## The mathematical challenge

What is the relative importance of mutation, selection, random drift and population subdivision for standing genetic variation?

#### **Evolution in a spatial continuum**

Allison Etheridge

University of Oxford Joint work with Nick Barton (IST Vienna), Jerome Kelleher (Edinburgh) and Amandine Véber (ENS)

Banff, September 2009 – p.1

Banff, September 2009 - p.1

### The mathematical challenge

What is the relative importance of mutation, selection, random drift and population subdivision for standing genetic variation?

Use pattern of variation in a sample to infer the genealogical relationships between individuals ---- coalescent models

#### **Other recruits...**

Banff, September 2009 – p.:

Banff, September 2009 - p.:

Nathanael Berestycki (Cambridge) Martin Hutzenthaler (Frankfurt) Tom Kurtz (Madison) Habib Saadi (Oxford) Feng Yu (Bristol)

#### The mathematical challenge

What is the relative importance of mutation, selection, random drift and population subdivision for standing genetic variation?

Use pattern of variation in a sample to infer the genealogical relationships between individuals  $\rightsquigarrow$  coalescent models

We require consistent

- forwards in time models for evolution of population,
- backwards in time models for genealogical trees relating individuals in a sample from the population.

## The mathematical challenge

## Drift (large population limit)

Neutral (haploid) panmictic population of constant size



## **Spatial structure**

Kimura's stepping stone model

$$dp_i = \sum_j m_{ji}(p_j - p_i)dt + \sqrt{\frac{1}{N_e}p_i(1 - p_i)}dW_i$$

System of interacting W-F diffusions





## **Drift (large population limit)**

Neutral (haploid) panmictic population of constant size

Forwards in time,

Banff, September 2009 - p.-

Banff, September 2009 - p.:

- $\mathbb{E}[\Delta p] = 0$  (neutrality)
- $\mathbb{E}[(\Delta p)^2] = \delta t p (1-p)$
- $\mathbb{E}[(\Delta p)^3] = O(\delta t)^2$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t$$

**Spatial structure** 

Kimura's stepping stone model

$$dp_i = \sum_j m_{ji}(p_j - p_i)dt + \sqrt{\frac{1}{N_e}p_i(1 - p_i)}dW_i$$

System of interacting W-F diffusions

1

The coalescent dual process  $\underline{n}$  evolves as follows:

• 
$$\begin{cases} n_i \mapsto n_i - 1\\ n_j \mapsto n_j + 1 \end{cases}$$
 at rate  $n_i m_{ji}$ 

•  $n_i \mapsto n_i - 1$  at rate  $\frac{1}{2N_e} n_i (n_i - 1)$ 

## **Drift (large population limit)**

Neutral (haploid) panmictic population of constant size

#### Forwards in time,

•  $\mathbb{E}[\Delta p] = 0$  (neutrality)

• 
$$\mathbb{E}[(\Delta p)^2] = \delta t p (1-p)$$

• 
$$\mathbb{E}[(\Delta p)^3] = O(\delta t)^2$$

 $dp_t = \sqrt{p_t(1-p_t)}dW_t$ 



Banff, September 2009 – p.4

Banff, September 2009 - p.4

Banff, September 2009 - p.4

Coalescence rate  $\binom{k}{2}$ .

Backwards in time

## **Evolution in a spatial continuum?**

For many biological populations it is more natural to consider a spatial continuum. Malécot and Wright (almost) solved this problem in the 1940s: Assume uniform density, independent reproduction

Identity in state between two genes x apart:

$$0 = -2\mu F(x) + \frac{1}{2\rho}(1 - F(x))G_{2\sigma^2}(x) + \int \left[F(y) - F(x)\right]G_{2\sigma^2}(y - x)dy$$

where individuals leave offspring following a Gaussian  $G_{\sigma^2}$ .

### **Evolution in a spatial continuum?**

For many biological populations it is more natural to consider a spatial continuum. Malécot and Wright (almost) solved this problem in the 1940s: Assume uniform density, independent reproduction

Identity in state between two genes *x* apart:

$$0 = -2\mu F(x) + \frac{1}{2\rho}(1 - F(x))G_{2\sigma^2}(x) + \int \left[F(y) - F(x)\right]G_{2\sigma^2}(y - x)dy$$

where individuals leave offspring following a Gaussian  $G_{\sigma^2}$ .  $F(0) = \frac{1}{1+\mathcal{N}/\log(\sqrt{2\mu})}$  where  $\mathcal{N} = 4\pi\rho\sigma^2$  is the *neighbourhood size*.  $F(x) \sim \frac{1}{\mathcal{N}}K_0(|x|/l)$  for  $|x| \gg \sigma$ ,  $l = \sigma/\sqrt{2\mu}$ .

