ/4).

Proof. The last assertion is trivial. Let Sε
t be a random walk that starts at 0, jumps

according to pε at rate ε−2, and according to qε at rate c∗. Since E|X̄ε
t | = exp(cbt)

by summing over the branches of the tree, it suffices to show

P (‖Sε
s‖∞ ≥ ρt for some s ≤ t) ≤ (4d+ 1) exp (−γ(ρ)t) . (4.21)

As usual, Bε
t is the random walk that jumps according to pε at rate ε−2. By the

reflection principle

P

(

sup
s≤t

Bε,i
s ≥ ρt

)

≤ 2P
(

Bε,i
t ≥ ρt

)

≤ 2e−θρtE
(

exp
(

θBε,i
t

))

for any θ > 0. If φε(θ) =
∑

x e
θxi
pε(x) then a standard Poisson calculation gives

E
(

exp
(

θBε,i
t

))

= exp(tε−2(φε(θ)− 1)).

By scaling φε(θ) = φ1(εθ). Our assumptions imply φ′1(0) = 0 and φ′′1(0) = σ2 so

ε−2(φ1(εθ)− 1)→ σ2θ2/2 as ε→ 0.

If 0 < ρ ≤ R and θ = ρ/σ2 in the above, it follows that for ε < ε0(R),

e−(ρ2/σ2)tE
(

exp
(

(ρ/σ)Bε,i
t

))

≤ exp(−ρ2t/3σ2),

and so,
P (sup

s≤t
|Bε,i

s | ≥ ρt) ≤ 4 exp
(

−ρ2t/3σ2
)

. (4.22)

Let Jε
t be the one dimensional random walk that jumps according to the law of

εY ∗ = εmaxi≤N0 |Y i| at rate c∗, and notice that this will bound the L∞ norm of

72



the sum of the absolute values of the jumps according to qε in Sε up to time t. If
we let φJ(θ) = E(exp(θY ∗)), then, arguing as above, we obtain

P (Jε
t ≥ ρt) ≤ exp(−ρθt+ c∗t(φJ(εθ)− 1)).

The exponential tail of Y ∗ (from (1.8)) shows that (φJ(εθ)−1)/εθ → EY ∗ as ε→ 0,
and so, if we set θ = 1, then for small ε, c∗(φJ (ε)− 1) ≤ ρ/2. (The choice of ε here
works for all ρ because we may assume without loss of generality that ρ ≥ ρ0 > 0
as the Lemma is trivial for small ρ.) Therefore

P (Jε
t ≥ ρt) ≤ exp(−ρt/2). (4.23)

To derive (4.21), write

P (sup
s≤t
‖Sε

s‖∞ ≥ 2ρt) ≤
d
∑

i=1

P (sup
s≤t
|Bε,i

s | ≥ ρt) + P (Jε
t ≥ ρt),

and use (4.22) and (4.23).

Our next result uses the large deviation bound in Lemma 4.6 to control the
movement of all the duals that start in a region. Recall that Xx,U is the dual
for ξε starting with one particle at x from time U . For x ∈ R

d and r > 0 let
Q(x, r) = [x − r, x + r]d and Qε(x, r) = Q(x, r) ∩ εZd. Write Q(r) for Q(0, r) and
Qε(r) for Qε(0, r).

Lemma 4.7. For c > 0, b ≥ 4cd ∨ 2σ2, L ≥ 1 and U ≥ T ′ = c log(1/ε), let

p̄ε(b, c, L, U) = P (Xx,u
t is not contained in Q(L+ 2bT ′)

for some u ∈ [U − T ′, U ], t ≤ T ′ and some x ∈ Qε(L)).

Let c′d = 12(4d + 1)3d. There exists ε4.6(c
∗, b) > 0 such that if 0 < ε ≤ ε4.6

p̄ε(b, c, L, U) ≤ c′dLd(c log(1/ε) + 1)εq−d

where q = ( bc4 − 2) ∧ ε−2.

Proof. By translation invariance it suffices to take U = T ′. For x ∈ εZd let {Ti(x) :
i ≥ 0} be the successive jump times of the reversed Poisson process, starting at time
T ′, determined by the T x

n , T
∗,x
n . Also let Nx be the number of such jumps up to time

T ′, so that Nx is Poisson with mean (c∗ + ε−2)T ′. The process ξεt (x) is constant for
t ∈ (T ′ − Ti+1(x), T

′ − Ti(x)] and for such t the dual Xx,t(v) is

Xx,T−Ti(x)(v + (T ′ − Ti(x)− t)),

that is, one is a simple translation of the other. This means for t as above

∪v≤tX
x,t(v) ⊂ ∪v≤T ′−Ti(x)X

x,T ′−Ti(x)(v), (4.24)
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(in fact equality clearly holds). As a result, in p̄ε(b, c, L, T
′) we only need consider t

to be one of the times T ′−Ti(x) for 0 ≤ i ≤ Nx and we may bound 1− p̄ε(b, c, L, T ′)
by

P (∃x ∈ Qε(L) s.t. Nx ≥ 3T ′(ε−2 + c∗))

+ P (∃x ∈ Qε(L), 0 ≤ Ti(x) ≤ 3T ′(ε−2 + c∗) s.t.

sup
v≤T ′−Ti(x)

‖Xx,T ′−Ti(x)(v)‖∞ > 2bT ′)

≤ (2Lε−1 + 1)d exp{−3T ′(ε−2 + c∗)}E(eNx)

+ (2Lε−1 + 1)d(3T ′(ε−2 + c∗) + 1)(4d + 1) exp(−T ′b/4).

Here we are using Lemma 4.6 and the strong Markov property at Ti(x) for the
filtration generated by the reversed Poisson processes Ft. Some arithmetic shows
the above is at most

3d(L ∨ ε)dε−d
[

exp(−3T ′(ε−2 + c∗)) exp((ε−2 + c∗)T ′(e− 1))

+ (4d+ 1)(3T ′(ε−2 + c∗) + 1)εbc/4
]

≤ 3d(L ∨ ε)dε−d
[

exp(−T ′(ε−2 + c∗)) + 6(4d + 1)(c log(1/ε)ε−2 + 1)εbc/4
]

≤ 3d(L ∨ ε)dε−d
[

ε(cε
−2) + 6(4d + 1)(c log(1/ε) + 1)εbc/4−2

]

≤ c′d(L ∨ ε)d(c log(1/ε) + 1)ε−dε(bc/4−2)∧ε−2
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5 Percolation results

To prove Theorems 1.15 and (especially) 1.16 we will use block arguments that
involve comparison with oriented percolation. Let D = d + 1, where for now we
allow d ≥ 1, and let A be any D × D matrix so that (i) if x has x1 + · · · + xD =
1 then (Ax)D = 1, and (ii) if x and y are orthogonal then so are Ax and Ay.
Geometrically, we first rotate space to take (1/D, . . . 1/D) to (0, . . . , 0, 1/

√
D) and

then scale x→ x
√
D. Let LD = {Ax : x ∈ Z

D}. The reason for this choice of lattice
is that if we let Q = {Ax : x ∈ [−1/2, 1/2]D}, then the collection {z + Q, z ∈ LD}
is a tiling of space by rotated cubes. When d = 1, L2 = {(m,n) : m+ n is even} is
the usual lattice for block constructions (see Chapter 4 of [14]).

Let Hk = {z ∈ LD : zD = k} = {Ax : x ∈ Z
D,
∑

i xi = k} be the points on
“level” k. We will often write the elements of Hk in the form (z, k) where z ∈ R

d.
Let H′

k = {z ∈ R
d : (z, k) ∈ Hk}. When d = 2, the points in H′

0 are the vertices
of a triangulation of the plane using equilateral triangles, and the points in H′

1 are
obtained by translation. One choice of A leads to Figure 7, where H′

1 and H′
2 are

obtained by translating H′
0 upward by

√
2 and 2

√
2, respectively, and H′

3 = H′
0.
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Figure 7: H′
0 (black dots) and H′

1 (white dots) in L3

In d ≥ 3 dimensions (the case we will need for our applications in this work)
the lattice is hard to visualize so we will rely on arithmetic. Let {e1, . . . , eD} be the
standard basis in R

D, and put vi = Aei, i = 1, . . . ,D. By the geometric description
of A given above, vi ∈ H1 has length

√
D, and writing vi = (v′i, 1), v

′
i ∈ R

d has
length

√
D − 1. For i 6= j, ‖v′i− v′j‖2 = ‖vi− vj‖2 =

√
2D, the last by orthogonality

of vi and vj . The definitions easily imply that H′
k+1 = v′i +H′

k ≡ {v′i + x : x ∈ H′
k}

for each i and k. Note that Dv′i ∈ H′
0 because Dvi−(0, . . . , 0,D) ∈ H0. This implies

that H′
k+D = Dv′i +H′

k = H′
k.

For x ∈ H′
k let Vx ⊂ R

d be the Voronoi region for x associated with the points in
H′

k, i.e., the closed set of points in R
d that are closer to x in Euclidean norm than to

all the other points of H′
k (including ties). If V = V0 (in d = 2, V0 is the hexagon in

Figure 8 inside the connected six white dots), then the translation invariance of H′
0

and fact that H′
k = kv′i+H′

0 show that Vx = x+V for all x ∈ ∪H′
k. It is immediate
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Figure 8: H′
0 (black dots) and Voronoi region about 0 (inside white dots) in L3

from the definition of Voronoi region that for each k,

∪x∈H′
k
Vx = R

d. (5.1)

Furthermore, Vx is contained in the closed ball of radius D centered at x. (To see
this we may set x = k = 0 and transfer the problem to Z

D via A−1. It then amounts
to noting that if x ∈ R

D satisfies
∑

xi = 0 and ‖x‖2 >
√
D, then there are i 6= j

s.t. xi > 1, xj < 0 or xi < −1, xj > 0, and so ‖x ± (ei − ej)‖2 < ‖x‖2.) From this
inclusion we see that for any L > 0,

if cL =L/(2D) then cLVx ⊂ cLx+ [−L,L]d, (5.2)

and so ∪x∈H′
k
cLx+ [−L,L]d = R

d.

The above also holds with 2cL in place of cL but the above ensures a certain overlap
in the union which makes it more robust. Finally, one can check that for some
positive c5.3(D),

if a ∈ Vx, b /∈ Vx and |a− b| < c5.3 then b ∈ ∪i 6=jVx+v′i−v′j
. (5.3)

For this, note that x+ v′i− v′j , 1 ≤ i 6= j ≤ D are the D(D− 1) “neighboring points
to x” in H′

k, corresponding to the 6 black vertices of the hexagonal around 0 in
Figure 8 for x = 0 and D = 3. The above states that the D(D − 1) corresponding
Voronoi regions provide a solid annulus about Vx, as is obvious from Figure 8 for
D = 3.

