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The mathematical challenge

What is the relative importance of mutation, selection, random drift and
population subdivision for standing genetic variation?

Use pattern of variation in a sample to infer the genealogical
relationships between individuals� coalescent models

We require consistent

• forwards in time models for evolution of population,
• backwards in time models for genealogical trees relating

individuals in a sample from the population.
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Forwards in time,
• E[Δp] = 0 (neutrality)
• E[(Δp)2] = δtp(1 − p)

• E[(Δp)3] = O(δt)2

dpt =
√

pt(1 − pt)dWt

Backwards in time

Wright−FisherCoalesent time

MRCA

time

Coalescence rate
(
k
2

)
.

dpτ =

√
1

Ne
pτ (1 − pτ )dWτ , Coalescence rate

1

Ne

(
k

2

)

Banff, September 2009 – p.4

Spatial structure

Kimura’s stepping stone model

dpi =
∑

j

mji(pj−pi)dt+

√
1

Ne
pi(1 − pi)dWi

System of interacting W-F diffusions

Banff, September 2009 – p.5

Spatial structure

Kimura’s stepping stone model

dpi =
∑

j

mji(pj−pi)dt+

√
1

Ne
pi(1 − pi)dWi

System of interacting W-F diffusions

The coalescent dual process n evolves as follows:

•
⎧⎨
⎩

ni �→ ni − 1

nj �→ nj + 1
at rate nimji

• ni �→ ni − 1 at rate 1
2Ne

ni (ni − 1)
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Identity in state between two genes x apart:

0 = −2μF (x) +
1

2ρ
(1 − F (x))G2σ2(x) +

∫
[F (y) − F (x)]G2σ2(y − x)dy

where individuals leave offspring following a Gaussian Gσ2 .
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Evolution in a spatial continuum?

For many biological populations it is more natural to consider a spatial
continuum. Malécot and Wright (almost) solved this problem in the
1940s: Assume uniform density, independent reproduction

Identity in state between two genes x apart:

0 = −2μF (x) +
1

2ρ
(1 − F (x))G2σ2(x) +

∫
[F (y) − F (x)]G2σ2(y − x)dy

where individuals leave offspring following a Gaussian Gσ2 .
F (0) = 1

1+N/ log(
√

2μ)
where N = 4πρσ2 is the neighbourhood size.

F (x) ∼ 1
N K0(|x|/l) for |x| � σ, l = σ/

√
2μ.
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Mathematical problems

Felsenstein (1975). The pain in the torus: Independent reproduction
=⇒ clumping;

Local regulation =⇒ correlated reproduction.

In 2D the diffusion limit fails over small scales

The obvious backwards model fails in 2D
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Biological problems

Genetic diversity much lower than expected from census numbers

Allele frequencies correlated over long distances

Correlations across loci reflect a shared history

Demographic history of many species dominated by large scale
extinction-recolonisation events

. . . in a spatial continuum, neighbourhood size could be small and then

pairwise coalescences may not dominate.
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Λ-coalescents

Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving j of
them merging happens at rate

βn,j =

∫ 1

0

uj−2(1 − u)n−jΛ(du)

• Λ a finite measure on [0, 1]

• Kingman’s coalescent, Λ = δ0
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Forwards in time

Bertoin & Le Gall (2003)

Suppose there is no Kingman component.
The Λ-coalescent describes the genealogy of a sample from a
population evolving according to a Λ-Fleming-Viot process.

• Poisson point process intensity dt ⊗ u−2Λ(du)

• individual sampled at random from population
• proportion u of population replaced by offspring of chosen

individual
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A continuum limit

• If λ is sufficiently large, the population survives with positive
probability (N. Berestycki, E & Hutzenthaler)

Possibility of empty regions makes formulae cumbersome.
• Replace according to Gaussian density instead of just in disc.

• Let λ → ∞. Model retains signature of finite local population
density. � a spatial Λ-Fleming-Viot process

Genealogy of a sample from the population described by a spatial
Λ-coalescent

Lineages follow coalescing Lévy (actually compound Poisson) pro-

cesses with multiple mergers
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The spatial Λ-Fleming-Viot process

State {ρ(t, x, ·) ∈ M1(K), x ∈ R
2, t ≥ 0}.
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The spatial Λ-Fleming-Viot process

State {ρ(t, x, ·) ∈ M1(K), x ∈ R
2, t ≥ 0}. π Poisson point process rate

μ(dr) ⊗ dx ⊗ dt. For each r > 0, νr(du) ∈ M1([0, 1]).
Dynamics: for each (t, x, r) ∈ π,

• u ∼ νr(du)

• z ∼ U(Br(x))

• k ∼ ρ(t−, z, ·).

For all y ∈ Br(x),

ρ(t, y, ·) = (1 − u)ρ(t−, y, ·) + uδk.
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Patterns of allele frequencies
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Mixing

(Amandine Véber)

Work on a torus T(L) of side L in R
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Mixing

(Amandine Véber)

Work on a torus T(L) of side L in R
2. Two types of event:

• Small events affecting bounded regions.
• Large events affecting regions of diameter O(Lα)

Each ancestral lineage is hit by a small event at rate O(1), but by a
large event at rate O(1/ρ(L)).
Sample at random from the whole of T(L).

What happens to the genealogy as L → ∞?
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Case (i): α < 1

On a suitable timescale the genealogy converges to a Kingman
coalescent (with an effective parameter),

The effective population size can depend on both large and small scale
events.

c.f. Zähle, Cox, Durrett for classical stepping stone model.
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Case (ii): α = 1

Three cases:
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Case (ii): α = 1

Three cases:
• ρ(L) ≈ L2, timescale ρ(L),� spatial Λ-coalescent in which

lineages follow independent Brownian motions in between
coalescence events.

• ρ(L) ≈ L2 log L, timescale ρ(L),� non-spatial Λ-coalescent.

• ρ(L) � L2 log L, timescale L2 log L,� Kingman coalescent.

c.f. Nordborg & Krone (2002)
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Detecting large scale events

Two ideas:
• Slow decay in probability of identity

• Correlations between loci
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Malécot again
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Adding recombination

(Amandine again)
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Adding recombination

(Amandine again)

• Small events: Pick two parents, types ab and AB, say. Write rL

for fraction of recombinants.

ρ(t) = (1 − u)ρ(t−) +
1

2
u(1 − rL)(δAB + δab) +

1

2
urL(δaB + δAb)

• Large events: ignore recombination.

Banff, September 2009 – p.21
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Correlations

Cases... but e.g. ρ(L) ≤ L2α
�

Start Lβ apart, β > α.
• If

lim
L→∞

log(1 + log ρ(L)
rLρ(L) )

2 log(Lβ−α)
≤ 1

then genealogies asymptotically independent.

• Otherwise genealogies completely correlated up to some time
Lη.

Banff, September 2009 – p.22
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• For d ≥ 2, Cox, Durrett, Perkins rescaled voter model to obtain
superBrownian motion. Restrict patch sizes to recover same
result. What about heavy tails? (With Nathanael Berestycki &
Amandine Véber)

• Adding selection. After rescaling one can recover the classical
Fisher wave. Small noise perturbations? Spatial hitchhiking.
(With Amandine Véber and Feng Yu)

• Instead of replacing fraction u of population in a disc, replace
according to a distribution (eg Gaussian). (With Nick Barton &
Jerome Kelleher)

• Convergence of genealogies. (With Tom Kurtz)
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