Banff, September 2009 - p.0

Banff, September 2009 – p.6

#### **Mathematical problems**

## **Evolution in a spatial continuum?**

For many biological populations it is more natural to consider a spatial continuum.

#### **Evolution in a spatial continuum?**

For many biological populations it is more natural to consider a spatial continuum. Malécot and Wright (almost) solved this problem in the 1940s:

Banff September 2009 - n (

Banff, September 2009 - p.(

#### **Evolution in a spatial continuum?**

For many biological populations it is more natural to consider a spatial continuum. Malécot and Wright (almost) solved this problem in the 1940s: Assume uniform density, independent reproduction

## **Mathematical problems**

Felsenstein (1975). The pain in the torus: Independent reproduction  $\implies$  clumping;

Banff, September 2009 - p.

Banff, September 2009 - p.8

Local regulation  $\implies$  correlated reproduction.

In 2D the diffusion limit fails over small scales

The obvious backwards model fails in 2D

. but

0.5

1

2

3

4

5

6

7

# **Mathematical problems**

Felsenstein (1975). The pain in the torus: Independent reproduction  $\implies$  clumping;

## **Mathematical problems**

Felsenstein (1975). The pain in the torus: Independent reproduction  $\implies$  clumping;

Local regulation  $\implies$  correlated reproduction.

## **Biological problems**

## **Mathematical problems**

Felsenstein (1975). The pain in the torus: Independent reproduction  $\implies$  clumping;

Local regulation  $\implies$  correlated reproduction.

In 2D the diffusion limit fails over small scales

Banff, September 2009 – p.7

## **Biological problems**

Genetic diversity much lower than expected from census numbers

Allele frequencies correlated over long distances

Correlations across loci reflect a shared history

Demographic history of many species dominated by large scale extinction-recolonisation events

## **Biological problems**

Genetic diversity much lower than expected from census numbers

## **Biological problems**

Genetic diversity much lower than expected from census numbers

Allele frequencies correlated over long distances

Correlations across loci reflect a shared history

Demographic history of many species dominated by large scale extinction-recolonisation events

... in a spatial continuum, neighbourhood size could be small and then

pairwise coalescences may not dominate.

#### $\Lambda$ -coalescents

Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving j of them merging happens at rate

$$\beta_{n,j} = \int_0^1 u^{j-2} (1-u)^{n-j} \Lambda(du)$$

- $\Lambda$  a finite measure on [0, 1]
- Kingman's coalescent,  $\Lambda = \delta_0$

## **Biological problems**

Banff, September 2009 - p.9

Banff, September 2009 - p.9

Genetic diversity much lower than expected from census numbers

Allele frequencies correlated over long distances

## **Biological problems**

Genetic diversity much lower than expected from census numbers

Allele frequencies correlated over long distances

Correlations across loci reflect a shared history

Banff, September 2009 – p.10

Banff, September 2009 – p.5

Banff, September 2009 - p.5



- region
- Pick  $u \sim \nu_r(du)$ . Each individual in region dies with probability u

Banff, September 2009 - p.12

## An individual based model

- Start with Poisson point process intensity  $\lambda dx$
- At rate µ(dr)⊗dx⊗dt throw down ball centre x, radius r.
- If region empty, do nothing, otherwise:
- Choose parent at random from region
- Pick  $u \sim \nu_r(du)$ . Each individual in region dies with probability u



• New individuals born according to a Poisson  $\lambda u \mathbf{1}_{B(x,r)} dx$ Banff, September 2009-p.1:

## An individual based model

- Start with Poisson point process intensity  $\lambda dx$
- At rate µ(dr)⊗dx⊗dt throw down ball centre x, radius r.
- If region empty, do nothing, otherwise:
- Choose parent at random from region
- Pick u ~ ν<sub>r</sub>(du). Each individual in region dies with probability u
- New individuals born according to a Poisson  $\lambda u \mathbf{1}_{B(x,r)} dx$

Banff, September 2009 - p.12

### An individual based model

- Start with Poisson point process intensity λdx
- At rate µ(dr)⊗dx⊗dt throw down ball centre x, radius r.
- If region empty, do nothing, otherwise:
- Choose parent at random from region
- Pick u ~ ν<sub>r</sub>(du). Each individual in region dies with probability u



• New individuals born according to a Poisson  $\lambda u \mathbf{1}_{B(x,r)} dx$ 