Our oriented percolation process will be constructed from a family of random
variables {η(z), z ∈ LD} taking values 0 or 1, where 0 means closed and 1 means
open. In the block construction, one usually assumes that the collection of η(z) is
“M dependent with density at least 1− θ” which means that for any k,

P (η(zi) = 1|η(zj), j 6= i) ≥ (1− θ), (5.4)

whenever zi ∈ LD, 1 ≤ i ≤ k satisfy |zi − zj | > M for all i 6= j.
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Our process will satisfy the modified condition

P (η(zk) = 1|η(zj), j < k) ≥ (1− θ) whenever zj = (z′j , nj) ∈ LD, 1 ≤ j ≤ k (5.5)

satisfy nj < nk or (nj = nk and |z′j − z′k| > M) for all j < k.

It is typically not difficult to prove results forM -dependent percolation processes
with θ small (see Chapter 4 of [14]), but in Section 7 we will simplify things by
applying Theorem 1.3 of [34] to reduce to the case of independent percolation. By
that result, under (5.4), there is a constant ∆ depending on D and M such that if

1− θ′ =
(

1− θ1/∆

(∆ − 1)(∆−1)/∆

)

(

1− (θ(∆− 1))1/∆
)

,

we may couple {η(z), z ∈ LD} with a family {ζ(z), z ∈ LD} of iid Bernoulli random
variables with P (ζ(z) = 1) = 1 − θ′ such that ζ(z) ≤ η(z) for all z ∈ LD. An
examination of the proofs of Proposition 1.2 and Theorem 1.3 of [34], shows that the
above result remains valid under our condition (5.5). [In their proof of Theorem 1.3
we can order the vertices of a finite set in LD so that the levels n of the vertices are
non-decreasing, and then in the inductive proof of Proposition 1.2 we will only be
conditioning {η(z0) = 1} on vertices whose level is at most that of z0.]

In view of the comparison, and the fact that θ′ → 0 as θ → 0, we can for the
rest of the section suppose:

η(z) are i.i.d. with P (η(z) = 1) = 1− θ. (5.6)

We now define the edge set E↑ for LD to be the set of all oriented edges from z to
z + vi, z ∈ LD, 1 ≤ i ≤ D. A sequence of points z0, . . . , zn−1, zn in LD is called an
open path from z0 to zn, and we write z0 → zn, if there is an edge in E↑ from zi
to zi+1 and zi is open for i = 0, . . . , n − 1. Note that zn does not have to be open
if n ≥ 1 but z0 does. In Sections 6 and 7 we will employ a block construction and
determine suitable parameters so that (x, n) ∈ Hn being open will correspond to
a certain “good event” occuring for our Poisson processes in the space-time block
(cLx+ [−K1T,K1T ]

d)× [nJ1T, (n+ 1)J1T ] for appropriate L, K1 and J1.
Given an initial set of “wet” sites W0 ⊂ H0, we say z ∈ Hn is wet if z0 → z for

some initial wet site z0. Let W̄n be the set of wet sites in Hn when all the sites in
H0 are wet, and let W 0

n be the set of wet sites in Hn when only 0 ∈ H0 is wet. Let
Ω0
∞ = {W 0

n 6= ∅ for all n ≥ 0}.

Lemma 5.1. (i) infx∈Hn P (x ∈ W̄n) ≥ P (Ω0
∞)→ 1 as θ → 0.

(ii) Let Hr
n = {(z, n) ∈ LD : z ∈ [−r, r]d}. Then there are θ5.1 > 0 and r5.1 > 0

such that if θ < θ5.1 and r ≤ r5.1 then as N →∞.

P (Ω0
∞ and W 0

n ∩Hrn
n 6= W̄n ∩Hrn

n for some n ≥ N)→ 0. (5.7)

Proof. The first result follows from well-known d = 1 results, e.g., see Theorem 4.1
of [12]. The second result is weaker than a “shape theorem” for W 0

n , which would
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say the following, using the notation A′ = {x′ : (x′, n) ∈ A} for A ⊂ Hn. For θ < θc
there is a convex set D ⊂ R

d, containing the origin in its interior, so that on Ω0
∞,

(W 0
n)

′ ≈ nD ∩ (W̄n)
′

for all large n. More precisely with probability 1, if δ > 0 there is a random nδ such
that (W 0

n)
′ ⊂ n(1+δ)D and (W 0

n)
′ ⊃ (1−δ)nD∩(W̄n)

′ for all n ≥ nδ. The technology
exists to prove such a result for oriented percolation on LD, but unfortunately no
one has written down the details. The argument is routine but messy, so we content
ourselves to remark that (ii) can be established by the methods used in Durrett and
Griffeath [17] to prove the shape theorem for the d-dimensional contact process with
large birth rates: one uses percolation in two dimensional subspaces A(mei + nej),
1 ≤ i < j ≤ n and self-duality.

Call sites in V̄n = Hn \ W̄n dry. In Section 7, when we are trying to show that
that ξεt dies out, the block construction will imply for appropriate L and J1,

if (z, n) ∈W 0
n , then

(

cLz + [−L,L]d
)

× [(n− 1)J1T, nJ1T ] is ε-empty, (5.8)

where a region is ε-empty if ξεt (x) = 0 for all (x, t) in the region. This will not be
good enough for our purposes because the space-time regions associated with points
in V 0

n = Hn \W 0
n might be occupied by particles. To identify the locations where

there might be 1’s in ξt we will work backwards in time. However in our coarser
grid LD, 1’s may spread sideways through several dry regions and so we need to
introduce an additional set of edges for LD. Let E↓ consist of the set of oriented
edges from z to z − vi for 1 ≤ i ≤ D, and from z to z + vi − vj for 1 ≤ i 6= j ≤ D,
z ∈ LD.

We assume for the rest of this section that

d ≥ 2,

since we will in fact applying these results only for d ≥ 3. Our next goal is to
prove an exponential bound on the size of clusters of dry sites. Up to this point
the definitions are almost the same as the ones in Durrett [13]. However, we must
now change the details of the contour argument there, so that it is done on the
correct graph. Let y ∈ LD with yD = n ≥ 0 (write y ∈ L+D). In addition to P
as in (5.6), for M > 0 we also work with a probability P̄ = P̄n,M under which
η(z) = 1 for z = (z′,m) ∈ L+D satisfying m ≤ n and |z′| ≥ M , and the remaining
η(z)’s are as in (5.6). Therefore under P̄ the sets of wet sites {W̄n} will be larger,
although we will use the same notation since their definition is the same under either
probability law. If y is wet put Dy = ∅, and otherwise let Dy be the connected
component in (LD, E↓) of dry sites containing y. That is, z ∈ Dy iff there are
z1 = y, z2, . . . , zK = z all in LD so that the edge from zi to zi+1 is in E↓ and each zi
is dry. Since all sites in H0 are wet, Dy ⊂ {z ∈ LD : n ≥ zD > 0}, and under P̄n,M ,
Dy ⊂ {z ∈ LD : n ≥ zD > 0, |(z1, . . . , zD−1)| < M}. We assume that ω satisfies

Dy(ω) is finite. (5.9)
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The fact that (5.9) holds a.s. under P̄n,M is the reason this law was introduced. To
make Dy into a solid object we consider the compact solid

Ry = ∪z∈Dy(z +Q) ⊂ R
d × R+ .

If Rc
y is the complement of Ry in R

d × R+, we claim that both Ry and Rc
y are

path-connected. For Ry, suppose for concreteness that D = 3 and note that for the
diagonally adjacent points y(0) = A(0, 0, 0) and y(1) = A(1,−1, 0), Dy(0) ∩ Dy(1)

contains the edge A({1/2} × {−1/2} × [−1/2, 1/2]). For Rc
y, if x ∈ Rc

y then there

exists [x] ∈ L+D \ Dy such that x ∈ [x] + Q and the line segment from x to [x] is
contained in Rc

y. We first assume [x] ∈ Hk for some k ∈ {1, 2 . . . , n}. If [x] is wet
then there must be a path in Rc

y connecting [x] to H0. Suppose [x] is dry, and let
z0, z1, . . . , zK be a path in E↓ connecting z0 = y to zK = [x]. At least one site on this
path must be wet (else [x] ∈ Dy), so let zj be the first wet site encountered starting
at zK . Then for each i > j, zi is dry and zi /∈ Dy (or else [x] would in Dy). Thus
∪Ki=j(zi + Q) is path-connected, contained in Rc

y, and zj is connected to H0 by a

path in Rc
y. Note that H0 ⊂ (Rd×{0})∩Rc

y ≡ H̃0 which is path-connected because

the rotated cubes making up Ry can only intersect R
d × {0} in a discrete set of

points (since Dy ⊂ {zD > 0}). It is here that we use d ≥ 2. Now suppose [x] ∈ Hk

for some k > n. H̃0 is also connected to Hn+1 by a path in Rc
y (assuming θ < 1).

This allows us to connect [x] to H̃0 and so conclude that Rc
y is path-connected.

Let Γy be the boundary of R
c
y. To study Γy we need some notation. We define the

plus faces of [−1/2, 1/2]D to be [−1/2, 1/2]m×{1/2}×[−1/2, 1/2]D−m−1 , and define
the minus faces to be [−1/2, 1/2]m×{−1/2}×[−1/2, 1/2]D−m−1 ,m = 1, . . . ,D. The
images of the plus and minus faces of [−1/2, 1/2]d under A constitute the plus and
minus faces of Q = A([−1/2, 1/2]d), which are used to defined the plus and minus
faces of Γy in the obvious way. Note that the plus faces of Γy will have outward
normal vi for some i while the minus faces will have outward normal −vi for some
i.

Lemma 5.2. If (5.9) holds, then Γy is connected and bounded.

Proof. For ε > 0 let Rε
y = {x ∈ R

d : |x − w|∞ < ε for some w ∈ Ry}. Since Ry is
connected, so is Rε

y. If κ(U) denotes the number of path-connected components of
a set U , it is a consequence of the Mayer-Vietoris exact sequence with n = 0 that
for open sets U, V ⊂ R

D with U ∪ V = R
D,

κ(U ∩ V ) = κ(U) + κ(V )− 1.

See page 149 of [30] and also Proposition 2.7 of that reference. Applying this to the
open connected (hence path-connected) sets Rε

y and Rc
y whose union is RD, we find

that Rε
y ∩Rc

y is path-connected.
Finally, Rε

y ∩ Rc
y is homotopic to Γy, and therefore Γy is also path-connected.

Boundedness is immediate from (5.9).

For the next result we follow the proof of Lemma 6 from [13]. A contour will be
a finite union of faces in LD which is connected.
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Lemma 5.3. There are constants C5.3 and µ5.3 which only depend on the dimension
D so that the number of possible contours with N faces, containing a fixed face, is
at most C5.3(µ5.3)

N .

