Natural Selection – and the distribution of IBD in the human genome

Rasmus Nielsen
Departments of Integrative Biology and Statistics, UC-Berkeley
and
Department of Biology, University of Copenhagen

Identity By Descent (IBD) and Selection

- Previous methods for identifying selection in the human genome have indirectly used IBD.
- During a selective sweep, IBD in the population increases.

Calculation of Probabilities of IBD

\[F = \sum_{i=1}^{k} p_i^2 F_i \]

- \(F \) = probability of identity by descent
- \(k \) = number of alleles segregating in the population
- \(p_i \) = frequency of allele \(i \)
- \(F_i \) = \(F \) within allele \(i \)

Selective Sweeps

New advantageous mutation

Change of \(F \) in one generation with selection

\[F(t+1) = \sum_{i=1}^{k} p_i(t+1)^2 \frac{1}{p_i(t)N} \]

\[p_i(t+1) = \frac{\omega_i p_i(t)}{\bar{\omega}}, \quad \bar{\omega} = \sum_{i=1}^{k} \omega_i p_i(t) \]

\[F(t+1) = \sum_{i=1}^{k} \left(\frac{\omega_i p_i(t)}{\bar{\omega}} \right)^2 \frac{1}{N p_i(t)} = \frac{\omega^2}{\bar{\omega}^2} \frac{1}{N} \]
Increase in IBD (1)

In a previously outbred population the relative increase in IBD due to selection is

\[\frac{W^2(t)}{W^2(0)} \]

This result is quite general and holds for any type of selection.

Change of F in a selective sweep

Change in allele frequency:

\[\frac{\partial p_i(t)}{\partial t} = s_i (1 - p_i(t)) p_i(t) \]

With solution:

\[p_i(t) = \frac{e^{s_i t} p_i(0)}{1 - p_i(0) + e^{s_i t} p_i(0)} \]

Re-writing the result from before:

\[F_i(t + 1) - F_i(t) = \frac{1 - F_i(t)}{N p_i(t)} \]

In continuous time:

\[\frac{\partial F_i(t)}{\partial t} = \frac{1 - F_i(t)}{N p_i(t)} \]

With boundary condition $F_i(0) = 0$, we get:

Increase in IBD (2)

The IBD of selected allele i during a selective sweep is, if the population is initially outbred, is

\[F_i(t) = 1 - \exp \left(-\frac{e^{s_i t} p(0) - p(0) + s_i t - s_i p(0) t}{s_i (1 - p(0)) N} \right) \]

$p(0)$: initial frequency of selected allele

t: generations after sweep began

N: chromosomal population size

s_i: selection coefficient acting on allele i

Selection on standing variation

![IBD vs Generations](chart)

Initial allele frequency: 1%, $s = 0.1$, $N = 100,000$

Inference of IBD tracts

- Assume a Hidden Markov Model (HMM) of pairwise IBD relationship.

- Use dense SNP genotype maps.

Time (distance) dependent transition probabilities can then be found analytically by exponentiation of Q.

If two individuals are only related through one cycle in the pedigree then k_{ij} is a simple function of the number of meiosis m and the recombination rate ϕ.

$$\alpha = -m \log(1 - \phi)$$

The number of meiosis can be calculated from the relatedness estimates

$$m = m_a + m_b, m_i = 1 - \log(x_i)/\log(2),$$

where

$$x_a = \frac{k_1 + 2k_2 + \sqrt{(k_1 + 2k_2)^2 - 4k_2}}{2},$$

$$x_b = \frac{k_2}{x_a}$$

Genotyping errors are also incorporated in the emission probabilities but are not shown here.
Original motivation: relatedness mapping

- 7 cancer patients
- 60 controls

Population based IBD mapping

- Combining evidence of relatedness to locate a locus shared by IBD.
- If disease mutation was introduced recently, affected individuals will share more IBD in the region around the mutation.
- Does not require inference of specific haplotypes – or choice on how to test based on haplotypes.
- Deals with the multiple testing problem.
- Has the potential to combine information from pedigrees and outbred populations directly.
- May have very high mapping power – especially when the mutation is recent and rare.

Selection on standing variation (IBD)

- Initial frequency 10%.
- $p=0.1$
- $N=10,000$
Selection on standing variation (Tajima’s D)

- Initial frequency 10%.
- $S=0.1$
- $N=10,000$

Human Genome - CEPH

Overdominance

HLA Region

Human Genome - CEPH

HLA Region

HLA (MHC)

- Some of the most important immune and defense related genes.
- Bind antigens and present them on the outside of the cell to T-cells.
- Stimulate anti-body producing B-cells or attract killer T cells that destroy cells.
- Also important in auto-immune diseases (incl. type I diabetes) and in cancer.
- The first set of genes to be demonstrated to be under selection in humans due to high dN/dS ratios and generally extremely high levels of variability, presumably due to balancing selection.
MHC residues predicted to be under positive selection are located in the antigen recognition site.

Acknowledgments

- Anders Albrechtsen, University of Copenhagen
- Ida Moltke, University of Copenhagen