Banff, September 2009 - p.12

# An individual based model

- Start with Poisson point process intensity  $\lambda dx$
- At rate µ(dr)⊗dx⊗dt throw down ball centre x, radius r.
- If region empty, do nothing, otherwise:
- Choose parent at random from region
- Pick u ~ ν<sub>r</sub>(du). Each individual in region dies with probability u



- New individuals born according to a Poisson  $\lambda u \mathbf{1}_{B(x,r)} dx$
- Banff, September 2009 p.12

#### An individual based model

- Start with Poisson point process intensity  $\lambda dx$
- At rate  $\mu(dr) \otimes dx \otimes dt$  throw down ball centre *x*, radius *r*.
- If region empty, do nothing, otherwise:
- Choose parent at random from region
- Pick  $u \sim \nu_r(du)$ . Each individual in region dies with probability u



• New individuals born according to a Poisson  $\lambda u \mathbf{1}_{B(x,r)} dx$ 

#### An individual based model

- Start with Poisson point process intensity  $\lambda dx$
- At rate µ(dr)⊗dx⊗dt throw down ball centre x, radius r.
- If region empty, do nothing, otherwise:
- Choose parent at random from region
- Pick u ~ ν<sub>r</sub>(du). Each individual in region dies with probability u



• New individuals born according to a Poisson  $\lambda u \mathbf{1}_{B(x,r)} dx$ 

## A continuum limit

 If λ is sufficiently large, the population survives with positive probability (N. Berestycki, E & Hutzenthaler)

Possibility of empty regions makes formulae cumbersome.

- Replace according to Gaussian density instead of just in disc.
- Let λ → ∞. Model retains signature of finite local population density. → a spatial Λ-Fleming-Viot process

Genealogy of a sample from the population described by a spatial  $\Lambda\mbox{-}coales\mbox{cent}$ 

Lineages follow coalescing Lévy (actually compound Poisson) pro-

cesses with multiple mergers

Banff, September 2009 - p.15

Banff, September 2009 - p.14

# The spatial $\Lambda$ -Fleming-Viot process

State  $\{\rho(t, x, \cdot) \in \mathcal{M}_1(K), x \in \mathbb{R}^2, t \ge 0\}.$ 

#### A continuum limit

 If λ is sufficiently large, the population survives with positive probability (N. Berestycki, E & Hutzenthaler)

Possibility of empty regions makes formulae cumbersome.

## A continuum limit

 If λ is sufficiently large, the population survives with positive probability (N. Berestycki, E & Hutzenthaler)

Possibility of empty regions makes formulae cumbersome.

• Replace according to Gaussian density instead of just in disc.

## The spatial $\Lambda$ -Fleming-Viot process

State  $\{\rho(t, x, \cdot) \in \mathcal{M}_1(K), x \in \mathbb{R}^2, t \ge 0\}$ .  $\pi$  Poisson point process rate  $\mu(dr) \otimes dx \otimes dt$ .

#### A continuum limit

• If  $\lambda$  is sufficiently large, the population survives with positive probability (N. Berestycki, E & Hutzenthaler)

Possibility of empty regions makes formulae cumbersome.

- Replace according to Gaussian density instead of just in disc.
- Let λ → ∞. Model retains signature of finite local population density. → a spatial Λ-Fleming-Viot process

Banff, September 2009 - p.13



## Mixing

#### (Amandine Véber)

Work on a torus  $\mathbb{T}(L)$  of side L in  $\mathbb{R}^2$ . Two types of event:

- Small events affecting bounded regions.
- Large events affecting regions of diameter  $\mathcal{O}(L^{\alpha})$

Each ancestral lineage is hit by a *small* event at rate  $\mathcal{O}(1)$ , but by a *large* event at rate  $\mathcal{O}(1/\rho(L))$ . Sample at random from the whole of  $\mathbb{T}(L)$ .

What happens to the genealogy as  $L \to \infty$ ?

Banff, September 2009 – p.16

Banff, September 2009 - p.1.

# Case (i): $\alpha < 1$

On a suitable timescale the genealogy converges to a Kingman coalescent (with an effective parameter),

The effective population size can depend on both large and small scale events.

c.f. Zähle, Cox, Durrett for classical stepping stone model.

## Patterns of allele frequencies



## Mixing

(Amandine Véber)

Work on a torus  $\mathbb{T}(L)$  of side L in  $\mathbb{R}^2$ .