Proof. Make the set of faces of LD into a graph by connecting two if they share
a point in common. Note that by the above definition a contour corresponds to a
finite connected subset of this graph. Each point in the graph has a constant degree
ν = ν(D). An induction argument shows that any connected set of N vertices has
at most N(ν − 2) + 2 boundary points. (Adding a new point removes 1 boundary
point and adds at most ν − 1 new ones.) Consider percolation on this graph in
which sites are open with probability a and closed with probability 1− a. Let 0 be
a fixed point of the graph corresponding to our fixed face, and C0 be the component
containing 0. If BN is the number of components of size N containing 0, then

1 ≥ P (|C0| = N) ≥ BNa
N (1− a)N(ν−2)+2.

Rearranging, we get BN ≤ CµN with C = (1 − a)−2 and µ = a−1(1 − a)−(ν−2).
Taking the derivative of − log a− (ν − 2) log(1− a) and setting it equal to 0, we see
that a = 1/(ν − 1) optimizes the bound, and gives constants that only depend on
the degree ν.

Lemma 5.4. If θ5.4 = (2µ5.3)
−2D, then θ ≤ θ5.4 implies that for all y = (y′, n) ∈ L+D

and all M > |y′|, P̄n,M (|Γy| ≥ N) ≤ 2C5.32
−N for all N ∈ N.

Proof. By Lemma 5.2 if Dy 6= ∅ we see that under P̄n,M , Γy is a contour which by
definition contains the plus faces of y +Q. Given a plus face in Γy if we travel the
line perpendicular to R

d×{0} and through the center of the face, then we enter and
leave the set an equal number of times, so the number of plus faces of Γy is equal
to the number of minus faces. Thus, if the contour Γy has size N there are N/2
minus faces. It is easy to see that a point of W̄j adjacent to a minus face associated
with a point in V̄j+1 must be closed for otherwise it would wet the point in V̄j+1

(recall the outward normal of a minus face is −vi for some i). The point of W̄j that
we have identified might be associated with as many as D minus faces, but in any
case for a contour of size N there must be at least N/2D associated closed sites.
Taking θ ≤ (2µ5.3)

−2D, using Lemma 5.3 to bound the number of possible contours
containing a fixed plus face of y + Q, and summing the resulting geometric series
now gives the result.

It follows from the above and an elementary isoperimetric inequality that there
are finite positive constants C, c such that for all y = (y′, n) ∈ L+D and M > |y′|,

if θ ≤ θ5.4 then P̄n,M (|Dy| ≥ N) ≤ C exp(−cN (D−1)/D) for all N ∈ N. (5.10)

Now fix r > 0 and let Bn be the dry sites in Hrn/4
n connected to the complement of

∪nm=n/2H
rm/2
m by a path of dry sites on the graph with edges E↓, where as for open

sites the last site in such a path need not be dry.
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Lemma 5.5. If θ ≤ θ5.4 then

P (Bn 6= ∅ infinitely often) = 0.

Proof. Let M > n(r +
√
2D). We couple the iid Bernoulli random variables {η(z) :

z ∈ LD} (under P ) with the corresponding random field η̄ (under P̄ = P̄n,M ) so
that

η(z) = η̄(z) ∀z = (z′,m) where |z′| < M or m > n.

We claim that z ∈ ∪nm=n/2Hrn
n ≡ Ĥn is wet for η iff it is wet for η̄. It clearly

suffices to fix z = (z′,m) ∈ Ĥn which is wet for η̄ and show it is wet for η. A
path of sites zi = (z′i, i), i = 0, . . . ,m with edges in E↑ from H0 to z satisfies
maxi≤m |z′i| ≤ rn+

√
2Dn < M . This is because the edges in E↑ have length at most√

2D. Therefore if the sites in the path are open in η̄, then they will also be open
in η. This proves the claim.

Next note that if y ∈ Hrn/4
n , then y ∈ Bn for η iff y ∈ Bn for η̄. This is because

the path of dry sites connecting y to the complement of ∪nm=n/2H
rm/2
m can be taken

to be inside Ĥn and so we may apply the claim in the last paragraph. It now follows
from the above bound on the length of the edges in E↓ that

P (y ∈ Bn) = P̄n,M(y ∈ Bn) ≤ P̄n,M

(

|Dy| ≥
c(r)n√
2D

)

.

The number of sites in Hrn/4
n is at most Cnd, and the bound in (5.10) shows that

P (Bn 6= ∅) ≤
∑

y∈Hrn/4
n

P (y ∈ Bn) is summable over n.

Remark 5.1. We will prove in Section 7 that if wet sites have the property in
(5.8), and the kernels p(·) and q(·) are finite range, then for an appropriate r > 0,
Bn = ∅ will imply that on Ω0

∞ all sites in [−cL,drn, cL,drn]d will be vacant at times
t ∈ [(n− 1)J1T, nJ1T ]. This linearly growing dead zone will guarantee extinction of
the 1’s.
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6 Existence of stationary distributions

With the convergence of the particle system to the PDE established and the per-
colation result introduced, we can infer the existence of stationary distributions by
using a “block construction”. Recall that our voter model perturbations take values
in {0, 1}εZd

and so our stationary distributions will be probabilities on this space of
rescaled configurations. We begin with a simple result showing that for stationary
distributions, having some 1’s a.s. or infinitely many 1’s a.s. are equivalent. Let
|ξ| =∑x ξ(x).

Lemma 6.1. If ν is a stationary distribution for a voter perturbation, then

|ξ| =∞ ν − a.s. iff |ξ| > 0 ν − a.s.

Proof. It suffices to prove

ν(|ξ| <∞) > 0 implies ν(|ξ| = 0) > 0. (6.1)

Assume first that the 0 configuration is a trap. Then if |ξ0| = K < ∞, (1.5)
shows the sum of the flip rates is finite and so it is easy to prescribe a sequence of
K flips which occur with positive probability and concludes with the 0 state. By
stationarity we get the implication in (6.1).

Assume next that 0 is not a trap, which means gε1(0, . . . , 0) > 0. We claim that
ν(|ξ| < ∞) = 0, which implies the required result. Intuitively this is true because
configurations with finitely many 1’s have an infinite rate of production of 1’s. One
way to prove this formally is through generators. Let Ωε be the generator of our
voter perturbation, Ωv be the generator of the voter model in (1.3) and for i = 0, 1

Ωiψ(ξ) =
∑

x∈Zd

1(ξ(x) = 1− i)E(gεi (ξ(x+ Y 1), . . . , ξ(x+ Y N0)))(ψ(ξx)− ψ(ξ)).

Here ψ will be a bounded function on {0, 1}Zd
depending on finitely many coordi-

nates, and we recall that ξx is ξ with the coordinate at x flipped to 1− ξ(x). Recall
that ξε(εx) = ξ(x) for ξ ∈ {0, 1}Zd

, x ∈ Z
d. For ψ as above define ψε on {0, 1}εZd

by ψε(ξε) = ψ(ξ). Then by (1.5) and (1.12),

Ωεψε(ξε) = (ε−2 − ε−2
1 )Ωvψ(ξ) + Ω0ψ(ξ) + Ω1ψ(ξ). (6.2)

For 0 < r < R, let A(r,R) = {x ∈ Z
d : r ≤ |x| ≤ R} and

ψr,R(ξ) = 1(ξ|A(r,R) ≡ 0), ξ ∈ {0, 1}Zd
.

Considering two cases x ∈ A(r,R) and x 6∈ A(r,R) we have

if ξ(x) = 0 then ψr,R(ξ
x)− ψr,R(ξ) ≤ 0. (6.3)

Since ψr,R(ξ
x)− ψr,R(ξ) = 1 only if x is the only site in A(r,R) where ξ(x) = 1, we

have
Ωvψr,R(ξ) ≤ 1, Ω0ψr,R(ξ) ≤ ‖gε0‖∞. (6.4)
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Choose λ so that P (Y ∗ ≤ λ) ≥ 1/2, where Y ∗ is as in (1.8). Flipping a site from 0
to 1 cannot increase ψr,R, and ψr,R(ξ) = 1 implies ξ(x) = 0 for all x ∈ A(r,R), so
we have

Ω1ψr,R(ξ) ≤ −
∑

x∈A(r,R)

(1− ξ(x))gε1(0, . . . , 0)P (ξ(x + Y i) = 0 for 1 ≤ i ≤ N0)ψr,R(ξ)

≤ −g
ε
1(0, . . . , 0)

2
ψr,R(ξ)|A(r + λ,R − λ)|. (6.5)

The stationarity of ν implies, see Theorem B.7 of Liggett [33], that if ψ = ψr,R then
∫

Ωεψεdν = 0. Using (6.2), (6.4) and (6.5), and noting that

∫

ψε dν = ν(ξ ≡ 0 on A(εr, εR)),

we have

0 ≤ (ε−2 − ε−2
1 ) + ‖gε0‖∞ −

gε1(0, . . . , 0)

2
|A(r + λ,R− λ)|ν(ξ ≡ 0 on A(εr, εR)).

Rearranging this inequality we get

ν(ξ ≡ 0 on A(εr, εR)) ≤ 2((ε−2 − ε−2
1 ) + ‖gε0‖∞)

gε1(0, . . . , 0)|A(r + λ,R − λ)|

(recall gε1(0, . . . , 0) > 0). Letting R →∞ we conclude that ν(ξ ≡ 0 on A(εr,∞)) =
0. In words, for ν-a.a. configurations there is a 1 outside the ball of radius εr. As
this holds for all r <∞, there are infinitely many ones with probability 1 under ν.

Assumption 1 and (1.63) are in force throughout the rest of this section and we
drop dependence on the parameters w, vi, L0, L1, r0, etc. arising in those hypotheses
in our notation. We continue to work with the particle densities D(x, ξ) using the
choice of r in (4.6). We start with a version of Lemma 4.2 which is adapted for
proving coexistence. We let

L2 = 3 + L0 ∨ L1.

Lemma 6.2. There is a C6.2 > 0 and for every η > 0, there are Tη ≥ 1 and
ε6.2(η) > 0 so that for t ∈ [Tη, C6.2 log(1/ε)] and 0 < ε < ε6.2, if

ξε0 has density in [v0 + η, v1 − η] on [−L2, L2]
d,

then
P (ξεt has density in [u∗ − η, u∗ + η] on [−wt,wt]d|ξε0) ≥ 1− ε.05.

The proof is derived by making minor modifications to that of Lemma 4.2 and
so is omitted. We will always assume η > 0 is small enough so that

0 < v0 + η ≤ u∗ − η < u∗ + η ≤ v1 − η < 1.
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The one-sided versions of the above Lemma also hold (recall Lemma 4.2 on which
the proof is based is a one-sided result), that is, with only one-sided bounds on the
densities in the hypothesis and conclusion.

Theorem 1.15. Suppose Assumption 1 and (1.63), and let η > 0. If ε > 0 is small
enough, depending on η, then coexistence holds for the voter model perturbation, the
nontrivial stationary distribution ν may be taken to be translation invariant, and
any stationary distribution such that

ν
(

∑

x∈εZd

ξ(x) = 0 or
∑

x∈εZd

(1− ξ(x)) = 0
)

= 0 (6.6)

satisfies ν(ξ(x) = 1) ∈ (u∗ − η, u∗ + η) for all x ∈ εZd.

