Bacterial population genomics

Peter Pfaffelhuber
joint with Franz Baumdicker, Wolfgang Hess
University of Freiburg
Banff, September 2009

Genomic bacterial data

- **Distributed Genome Hypothesis**
 Bacteria possess a genome that is much larger than the genome of a single bacterium

The supragenome

- **Supragenome**
 Gene frequency spectrum
- **Predicted**
 using a test dataset of 8 individuals

- Data from 13 *Haemophilus influenzae* strains (Hogg et al 2007)

Modelling genomic diversity

- **Goal**: describe diversity of genes in a bacterial population
- **Genealogy**: given by Kingman’s coalescent
Phylogenetic trees based on gene content

Daniel H. Huson¹,² and Mike Steel³

- **New genes** taken from the environment at rate θ
- Present **genes lost** at rate ρ
- A set of **core genes** cannot be lost

The infinitely many genes model

- Gene gain: rate θ
- Gene loss: rate ρ

Single lines

- Present, $t=T$

Data, Genealogies and Mutations

- Individual 1: - - - ✓ -
- Individual 2: ✓ ✓ ✓ ✓ -
- Individual 3: ✓ ✓ ✓ ✓ ✓
- Individual 4: ✓ ✓ ✓ ✓ ✓

Is the genomic pattern compatible with neutral evolution?
Questions

- How many **genes** does a single individual carry?
- How many **different genes** are there in the sample?
- How many **new genes** are there in the nth individual?
- What does the **gene frequency spectrum** look like?

Single individual

- **$|G_i|$**: number of genes in individual i
- $\frac{\theta}{2} dt$: average number of genes gained a time t in the past
- $p(t)$: probability that a gene gained at time t not lost
 \[p(t) = e^{-\frac{\theta}{2} t} \]

Proposition

\[|G_i| \sim \text{Po}(\int_0^\infty e^{-\frac{\theta}{2} t} \frac{\theta}{2} dt) = \text{Po}(\frac{\theta}{\rho}) \]

The gene frequency spectrum

- G_i: Number of genes present in i individuals
- **Theorem** For the gene frequency spectrum
 \[E[|G_i|] = \theta \sum_{k=0}^{n-1} \frac{1}{k+\rho} \]

\[\text{Corollary} \]

\[E[\text{new genes in } (n+1)st \text{ individual}] = \frac{\theta}{n+\rho}. \]
Incongruent pairs

- A pair of genes is **incongruent**, if

![Diagram showing incongruent gene pairs]

- **Theorem**

 Let P be the number of pairs of incongruent genes

 $$
 E[P] = \frac{\theta^2 \rho}{4} \left(\frac{18 + 11 \theta^2 + 203 \theta^2 + 108 \theta^2}{(1+\theta^2)(1+2\theta^2)(1+4\theta^2)(3+4\theta^2)(3+5\theta^2)(6+5\theta^2)(7+5\theta^2)} \right).
 $$

Prochlorococcus

- **Tiny**: length $\sim 0.6 \mu m$, Genome size 2Mbp
- **Smallest known photosynthetic** bacterium
- **Abundant**: $\sim 10^5$ cells per ml (in the ocean)
- **Structure**: by water depth
- **Recently discovered**: first isolated in 1988

Fit of model and data

- **Data**
 - 1888 genes per genome on average
 - 1033 singleton genes

![Bar chart showing distribution of genes per genome]

- **Estimates**
 - $\hat{\theta} = 1135.27$, $\hat{\rho} = 1.94$, number of core genes = 1268.

Outlook

- **Biological questions**
 - Are estimates **biologically realistic**?
 - What are rates of gene gain/loss **per generation**?
 - Which **function** do non-core genes have?

- **Mathematical questions**
 - How can we **test** neutral evolution in the infinitely many genes model?
 - How do **selection, population structure, lateral gene transfer** change predicted patterns?