## Case (ii): $\alpha = 1$

Three cases:

#### Mixing

#### (Amandine Véber)

Work on a torus  $\mathbb{T}(L)$  of side L in  $\mathbb{R}^2$ . Two types of event:

- Small events affecting bounded regions.
- Large events affecting regions of diameter  $\mathcal{O}(L^{\alpha})$

Each ancestral lineage is hit by a *small* event at rate  $\mathcal{O}(1)$ , but by a *large* event at rate  $\mathcal{O}(1/\rho(L)).$ 

Banff, September 2009 – p.15

Banff, September 2009 - p.15



# Adding recombination

#### (Amandine again)

• Small events: Pick two parents, types ab and AB, say. Write  $r_L$  for fraction of recombinants.

# **Detecting large scale events**

#### Two ideas:

Banff, September 2009 - p.21

Banff, September 2009 – p.21

- Slow decay in probability of identity
- Correlations between loci

# Adding recombination

#### (Amandine again)

• Small events: Pick two parents, types *ab* and *AB*, say. Write *r*<sub>L</sub> for fraction of recombinants.

$$\rho(t) = (1-u)\rho(t-) + \frac{1}{2}u(1-r_L)(\delta_{AB} + \delta_{ab}) + \frac{1}{2}ur_L(\delta_{aB} + \delta_{Ab})$$

## Malécot again



# Adding recombination

#### (Amandine again)

• Small events: Pick two parents, types ab and AB, say. Write  $r_L$  for fraction of recombinants.

$$\rho(t) = (1-u)\rho(t-) + \frac{1}{2}u(1-r_L)(\delta_{AB} + \delta_{ab}) + \frac{1}{2}ur_L(\delta_{aB} + \delta_{Ab})$$

• Large events: ignore recombination.

## **Adding recombination**

#### (Amandine again)

Banff, September 2009 – p.21

Banff, September 2009 – p.21

# Correlations



• If

$$\lim_{L \to \infty} \frac{\log(1 + \frac{\log \rho(L)}{r_L \rho(L)})}{2\log(L^{\beta - \alpha})} \le 1$$

then genealogies asymptotically independent.

• Otherwise genealogies completely correlated up to some time  $L^{\eta}$ .

## Some work in progress

# Correlations

Banff, September 2009 - p.22

Banff, September 2009 - p.2:

Correlations

Cases... but e.g.  $\rho(L) \leq L^{2\alpha} \rightsquigarrow$ 

Cases... but e.g.  $\rho(L) \leq L^{2\alpha} \rightsquigarrow$ Start  $L^{\beta}$  apart,  $\beta > \alpha$ .

Some work in progress

 For d ≥ 2, Cox, Durrett, Perkins rescaled voter model to obtain superBrownian motion. Restrict patch sizes to recover same result. What about heavy tails? (With Nathanael Berestycki & Amandine Véber)

## Correlations

Cases... but e.g.  $\rho(L) \leq L^{2\alpha} \rightsquigarrow$ Start  $L^{\beta}$  apart,  $\beta > \alpha$ .

• If

$$\lim_{L \to \infty} \frac{\log(1 + \frac{\log \rho(L)}{r_L \rho(L)})}{2\log(L^{\beta - \alpha})} \le 1$$

then genealogies asymptotically independent.

Banff, September 2009 – p.22



- Instead of replacing fraction u of population in a disc, replace according to a distribution (eg Gaussian). (With Nick Barton & Jerome Kelleher)
- Convergence of genealogies. (With Tom Kurtz)

Banff, September 2009 – p.24

#### A framework for modelling

- Replace  $\mathbb{R}^2$  by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event
- Choose spatial position of parents non-uniformly.
- Impose spatial motion of individuals not linked directly to the reproduction events.
- Spatially varying population density.
- ... and many more.

Banff, September 2009 – p.24

## A framework for modelling

- Replace  $\mathbb{R}^2$  by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event
- Choose spatial position of parents non-uniformly.
- Impose spatial motion of individuals not linked directly to the reproduction events.

## A framework for modelling

- Replace  $\mathbb{R}^2$  by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event

Banff, September 2009 – p.24

Banff, September 2009 - p.24

Banff, September 2009 - p.24

- · Choose spatial position of parents non-uniformly.
- Impose spatial motion of individuals not linked directly to the reproduction events.
- Spatially varying population density.

## A framework for modelling

- Replace  $\mathbb{R}^2$  by an arbitrary Polish space
- Choose a Poisson number of parents at each reproduction event
- Choose spatial position of parents non-uniformly.
- Impose spatial motion of individuals not linked directly to the reproduction events.
- Spatially varying population density.
- ... and many more.