Proof. We use the block construction in the form of Theorem 4.3 of [14]. This result
is formulated for D = 2 but it is easy to extend the proof to D ≥ 3, and we use this
extension without further comment. Recall Q(r) = [−r, r]d and Qε(r) = Q(r)∩εZd.
Let U = (C6.2/2) log(1/ε), L = wU/(α0D + 1), where α0 > 0 is a parameter to
be chosen below, and I∗η = [u∗ − η/4, u∗ + η/4]. Next we define the sets H and Gξ

which appear in the above Theorem. Let

H = {ξ ∈ {0, 1}εZd
: ξ has density in I∗η on Q(L)},

that is, if Qε = [0, aε)
d ∩ εZd then the fraction of occupied sites in x + Qε is in

I∗η = [u∗− η/4, u∗ + η/4] whenever x ∈ aεZd ∩ [−L,L]d. If L′ = L+1, then {ξ ∈ H}
depends on ξ|[−L′,L′]d . Here we need to add 1 as the cubes of side aε with “lower

left-hand corner” at x ∈ [−L,L]d will be contained in [−L′, L′]d. This verifies the
measurability condition in Theorem 4.3 of [14] with L′ = L+ 1 in place of L which
will affect nothing in the proof of Theorem 4.3.

Let Gξ be the event on which (a) if ξε0 = ξ, then ξεU has density in I∗η on Q(wU)

and (b) for all z ∈ Qε(wU + 1) and all t ≤ U , Xz,U
t ⊂ Q((w + b0)U + 1), where

b0 = 16(3 + d)/C6.2. Note that

Gξ ∈σ
(

Λy
r |[0,U ]×εZdN0×[0,1],Λ

y
w|[0,U ]×εZd : y ∈ Qε((w + b0)U) + 1

)

(6.7)

≡G(Q((b0 + w)U + 1))× [0, U ])

Informally, G(R) is the σ-field of generated by the points in the graphical represen-
tation that lie in R. The above measurability is easy to verify using the duality
relation (2.17).

Consider now the Comparison Assumptions prior to Theorem 4.3 of [14]. In our
context we need to show

Lemma 6.3. For 0 < ε < ε6.3(η):

(i) if ξε0 ∈ H, then on Gξε0
, ξεU has density in I∗η on α0Lv

′
i + [−L,L]d, 1 ≤ i ≤ D,

(ii) if ξ ∈ H, then P (Gξ) ≥ 1− ε0.04.
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Proof. By assuming ε < ε1(η) we have U ≥ Tη/4 and L ≥ L2. Using the definition

of L and the fact that |v′i| ≤ ‖v′i‖2 =
√
D − 1 one easily checks that

α0Lv
′
i + [−L,L]d ⊂ [−wU,wU ]d for i = 1, . . . ,D. (6.8)

Part (a) of the definition of Gξ now gives (i). By Lemma 4.7 with parameters
L = wU + 1, 2b = b0, c = C6.2/2 and T ′ = U , and Lemma 6.2, for ξ ∈ H we have
for ε < ε6.2(η),

P (Gc
ξ) ≤ ε.05 + c′d(wU + 1)d(U + 1)ε

((b0C6.2)/16)−2−d

≤ ε.05 + c(log(1/ε))d+1ε ≤ ε.04,

where the last two inequalities hold for small ε. We may reduce C6.2 to ensure that
b = b0/2 satisfies the lower bound in Lemma 4.7. This proves (ii).

Continue now with the proof of Theorem 1.15. Let ε < ε6.3 and define

Vn = {(x, n) ∈ Hn : ξεnU has density in I∗η on α0Lx+ [−L,L]d}.

(To be completely precise in the above we should shift α0Lx and α0Lv
′
i to the point

in εZd “below and to the left of it” but the adjustments become both cumbersome
and trivial so we suppress such adjustments in what follows.) If we let

Ry,n = (yα0L, nU) +Q((b0 +w)U + 1)× [0, U ], for (y, n) ∈ LD

and

M =

⌈

2(b0 + w)(α0D + 1)

α0w

⌉

,

then Ry1,m ∩Ry2,n = ∅ if |(y1,m) − (y2, n)| > M . Since G(Ri), 1 ≤ i ≤ k are inde-
pendent for disjoint Ri’s, Lemma 6.3 allows us to apply the proof of Theorem 4.3
of [14]. This shows there is an M -dependent (in the sense of (5.5)) oriented perco-
lation process {Wn} on LD with density at least 1 − ε.04 such that W0 = V0 and
Wn ⊂ Vn for all n ≥ 0. We note that although a weaker definition of M -dependence
is used in [14] (see (4.1) of that reference), the proof produces {Wn} as in (5.5). By
Lemma 5.1 with r = r5.1 and θ = ε.04, if ε < ε1(η), then

lim
n→∞

inf
(x,n)∈Hrn

n

P (ξεnU has density in I∗η on α0Lx+ [−L,L]d) (6.9)

≥
(

1− η

4

)

P (0 ∈ V0).

We will choose different values of α0 to first prove the existence of a stationary
law, and then to establish the density bound for any stationary distribution. For
the first part, set α0 = 3 and take {ξε0(x) : x ∈ εZd} to be iid Bernoulli variables
with mean u = (u∗+u∗)/2. The weak law of large numbers implies that if ε is small
enough

P (ξε0 has density in I∗η on [−L,L]d) ≥ 1

2
. (6.10)
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Since α0 = 3, L ≥ 3 and |x − y| ≥ ‖x − y‖2/
√
D ≥ 1 for all x 6= y ∈ H′

n,
{α0Lx+[−L′, L′]d : x ∈ H′

n} is a collection of disjoint subsets of Rd for each n. This
and the measurability property of {ξ ∈ H} noted above shows that if 0 < ε < ε0(η)
then {Vn} is bounded below by an M -dependent (as in (5.5)) oriented percolation

process, {W 1/2
n }, with density ≥ 1 − ε.04 starting with an iid Bernoulli (1/2) field.

Having established that our process dominates oriented percolation, it is now routine
to show the existence of a nontrivial stationary distribution. We will spell out the
details for completeness.

Lemma 6.4. Assume α0 = 3 and {ξε0(x) : x ∈ εZd} are as above. There is an
ε6.4(η) > 0 so that for any ε ∈ (0, ε6.4(η)) and any k ∈ N there are t1(k, ε),

M1(k, ε) > 0 so that for t ≥ t1,

P
(

∑

|x|≤M1

ξεt (x) ≥ k and
∑

|x|≤M1

1− ξεt (x) ≥ k
)

≥ 1− 2

k
.

Proof. As in Theorem A.3 of [14] for k ∈ N there are n0, ℓ0,M0 ∈ N and z1, . . . , z4k ∈
Q(M0) satisfying |zi − zj| > 3M + 2ℓ0 + 1 for i 6= j, such that for n ≥ n0 with
probability at least 1− k−1

W 1/2
n ∩Q(zj , ℓ0) 6= ∅ for j = 1, . . . , 4k. (6.11)

The above implies there are σ(ξεnU )-measurable yj ∈ Qε(zj , ℓ0) such that

ξεnU has density in I∗η on 3Lyj + [−L,L]d, j = 1, . . . , 4k. (6.12)

This proves the result for t = nU . Intermediate times can be easily handled using
Lemma 6.2 and the finite speed of the dual (Lemma 4.7). Those results show that for
a fixed ε < ε6.2 and t ≥ (n0+1)U , if we choose n ≥ n0 so that t ∈ [(n+1)U, (n+2)U ]
(use Tη/4 ≤ 2U = C6.2 log(1/ε) in applying Lemma 6.2), then on the event in (6.12)
we have

P (ξεt has density in I∗η on 3Lyj + [−L,L]d,
and Xx,t

s ∈ Q(3Lyj , L
′ + b0U) for all x ∈ 3Lyj + [−L′, L′]d and s ∈ [0, t]|ξεnU )

≥ 1− ε.05 − c1(log(1/ε))d+1ε ≥ 1

2
.

where in the last we may have needed to make ε smaller.
Our separation condition on the {zj} and L ≥ 3 implies that Q(3Lyj, L

′ + b0U),
j = 1, . . . , 4k are disjoint and so the events on the left-hand side are conditionally
independent as j varies. Therefore a simple binomial calculation shows that

P (|{j ≤ 4k : ξεt has density in I∗η on 3Lyj + [−L,L]d}| ≥ k)

≥
(

1− 1

k

)(

1− 1

k

)

≥ 1− 2

k
.

Here the first 1− 1
k comes from establishing (6.12) and the second 1− 1

k comes from
the binomial error in getting fewer than k points with appropriate density at time
t. Since the above event implies the required event with M1 = 3L(M0 + ℓ0) + L we
are done.
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Fix ε < ε6.4. By Theorem I.1.8 of [32] there is a sequence tn → ∞ s.t.

t−1
n

∫ tn
0 1(ξs ∈ ·) ds → ν in law where ν is a translation invariant stationary distri-

bution for our voter perturbation. Lemma 6.4 easily shows that there are infinitely
many 0’s and 1’s ν-a.s., proving the first part of Theorem 1.15.

Turning to the second assertion, by Lemma 6.1 and symmetry it suffices to show
that for ε < ε2(η) and any given stationary ν with infinitely many 0’s and 1’s a.s.
then

sup
x
µ(ξ(x) = 1) ≤ u∗ + η.

Start the system with law ν. We claim that

Lemma 6.5. There is a σ(ξε0)-measurable r.v. x0 ∈ εZd such that ξε0 ≡ 0 on
Qε(x0, L) a.s. More generally w.p. 1 there is an infinite sequence {xi : i ∈ Z+}
of such random variables satisfying |xi − xj| ≥ 2L+ 3 for all i 6= j.

Proof. To see this condition on ξε0, choose x0 so that ξε0(x0) = 0 and note that if Rx
1

is the first reaction time of the dual Xx,ε, the event “ξε0 ≡ 0 on Qε(x0, L)” occurs if
for all x ∈ x0 + [−L,L]d, Rx

1 > 1, Xx,ε
1 = x0, and sups≤1 |Xx,ε

s − x| ≤ 1. Call the
last event A(x0). The last condition has been imposed so that if |x0 − x1| ≥ 2L+ 3
then the events A(x0) and A(x1) are (conditionally) independent. Clearly they have
positive probability. Given our initial configuration with |{y : ξε0(y) = 1}| =∞ a.s.,
we can pick an infinite sequence xi, i ∈ N, with ξε0(xi) = 0 and |xj − xi| ≥ 2L + 3
when j > i, so the strong law of large numbers implies that at time 1 there will be
infinitely many xi with ξε1(x) = 0 for all x ∈ Qε(xi, L). By stationarity this also
holds at time 0.

Now condition on ξε0, shift our percolation construction in space by x0, set α0 =
(2D)−1 and only require the density to be at most u∗ + η/4 in our definition of Vn
which now becomes

Vn = {(x, n) ∈ Hn : ξεnU has density at most u∗ + η/4 on x0 + cLx+ [−L,L]d},

where we recall from (5.2) that cL = L/(2D). (Here we are using the one-sided
version of Lemma 6.2 mentioned above, after its statement.) Then 0 ∈ V0 and the
one-sided analogue of (6.9) shows that if ε < ε3(η), then

lim
n→∞

inf
(x,n)∈Hrn

n

P (x ∈ Vn) ≥ 1− η

4
.

Recall from (5.2) that ∪x∈H′
n
x0+cLx+[−L,L]d = R

d, so this implies for any x ∈ R
d

and n large enough,

P (ξεnU has density at most u∗ +
η

4
on x+ [−L,L]d) ≥ 1− η

3
,

and so by stationarity

ν(ξε has density at most u∗ +
η

4
on x+ [−L,L]d) ≥ 1− η

3
for all x ∈ R

d.
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To complete the proof, run the dual for time tε (tε as in (4.6)) and apply Lemma 4.5
with u = u∗ + η

4 to see that for x ∈ εZd and ε < ε3(η) ∧ ε4.5(η/3),

ν(ξ(x) = 1) = P (ξεtε(x) = 1)

≤ P (R1 ≤ tε) + E(P (R1 > tε, ξ
ε
tε(x) = 1|ξε0))

≤ (1− e−c∗tε) + E(P (ξε0(B
ε,x
tε ) = 1|ξε0))

≤ c∗tε +
η

3
+ u∗ +

η

4
+
η

3
≤ u∗ + η,

where ε is further reduced, if necessary, for the last inequality.
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7 Extinction of the process

7.1 Dying out

Our goal in this section is to show that if f ′(0) < 0 and |ξε0| is o(ε−d), then with
high probability ξεt will be extinct by time O(log(1/ε)). Throughout this Section we
assume that 0 < ε ≤ ε0 and that (1.65) holds, i.e., gε1(0, . . . , 0) = 0 for 0 < ε ≤ ε0

Recall from (3.30) the drift at εx in the rescaled state ξε ∈ {0, 1}εZ
d
(recall the

notation prior to (1.2)) is

dε(εx, ξε) = (1− ξ(x))hε1(x, ξ)− ξ(x)hε0(x, ξ),

and define the total drift for |ξε| <∞ by

ψε(ξε) =
∑

x

dε(εx, ξε). (7.1)

Recall from (1.7) and (2.6) that

hεi (x, ξ) = EY (g
ε
i (ξ(x+ Y 1), . . . ξ(x+ Y N0))), (7.2)

where EY denotes the expected value over the distribution of (Y 1, . . . Y N0), and also
that

c∗ = c∗(g) = sup
0<ε≤ε0/2

‖gε1‖∞ + ‖gε0‖∞ + 1, cb = c∗N0. (7.3)

It will be convenient to write

ξε(εx+ εȲ ) = (ξ(x+ εY 1), . . . ξ(x+ εY N0)).

If Ht is the right-continuous filtration generated by the graphical representation,
then

|ξεt | = |ξε0|+M ε
t +

∫ t

0
ψε(ξ

ε
s) ds, (7.4)

where M ε is a zero mean L2-martingale. This is easily seen by writing ξεt (x) as a
solution of a stochastic differential equation driven by the Poisson point processes
in the graphical representation and summing over x. The integrability required to
show M ε is a square integrable martingale is readily obtained by dominating |ξε| by
a pure birth process (the rates cε are uniformly bounded for each ε) and a square
function calculation.

Lemma 7.1. For any finite stopping time S

e−cbt|ξεS | ≤ E(|ξεS+t||HS) ≤ ecbt|ξεS|.

Proof. By the strong Markov property it suffices to prove the result when S = 0.
The fact that dε(εx, ξε) ≥ −‖gε0‖∞ implies ψε(ξ

ε
s) ≥ −‖gε0‖∞|ξεs |. It follows from

(1.65) and (7.2) that

dε(εx, ξε) ≤ ‖gε1‖∞
∑

y:ξ(y)=1

N0
∑

i=1

P (Y i = y − x).
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Summing over x and then y, we get ψε(ξ
ε
s) ≤ N0‖gε1‖∞|ξεs | and (recalling (7.3)) the

desired result follows by taking means in (7.4) and using Gronwall’s Lemma.

Let ξε,0 be the voter model constructed from the same graphical representation
as ξε by only considering the voter flips. We always assume ξε,00 = ξε0.

Lemma 7.2. If c7.2 = 4(2N0 + 1)c∗ then

E(|ψε(ξ
ε
s)− ψε(ξ

ε,0
s )|) ≤ c7.2[ec

∗(N0+1)s − 1]|ξε0| .

Proof. Let ξεs(εx + εỸ ) = (ξεs(εx + εY 0), . . . , ξεs(εx + εY N0)), where Y 0 = 0, Ỹ is
independent of ξε, and note that in contrast to Ȳ , Ỹ contains 0. Let

Dε(η0, η1, . . . ηN0) = −η0gε0(η1, . . . , ηN0) + (1− η0)gε1(η1, . . . , ηN0),

and note that

E(|ψε(ξ
ε
s)− ψε(ξ

ε,0
s )|) ≤ E

(

∑

x

|Dε(ξ
ε
s(εx+ εỸ )−Dε(ξ

ε,0
s (εx+ εỸ ))|

)

≤ 2‖Dε‖∞E
(

∑

x

[ max
0≤i≤N0

ξεs(εx+ εYi) ∨ ξε,0s (εx+ εYi)] (7.5)

× 1{ξεs(εx+ εỸ ) 6= ξε,0s (εx+ εỸ )}
)

,

because for fixed x if the latter summand is zero, so is the former, and if the latter
summand is 1, the former is at most 2‖Dε‖∞.

Let Xt = Xz,s
t , t ∈ [0, s] be the dual of ξε starting at (z0, . . . , zN0) = εx+ εỸ at

time s and let Rm, m ≥ 1 be the associated branching times. We claim that

E
([

max
0≤i≤N0

ξεs(εx+ εY i)
]

1{ξεs(εx+ εỸ ) 6= ξε,0s (εx+ εỸ )}
)

(7.6)

≤ E
(

∑

ℓ∈J(s)
ξε0(X

ℓ
s)1{R1 ≤ s}

)

.

To see this, note that:

(i) if R1 > s, then there are no branching events and so (Xt, t ≤ s) is precisely the
coalescing dual used to compute the the rescaled voter model values ξε,0s (εx+ εỸ ).

(ii) In the case R1 ≤ s, if ξε0(X
ℓ
s) = 0 for all ℓ ∈ J(s) then ξεs(εx + εY i) = 0 for

0 ≤ i ≤ N0 because working backwards from time 0 to time s, we see that no site
can flip due to a reaction, and again we have ξε(εx+ εỸ ) = ξε,0(εx+ εỸ ).

Similar reasoning and the fact that the dual (X0,j
t , j ∈ J0(t)) of the voter model

ξε,0 with the same initial condition z satisfies J0(t) ⊂ J(t) for all t ≤ s a.s., shows
that

E
([

max
0≤i≤N0

ξε,0s (εx+ εY i)
]

1{ξεs(εx+ εỸ ) 6= ξε,0s (εx+ εỸ )}
)

(7.7)

≤ E
(

∑

ℓ∈J(s)
ξε0(X

ℓ
s)1{R1 ≤ s}

)

.
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If E0 denotes expectation with respect to the law of Xz,s
t when x = 0 then, using

(7.6) and (7.7), we may bound (7.5) by

4c∗E0

(

∑

ℓ∈J(s)

∑

x

ξε0(εx+Xℓ
s)1{R1 ≤ s}

)

Bounding by the dominating branching random walk X̄ , and using |J(R̄1)| = 2N0+1
and P (R̄1 ≤ s) = 1 − e−c∗(N0+1)s, we see the expected value in the last formula is
at most

|ξε0|E(|J̄(s)|1{R̄1 ≤ s}) ≤ |ξε0|ec
∗N0sE(|J̄(R̄1)|1{R̄1 ≤ s})

≤ (2N0 + 1)|ξε0|ec
∗N0s(1− e−c∗(N0+1)s) ≤ (2N0 + 1)|ξε0|(ec

∗(N0+1)s − 1),

which proves the desired result.

For the next step in the proof we recall the notation from Section 1.8. We assume
Y is independent from the coalescing random walk system {B̂x : x ∈ Z

d} used to
define τ(A) and τ(A,B). Recall from (1.88) and (1.85) that under (1.65)

θ ≡ f ′(0) =
∑

S∈P̂N0

β̂(S)P (τ(Y S) <∞, τ(Y S , {0}) =∞)− δ̂(S)P (τ(Y S ∪{0}) <∞).

For M > 0 define

θεM =
∑

S∈P̂N0

β̂ε(S)P (τ(Y
S) ≤M < τ(Y S , {0})) − δ̂ε(S)P (τ(Y S ∪ {0}) ≤M) .

It follows from (1.89) that (with or without the ε’s)

∑

S∈P̂N0

|β̂ε(S)|+ |δ̂ε(S)| ≤ 22N0(‖gε1‖∞ + ‖gε0‖∞) ≤ 22N0c∗(g) (7.8)

(recall here that g̃εi = gεi by our ε1 =∞ convention). It is clear that limM→∞,ε→0 θ
ε
M =

θ, but we need information about the rate.

Lemma 7.3. There is a ε7.3(M) ↓ 0 (independent of the gεi ) so that

|θεM − θ| ≤ 22N0

[

‖gε1 − g1‖∞ + ‖gε0 − g0‖∞ + c∗(g)ε7.3(M)
]

.

Proof. Define

ε7.3(M) =
1

2
sup

S∈P̂N0

{P (M < τ <∞) : τ = τ(Y S), τ(Y S ∪ {0}), τ(Y S , {0})},

91



and note that ε7.3(M) ↓ 0 as M ↑ ∞. Using (1.90) and (7.8) (the latter without the
ε’s) we have

|θεM − θ| ≤
∑

S∈P̂N0

|β̂ε(S)− β̂(S)|+ |δ̂ε(S)− δ̂(S)|

+
∑

S∈P̂N0

[

|β̂(S)||P (τ(Y S) ≤M < τ(Y S , {0})) − P (τ(Y S) <∞ = τ(Y S , {0}))|

+ |δ̂(S)|P (M < τ(Y S ∪ {0}) <∞)

≤22N0 [‖gε1 − g1‖∞ + ‖gε0 − g0‖∞] + 22N0c∗(g)ε7.3(M).

The result follows.

To exploit the inequality in Lemma 7.2 we need a good estimate of E(ψε(ξ
ε,0
s ))

for small s.

Lemma 7.4. There is a constant c7.4 (independent of gεi ) such that for ε, δ > 0,

E(ψε(ξ
ε,0
δ )) = θεδε−2 |ξε0|+ η7.4(ε, δ), (7.9)

where |η7.4(ε, δ)| ≤ c7.4c∗(g)δ−d/2|ξε0|2εd.
Proof. As usual we assume Y is independent of ξε,0. Summability issues in what
follows are handled by Lemma 7.1 (and its proof) with gεi ≡ 0. The representation
(1.83) and (7.1) imply that

E(ψε(ξ
ε,0
δ )) =

∑

S

β̂ε(S)E
ε
0(S)− δ̂ε(S)Eε

1(S)

Eε
0(S) =

∑

x∈Zd

E
(

(1− ξε,0δ (εx))
∏

i∈S
ξε,0δ (εx+ εY i)

)

Eε
1(S) =

∑

x∈Zd

E
(

ξε,0δ (εx)
∏

i∈S
ξε,0δ (εx+ εY i)

)

. (7.10)

We will use duality between ξε,0 and {B̂x} (see (V.1.7) of [32]) to argue that

Eε
0(S) ≈ |ξε0|P (τ(Y S) ≤ δε−2 < τ(Y S , {0})), ∅ 6= S ⊂ {1, . . . , N0}

Eε
1(S) ≈ |ξε0|P (τ(Y S , {0}) ≤ δε−2) all S ⊂ {1, . . . , N0}.

Beginning with the first of these, note that duality implies (recall Y 0 ≡ 0)

Eε
0(S) =

∑

x∈Zd

E
(

(1− ξε0(εB̂x
δε−2))

∏

i∈S
ξε0(εB̂

x+Y i

δε−2 )1{τ(x+ Y S , {x}) > δε−2}
)

=
∑

x∈Zd

E
(

∏

i∈S
ξε0(εB̂

x+Y i

δε−2 )1{τ(x + Y S , {x}) > δε−2}
)

−
∑

x∈Zd

E
(

∏

i∈S∪{0}
ξε0(εB̂

x+Y i

δε−2 )1{τ̂ (x+ Y S , {x}) > δε−2}
)

(7.11)

≡ Σ1 − Σ2.
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If τ(x + Y S) > δε−2 there are i 6= j ∈ S so that τ({x+ Y i}, {x + Y j}) > δε−2.
If we condition on the values of the Y i, Y j in the next to last line below,

∑

x∈Zd

E
(

∏

i∈S
ξε0(εB̂

x+Y i

δε−2 )1{τ(x + Y S) > δε−2}
)

≤
∑

x∈Zd

∑

1≤i<j≤N0

E(ξε0(εB̂
x+Y i

δε−2 )ξε0(εB̂
x+Y j

δε−2 )1{τ({x + Y i}, {x + Y j}) > δε−2})

≤
∑

w∈Zd

∑

z∈Zd

ξε0(εw)ξ
ε
0(εz)

∑

1≤i<j≤N0

∑

x∈Zd

P (B̂x+Y i

δε−2 = w, B̂x+Y j

δε−2 = z,

τ({x+ Y i}, {x+ Y j}) > δε−2})

≤
∑

w∈Zd

∑

z∈Zd

ξε0(εw)ξ
ε
0(εz)

∑

1≤i<j≤N0

P (B̂0
2δε−2 = w − z − Yi + Yj)

≤ N0(N0 − 1)|ξε0|2c(1 + 2δε−2)−d/2, (7.12)

where the local central limit theorem (e.g. (A.7) in [6]) is used in the last line. A
similar calculation shows that

Σ2 ≤ |ξε0|2c(1 + 2δε−2)−d/2. (7.13)

To see this, note that τ(x + Y S , {0}) > δε−2 implies that for i0 ∈ S (this is where
we require S non-empty) τ({x + Y i0}, {x}) > δε−2) and we may repeat the above
with i = i0 and j = 0. Returning to the study of Σ1, taking any i0 ∈ S we have

∑

x∈Zd

E
(

∏

i∈S
ξε0(εB

x+Y i

δε−2 )1{τ(x+ Y S) ≤ δε−2 < τ(x+ Y S , {x})}
)

=
∑

x∈Zd

E
(

ξε0(εx+ εBY i0

δε−2)1{τ(Y S) ≤ δε−2 < τ(Y S , {0})}
)

= |ξε0|P (τ(Y S) ≤ δε−2 < τ(Y S, {0})). (7.14)

Together (7.12) and (7.14) bound Σ1. Using this with (7.13) in (7.11), we con-
clude that

Eε
0(S) = |ξε0|P (τ(Y S) ≤ δε−2 < τ(Y S , {0})) + η1(ε, δ, S), (7.15)

where |η1(ε, δ, S)| ≤ cN2
0 |ξε0|2δ−d/2εd. A similar, and simpler, argument shows that

for S ⊂ {1, . . . , N0},

Eε
1(S) = |ξε0|P (τ(Y S ∪ {0}) ≤ δε−2) + η2(ε, δ, S), (7.16)

where |η2(ε, δ, S)| ≤ cN0(N0 + 1)|ξε0|2δ−d/2εd.
Now use (7.15), (7.16) and the fact that β̂ε(∅) = 0 (by (1.65)), to obtain (7.9)

with
|η7.4(ε, δ)| ≤

∑

S

(|β̂ε(S)|+ |δ̂ε(S)|)cN0(N0 + 1)δ−d/2|ξε0|2εd.

Finally use (7.8) to complete the proof.
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For 0 < η1 < 1, let T (η1) = Tε(η1) = inf{t ≥ εη1 : |ξεt−εη1 | ≥ (ε−1+
η1
2 )dεη1} and

note that T (η1)− εη1 is an (Ht)-stopping time.

Lemma 7.5. There is a c7.5 so that if η1 ∈ (0, 1), then for all s ≥ εη1

E(ψ(ξεs)|Hs−εη1 ) ≤ [θεεη1ε−2 + c7.5ε
η1 ] |ξεs−εη1 | a.s. on {T (η1) > s}.

Proof. Let δ = εη1 . If |ξε0| ≤ (ε−1+
η1
2 )dεη1 , then Lemmas 7.2 and 7.4 imply

E(ψ(ξεδ )) = |ξε0|θεδε−2 + η′(ε) with

|η′(ε)| ≤ c7.2[e(N0+1)c∗εη1 − 1]|ξε0|+ c7.4ε
−η1d/2+d|ξε0|2

≤ c7.2c∗(N0 + 1)e(N0+1)c∗εη1 |ξε0|+ c7.4|ξε0|εη1 .

For the second term we used the bound on |ξε0|. The result now follows from the
above by the Markov property and the definition of T (η1).

Lemma 7.6. Let β, η2 ∈ (0, 1]. There is an ε7.6(β, η2) ∈ (0, 1), so that if 0 < ε ≤
ε7.6 and θ = f ′(0) ≤ −η2, then |ξε0| ≤ ε−d+β implies

P (|ξεt | > 0) ≤ 6e2cbεβ/2 for all t ≥ 2d
η2

log(1/ε).

Proof. Let λ ≤ η2/2, η1 = β(2 + d)−1, T = Tε(η1) and δ = εη1 . An integration by
parts using (7.4) shows that for t ≥ δ,

eλ(t∧T )|ξεt∧T | = eλδ|ξεδ |+
∫ t

δ
1{r < T}[λeλr|ξεr |+ eλrψε(ξ

ε
r)]dr +N ε

t ,

where N ε is a mean 0 martingale. Since {r < T} ∈ Hr−δ, we have for δ ≤ s ≤ t

E(eλ(t∧T )|ξεt∧T | − eλ(s∧T )|ξεs∧T ||Hs−δ)

=

∫ t

s
E(1{r < T}eλrE(λ|ξεr |+ ψε(ξ

ε
r)|Hr−δ)|Hs−δ)dr.

Using Lemmas 7.1 and 7.5 the above is at most

E
(

∫ t

s
1{r < T}eλrγ(ε)|ξεr−δ |dr|Hs−δ

)

, (7.17)

where γ(ε) = λecbδ + θεδε−2 + c7.5δ. Recall δ = εη1 and θ = f ′(0) ≤ −η2. By
Lemma 7.3 and the uniform convergence of the gεi to gi there is a ε1(β, η2) > 0 so
that if 0 < ε ≤ ε1, then

γ(ε) ≤ η2
2
ecbε

η1 − η2 + 22N0

[

1
∑

i=0

‖gεi − gi‖∞
]

+ 22N0c∗ε7.3(εη1ε−2) + c7.5ε
η1

≤ −η2/4 < 0.
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We assume 0 < ε ≤ ε1 in what follows. Since the bound in (7.17) is therefore non-
positive and our assumption on |ξε0| implies T > δ, we may use Lemma 7.1 and the
fact that δ ≤ 1 to see that for t ≥ δ,

E(|ξεt∧T |eλ(t∧T )) ≤ eλδE(|ξεδ |) ≤ e(λ+cb)δ|ξε0| ≤ eη2+cbεβ−d. (7.18)

Now |ξεt | ≥ 1 if it is positive so

P (|ξεt | > 0) ≤ E(|ξεt∧T |eλ(T∧t)1{T ≥ t})e−λt + P (T < t). (7.19)

Let t ≥ (2d/η2) log(ε
−1) and use (7.18) with λ = η2/2 to see that the first term is

at most
eη2+cbεβ−dεd = eη2+cbεβ . (7.20)

To bound P (T < t), we note that |ξεT−δ| ≥ (ε−1+
η1
2 )dεη1 if T <∞, so

P (T < t) ≤ E(|ξεT−δ |1{T < t})(ε−1+
η1
2 )−dε−η1 .

By making ε1 smaller, depending on β, we can assume that (2d/η2) log(ε
−1) ≥ εη1 =

δ. Let S = (T − δ)∧ (t− δ), note {T < t} ∈ HS , and use the lower bound in Lemma
7.1 with λ = 0 to conclude the first inequality in

E(|ξεT−δ |1{T < t}) ≤ ecbδE(|ξεT∧t|) ≤ e2cb+η2εβ−d.

The second inequality comes from (7.18) with λ = 0 (recall that t ≥ 2d/η2) log(ε
−1) ≥

εη1 = δ) and δ ≤ 1. Using the last two equations with (7.20) in (7.19), we conclude
that

P (|ξεt | > 0) ≤ eη2+cbεβ + e2cb+η2εβ−d(ε−1+
η1
2 )−dε−η1

≤ eη2+2cb [εβ + εβ−η1(1+
d
2
)] ≤ 2e1+2cbεβ/2,

where the definition of η1 is used in the last line. The result follows.

7.2 The Dead Zone

For the remainder of this Section we suppose (1.63), (1.65) and Assumption 2 are
in force and −f ′(0) ≥ η2 ∈ (0, 1]. We also assume that p(·) and q(·) have finite
supports. More specifically, R0 ∈ N satisfies

{x ∈ Z
d : p(x) > 0} ⊂ [−R0, R0]

d and {x ∈ Z
dN0 : q(x) > 0} ⊂ [−R0, R0]

dN0 .
(7.21)

In order to connect with the percolation results from Section 5 we need certain space-
time regions suitable for applying Lemma 4.2 to decrease particle density, Lemma 4.7
to control the spread of duals, and Lemma 7.6 to actually kill off particles. Recall
that Qε(r) = [−r, r]d ∩ (εZd). For J0 < J1 ∈ N, 0 < w < 1, A,K > 1, and T > 0
define regions D(J0, J1, w,A,K) = D0 ∪D1, where

D0 = ∪J0j=1(Q
ε((K − jA)T ) × [(j − 1)T, jT ]),

D1 = ∪J1−1
j=J0

(Qε((K + jw − (w +A)J0)T )× [jT, (j + 1)T ]).

For help with the definition consult the following picture:
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[K −A]T

J0 = 3 ← [K − J0A]T

[K + (J1 − 1− J0)w − J0A]T
J1 = 7

D0

D1

The speed w > 0 is as in Assumption 2 (and may be assumed to be < 1), and
T = A4.2 log(1/ε) is the same as in (4.6). For the regions D0,D1, E we take

J0 =

⌈

2d

η2A4.2

⌉

+ 1, A =
8(2d + 3))

A4.2
∨ (2cb ∨ 2σ2)

K = 2 +AJ0, and J1 = J0 + 1 +

⌈

K +AJ0
w

⌉

. (7.22)

The choice K = 2 + AJ0 implies that Qε(2T ) × {J0T} is the “top” of D0 and
the “bottom” of D1. The choice of J1 implies

the top of D contains Qε(2KT )× {J1T} and is contained in (7.23)

Qε((2K + 1)T )× {J1T}, and D contains the region Qε(2T ) × [0, J1T ].

Recall from Section 5 that a region C in R
d × R+ is ε-empty iff ξεt (x) = 0 for

all (t, x) ∈ C, where ξε is our voter model perturbation as usual. If A ⊂ R
d let

ξε0(A) =
∑

x∈A∩εZd ξε0(x).

Lemma 7.7. There exist ε7.7, c7.7 > 0 depending on u1, u2, w, c2, C2 (from Assump-
tion 2) and r0, γ4.2, η2 such that such that if 0 < ε ≤ ε7.7 and

ξε0(Q(KT )) = 0, (7.24)

then

P
(

D(J0, J1, w,A,K) is ε-empty
)

≥ 1− c7.7ε.05∧
γ4.2

4 , (7.25)

and with probability at least 1− c7.7εd,

for all j = 1, . . . , J1, (x, u) ∈ (Qε((K + J1w +A(J1 − j))T ) × [(j − 1)T, jT ])

and t ∈ [0, u − (j − 1)T ],Xx,u
t ⊂ Qε((K + J1w +A(J1 − j + 1))T ). (7.26)
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Proof. We begin with some notation for describing events in which the dual process
is confined to certain space-time regions. For j ≥ 1 and 0 < r < s let ΓT (j, r, s) be
the event

Xx,u
t ⊂ Qε(sT ) ∀ x ∈ Qε(rT ), u ∈ [(j − 1)T, jT ], and t ∈ [0, u− (j − 1)T ].

On ΓT (j, r, s), duality and (1.65) imply

ξε(j−1)T (Q
ε(sT )) = 0 implies Qε(rT )× [(j − 1)T, jT ] is ε-empty. (7.27)

Step 1. We first check that D0 is empty with high probability. For j ∈ {1, . . . J0}
we bound the probability of ΓT (j,K − jA,K− (j− 1)A) by using Lemma 4.7. If we
set c = A4.2, U = jT , L = (K − jA)T and 2b = A, then evaluating q in the lemma
we obtain

q = (
AA4.2

8
− 2) ∧ ε−2 ≥ 2d+ 1

if ε−2 ≥ (2d + 1). Hence the bound on p̄ε in Lemma 4.7 gives us

P (ΓT (j,K − jA,K − (j − 1)A)) ≥ 1− c′d(K − jA)dεd (7.28)

for ε < ε4.6(A/2) such that ε−2 ≥ 2d+ 1 and ε(A4.2 log(1/ε) + 1)d ≤ 1.
By (7.27), on the intersection

∩J0j=1ΓT (j,K − jA,K − (j − 1)A),

for each j ∈ {1, . . . J0}, if ξε(j−1)T (Q
ε((K − (j − 1)A)T )) = 0 then Qε((K − jA)T )×

[(j−1)T, jT ] is ε-empty. Iterating this, (7.24) and (7.28) imply that for some positive
ε0,

P (D0 is ε-empty) ≥ 1− c′dJ0Kdεd if ε < ε0. (7.29)

Here, and throughout the proof, ε0 will denote a positive constant depending only
on our fixed parameters including r0.

Step 2. By taking ε small enough we may assume that (recall L0 is as in As-
sumption 2)

2 + L0 ≤ KT ≤ (K + wJ1)T ≤ ε−.001/d. (7.30)

For j ∈ {1, . . . , J1 − J0}, on account of (7.24), we may apply Lemma 4.2 and the
Markov property J1 − J0 times and conclude that for ε < ε4.2,

P (ξεjT has density at most εγ4.2 in Qε((K + wj)T ) for j = 1, . . . , J1 − J0))
≥ 1− (J1 − J0)ε.05.
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When the above event occurs, for any j ∈ {1, 2, . . . , J1 − J0}, (recall that Qε =
[0, aε)

d ∩ (εZd))

ξεjT (Q
ε((K + wj)T ))

≤
∑

x∈aεZd∩Qε((K+wj)T )

ξεjT (x+Qε) +
∑

x∈Qε((K+wj)T )−Q((K+wjT−aε)

ξεjT (x) (7.31)

≤ |Qε|εγ4.2card(aεZd ∩Qε((K + wj)T ) + cdε
−d[(K + wj)T ]d−1aε

≤ cd|Qε|εγ4.2a−d
ε ((K + wj)T )d + cdε

−d[(K + wj)T ]d−1aε

≤ cd(K + wJ1)
dAd

4.2(log(ε
−1))d[εγ4.2−d + ε(1/16d)−d]

≤ εγ4.2/2−d, (7.32)

for small enough ε, where we have used γ4.2 ≤ (16d)−1 in the last line. We have
shown that for all ε smaller than some positive ε0,

P (ξεjT (Q
ε((K+wj)T )) ≤ εγ4.2/2−d for j = 1, . . . , J1−J0) ≥ 1−(J1−J0)ε.05. (7.33)

Step 3. Fix j ∈ {1, . . . , J1 − J0}, and define (ξ̂j,εt , t ≥ jT ) by setting

ξ̂j,εjT (x) =

{

ξεjT (x) if x ∈ Qε((K + wj)T ),

0 otherwise,

and then using our Poisson processes {Λx
r ,Λ

x
w : x ∈ εZd} to continue constructing

ξ̂j,εt in the same way as ξεt is constructed. By Lemma 7.6, if ε < ε7.6(γ4.2/2, η2),

ξεjT (Q
ε((K + jw)T ) ≤ ε(γ4.2/2)−d implies

P (|ξ̂j,εt | > 0|ξεjT ) ≤ 6e2cbεγ4.2/4 for all t ≥ (j + J0 − 1)T. (7.34)

Using ξ̂j,εt , we will show that with high probability,

ξεjT (Q
ε((K + jw)T ) ≤ ε(γ4.2/2)−d implies

Qε((K + jw − J0A)T )× [(j − 1 + J0)T, (j + J0)T ] is ε-empty. (7.35)

To do this, define the event

ΓT (j) = ∩J0i=1ΓT (j + i,K + wj − iA,K + wj − (i− 1)A).

Using Lemma 4.7 as in Step 1 we have for small enough ε

P (ΓT (j + i,K + wj − iA,K + wj − (i− 1)A)) ≥ 1− c′d(K +wj − iA)dεd

and thus

P (ΓT (j)) ≥ 1− c′d(3K)dJ0ε
d (7.36)

for small enough ε.
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Observe that on the event ΓT (j) we have

Xx,u
t ⊂ Qε((K + jw)T ) ∀ x ∈ Qε((K + jw − J0A)T ),

u ∈ [(j − 1 + J0)T, (j + J0)T ], and t ∈ [0, u − jT ]. (7.37)

Therefore, by duality, on ΓT (j),

ξεt (x) = ξ̂j,εt (x) for all

(x, t) ∈ Qε((K + jw − J0A)T )× [(j − 1 + J0)T, (j + J0)T ].

Combining this observation with (7.34) and (7.36) we see that the event in (7.35)
has probability at least

1− 6e2cbεγ4.2/4 − c′d(3K)dJ0ε
d

for ε smaller than some ε0.
Step 4 We can now sum the last estimate over j = 1, . . . , J1 − J0 and use (7.33)

to obtain

P (D1 is ε-empty) ≥ 1− J1(ε.05 + 6e2cbεγ4.2/4 + c′d(3K)dJ0ε
d) (7.38)

for small enough ε. (Actually we get a slightly larger set than D1.) Combine (7.29)
and (7.38) to obtain (7.25).

Step 5 Finally, using the notation from Step 1, the event in (7.26) is just

∩J1j=1ΓT (j,K +wJ1 + (J1 − j)A,K + wJ1 + (J1 − j + 1)A).

As in Step 1, we can use Lemma 4.7 to bound the probability of this intersection
by 1− c′dJ1(K + J1(w +A))dεd for small enough ε, so we are done.

Let K1 = K + J1(w + A). For ξ ∈ {0, 1}εZd
, let Gε

ξ be the event, depending
on our graphical representation, on which D = D(J0, J1, w,A,K) is ε-empty if
ξε0 = ξ, and on which (7.26) holds. Note that (7.26) implies all the duals starting at
(x, u) ∈ D and run up until time u remain in Q(K1T ). Hence duality implies that
Gε

ξ is G(Q(K1T )× [0, J1T ])-measurable, where we recall from (6.7) that G(R) is the
σ-field generated by the Poisson points in the graphical representation in the region
R. By the inclusion (7.23) we have

on Gε
ξε0
, Qε(2T )× [0, J1T ] is ε− empty, and ξεJ1T (Q

ε(2KT )) = 0, (7.39)

providing that ξε0 ∈ H = {ξ ∈ {0, 1}εZd
: ξ(Qε(KT )) = 0}. Adding the bounds in

Lemma 7.7 we see that

if ξ ∈ H, then P (Gε
ξ) ≥ 1− 2c7.7ε

.05∧ γ4.2
2 if ε < ε7.7. (7.40)
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7.3 Proof of Theorem 1.16

Proof of Theorem 1.16. We continue to take T = A4.2 log(1/ε), and with K,J1 from
(7.22) we define

L = T, T ′ = J1T,

and set cL = L/(2D) as before. We set ξ̄ε(y) = 1(|y| > L), y ∈ εZd, and σz, z ∈ εZd

denote the translation operators on {0, 1}εZd
. For (x, n) ∈ LD let

ξx,n =

{

σ−cLx(ξ
ε
nT ′) if σ−cLx(ξ

ε
nT ′) ∈ H

ξ̄ε otherwise,

and define the percolation variables

η(x, n) = 1(Gε
ξx,n occurs in the graphical representation in which the Poisson

processes are translated by −cLx in space and −nT ′ in time). (7.41)

In the percolation argument which follows it is the first part of the definition of
ξx,n that will matter; the ξ̄ε is really only a place-holder which allows us to define
η when the translated configuration is not in H. As in the proof of Theorem 1.15
in Section 6, we are actually translating in space by the “lower left hand corner” in
εZd associated with −cLx and as before suppress this in our notation. In Section 6
we used Theorem 4.3 of [14]; here we copy the key definition in its proof. Using
the measurability of Gε

ξ , the independence of G(R) for disjoint regions R, and (7.40)
one can check that for any any M > 4DK1, the family {η(z), z ∈ LD} satisfies the
modified M -dependent condition (5.5) with θ = 2c7.7ε

.05∧ γ4.2
4 . To see this argue

exactly as in the proof of Theorem A.4 of [14].
Using the percolation results from Section 5, we will show

Lemma 7.8. There exists r̄ > 0 such that for ε small enough ξε0(Q
ε(KT )) = 0

implies
P (Λ) ≡ P (ξεt (Qε(r̄t)) = 0 for all large t) > 1/2.

Intuitively this is an immediate consequence of Lemmas 5.1 and 5.5. The first
result implies that on Ω0

∞ then for large n, the wet sites satisfyW 0
n∩Hrn

n = W̄n∩Hrn
n .

The second result shows that if Bn is the collection of dry sites in Hrn/4
n connected

to the complement of ∪nm=n/2H
rm/2
m by a path of dry sites on the graph with edge

set E↓ then Bn = ∅ eventually. Wet sites in Hrn
n will correspond to space-time

blocks that are empty of 1’s while dry sites (i.e. not wet sites) in Hrn
n correspond

to space-time blocks which may contain a 1. If a dry site in Hrn/4
n corresponds to

a block containing a 1 there must be a dual path of 1’s leading from this 1 to a

site outside of ∪nm=n/2H
rm/2
m . This corresponds to a path of dry sites in E↓ and so

cannot happen for large n since Bn = ∅ for large n. Thinking of the corresponding
space time regions are being filled with concrete, and the dry sites as air spaces,

we see that there cannot be a 1 in Hrn/4
n unless some air space reaches outside of

∪nm=n/2H
rm/2
m . We now give a formal proof.
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Proof. Fix ξε0 as above and recall W 0
n , W̄n,Bn and Ω0

∞ from Section 5. In particu-
lar W 0, W̄ are constructed from an iid Bernoulli field which is bounded above by
η(z, n), z ∈ Hn, n ≥ 1. By (7.40) and our condition on ξε0 (which implies ξ0,0 = ξε0
in the definition of η(0, 0) = 1) we see that

P (η(0, 0) = 1) ≥ 1− 2c7.7ε
.05∧(γ4.2/4) ≥ 3/4,

for ε small enough. By working with P (·|η(0, 0) = 1) in place of P we may assume
η(0, 0) ≡ 1 at a cost of proving (under our new P ) that

P (Λ) > 3/4. (7.42)

Assume n ≥ 1 and (y, n) ∈W 0
n . Then for some i, letting y′ = y−v′i, (y′, n−1) ∈

W 0
n−1 with η(y′, n − 1) = 1 (if n = 1 we use η(0, 0) ≡ 1 here). Continue to trace

back the set of open sites y′ = y′n−1, . . . , y
′
0 = 0. Proceeding through the y′i values,

using the second part of (7.39) and cLv
′
i + [−L,L]d ⊂ [−2L, 2L]d for i = 1, . . . ,D,

we see that ξy
′
i,i = σ−cLy

′
i
(ξεiT ′) in the definition of η(y′i, i) = 1. Therefore (7.39) and

translation invariance, show that η(y′, n− 1) = 1 implies

ξεt (cLy
′ +Qε(2L)) = 0 for all t ∈ [(n− 1)T ′, nT ′].

Since cLy +Qε(L) ⊂ cLy′ +Qε(2L) we obtain

(y, n) ∈W 0
n implies ξεt (cLy +Qε(L)) = 0 for all t ∈ [(n− 1)T ′, nT ′]. (7.43)

This confirms (5.8) in Section 5.
Next by Lemma 5.1 we may assume ε is small enough (independent of the choice

of ξε0) so that P (Ω0
∞) > 3/4 and θ < θ5.1 ∧ θ5.4. Let r = r5.1 and assume ω ∈ Ω0

∞.
By Lemma 5.1 there is an n0 ∈ N so that

W 0
k ∩Hrk

k = W̄k ∩Hrk
k ∀ k ≥ n0. (7.44)

Let r̄ = r
16DJ1

and assume ω /∈ Λ. The latter implies that for infinitely many n > 2n0
there are t ∈ [(n − 1)T ′, nT ′] and x ∈ Qε(r̄t) with ξt(x) = 1. We claim that this
implies

Bn 6= ∅ for n as above. (7.45)

Lemma 5.5 implies the above is a null set, so it follows that P (Ω0
∞ \ Λ) = 0 and so

(7.42) would be proved (recall P (Ω0
∞) > 3/4).

To prove (7.45) fix such an n and trace backward in time a path of 1’s that
leads to ξεt (x) = 1. Here we are using (1.65) to show if all the inputs are 0 the dual
process will produce a 0 at a given site. By (5.2) there must exist some (y, n) ∈ Hn

such that x ∈ cLVy ⊂ cLy +Qε(L) and a bit of arithmetic using the definition of r̄
gives

|y| ≤ |x|
cL

+
L

cL
≤ r̄nT ′

cL
+ 2D ≤ rn

4
,

and we have taken n0 big enough for the last inequality. Hence (y, n) ∈ Hrn/4
n and

so (7.43) and (7.44) imply (y, n) /∈ W̄n, i.e., (y, n) is dry. By duality and the finite
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range assumption (recall (7.21)), there must exist x′ ∈ εZd and t′ ∈ [(n − 1)T ′, t)
such that |x − x′| ≤ R0ε and ξεt′(x

′) = 1. That is, t′ ≥ (n − 1)T ′ is the first time
below t that the dual jumps or t′ = (n − 1)T ′ if there is no such time in which
case x′ = x. We may assume ε is small enough so that R0ε/cL ≤ c5.3, in which
case by (5.3) x′ ∈ cLVy′ for some y′ of the form y + v′i − v′j (y = y′ is included).

If (y′, n) ∈ Hrn/2
n ⊂ Hrn

n , it follows from (7.43) that (y′, n) must be dry, and thus
(y′, n) ∈ D(y,n).

Continue the above construction until either we reach a point (y′′, n) ∈ (Hrn/2
n )c

with all earlier points in our path from (y, n) being dry, or we obtain x′′, y′′ such
that ξε(n−1)T ′(x

′′) = 1, (y′′, n) ∈ D(y,n) ∩ Hrn/2
n and x′′ ∈ cLVy′′ . In the former

case Bn 6= ∅ (recall the precise definition prior to Lemma 5.5). In the latter case if

(y′′ − v′i, n− 1) /∈ Hr(n−1)/2
n−1 for some i, then (7.45) holds. If not, then as one easily

checks |cL(y′′ − v′i)− x′′| < L, and so arguing as above, we see that (y′′ − v′i, n− 1)
is dry. Therefore the iteration can be continued until it stops as above or continues
down to time (n2 − 1)T ′, again forcing (7.45) in either case.

Having established Lemma 7.8 the rest of the proof of Theorem 1.16 is routine.
The proof of Lemma 6.5 shows that if we start from an initial configuration with
infinitely many 0’s then at time 1 there will be infinitely many cubes of the form
cLx+Q

ε(L) with x ∈ H0 that are ε-empty. By the Markov property this will hold at
all times N ∈ N a.s. The above shows that if x0 is chosen so that ξε1(x0+Q(L)) = 1,
then w. p. at least 1/2, ξε1+t ≡ 0 on cLx0+Q(r̄t) for all large t. If this fails at some
time we can try again at a later time N by the above and after a geometric (1/2)
number of trials we will succeed and produce a linearly growing set of 0’s starting
at some space-time location. Therefore the 0’s take over.
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de Probabilités de Saint Flour XXIX-1999, Lecture Notes Math. 1781, pages
125-329, Springer-Verlag, Berlin.

[40] Presutti, E. and Spohn, H. (1983) Hydrodynamics of the voter model. Ann.
Probab. 11 867-875.

[41] Spitzer, F.L. (1976) Principles of Random Walk, 2nd ed. Springer-Verlag,
New York.

[42] Weinberger, H. F. (1982) Long-time behavior of a class of biological models.
Siam J. Math. Anal. 13 353-396.

105



Mathematics Department, Syracuse University,

215 Carnegie Hall, Syracuse, NY 13244-1150, USA

E-mail address: jtcox@syr.edu

Mathematics Department, Duke University,

Box 90320, Durham, NC 27708-0320, USA

E-mail address: rtd@math.duke.edu

Department of Mathematics, The University of British Columbia,

1984 Mathematics Road, Vancouver, B.C., Canada V6T 1Z2

E-mail address: perkins@math.ubc.ca

106


	1 Introduction and Statement of Results
	1.1 Hydrodynamic limit
	1.2 PDE results
	1.3 Lotka-Volterra systems
	1.4 Evolution of cooperation
	1.5 Nonlinear voter models
	1.6 General Coexistence and Extinction Results
	1.7 Application to the examples
	1.7.1  Lotka-Volterra systems
	1.7.2 Evolution of cooperation
	1.7.3 Nonlinear voter models

	1.8 Comparison with low density superprocess limit theorem

	2 Construction, Duality and Coupling
	2.1 Preliminaries
	2.2 Construction of t
	2.3 The Dual X
	2.4 The computation process 
	2.5 Branching random walk approximation 
	2.6 Computation process 
	2.7 Coupling of (X,) and (,)
	2.8 Bounding the probability of bad events
	2.9 When nothing bad happens, (X,) and (,) are close
	2.10 The branching Brownian motion and computation process

	3 Proofs of Theorems ?? and ??
	3.1 Proof of Theorem ??
	3.2 Proof of Theorem ??

	4 Achieving low density
	5 Percolation results
	6 Existence of stationary distributions
	7 Extinction of the process
	7.1 Dying out
	7.2 The Dead Zone
	7.3 Proof of Theorem ??


