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1. Hodge theory

Fix a lattice VZ ' Zd of rank d, and let V = VZ⊗ZQ be the associated rational

vector space of dimension d. Fix an integer n ∈ Z and a non-degenerate bilinear form

Q : V × V → Q

that is (skew-)symmetric

Q(u, v) = (−1)nQ(v, u) , for all u, v ∈ V .

Let Aut(V ) ' GLd be the group of invertible linear maps V → V , and let End(V ) '

gld be the Lie algebra of linear maps V → V . Let

Aut(V,Q) = {α ∈ Aut(V ) | Q(αu, αv) = Q(u, v) , ∀ u, v ∈ V }

be the subgroup of automorphisms preserving Q, and let

End(V,Q) = {X ∈ End(V ) | Q(Xu, v) = Q(u,Xv) = 0 , ∀ u, v ∈ V }

be its Lie algebra.

A brief review of Hodge theory follows: references include [CMSP17, CEZGT14,

GGK12].

1.1. Hodge structures. A (pure, rational) Hodge structure of weight n ≥ 0 on the

vector space V is given by either of the following two equivalent objects: A Hodge

decomposition

(1.1) VC =
⊕
p+q=n

V p,q , such that V p,q = V q,p .

A (finite, decreasing) Hodge filtration

(1.2) 0 ⊂ F n ⊂ F n−1 ⊂ · · · ⊂ F 1 ⊂ F 0 = VC

such that

VC = F k ⊕ F n+1−k .
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The equivalence of the two definitions is given by

F k =
⊕
p≥k

V p,n−p and V p,q = F p ∩ F q .

1.1.1. The Hodge numbers h = (hp,q) and f = (fp) are

hp,q = dimC V
p,q and fp = dimC F

p .

1.1.2. Example: weight one. A weight n = 1 Hodge structure is given by a subspace

H1,0 = F 1 ⊂ VC such that VC = H1,0 ⊕ H1,0. We will denote the Hodge numbers

h = (h1,0, h0,1) = (g, g). The Hodge filtration is F 1 = H1,0.

1.1.3. Example: weight two. A weight n = 2 Hodge structure is given by subspaces

H2,0 ⊕H1,1 ⊂ VC so that H1, 1 = H1,1 and VC = H2,0 ⊕H1,1 ⊕H2,0. We will denote

the Hodge numbers h = (h2,0, h1,1, h0,2) = (a, b, a). The Hodge filtration is F 2 = H2,0

and F 1 = H2,0 ⊕H1,1.

1.1.4. Example: weight three. A weight n = 3 Hodge structure is given by subspaces

H3,0 ⊕H2,1 ⊂ VC so that VC = H3,0 ⊕H2,1 ⊕H2,1 ⊕H3,0. We will denote the Hodge

numbers h = (h3,0, h2,1, h1,2, h0,3) = (a, b, b, a). The Hodge filtration is F 3 = H3,0,

F 2 = H3,0 ⊕H2,1, and F 1 = H3,0 ⊕H2,1 ⊕H1,2.

1.1.5. Note that (1.1) implies that dimV = 2g is even when n is odd.

1.1.6. It is implicit in the definition above that we are assuming that the Hodge

structure on V is effective: V p,q = 0 if either p < 0 or q < 0. Neither this nor

the assumption that the weight n is non-negative is necessary (or even desirable,

cf. §1.7.2). We restrict to this case for expository convenience.

1.1.7. Example: compact Kähler manifolds. The Hodge Theorem asserts that the n-

th cohomology group V = Hn(X,Q) of a compact Kähler manifold admits a Hodge

structure of weight n. Here V p,q = Hp,q(X) ⊂ Hn(X,C) are the de Rham cohomology

classes that can be represented by (p, q)–forms.
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1.1.8. The Hodge structure is Q-polarized if the Hodge–Riemann bilinear relations

hold:

Q(V p,q, V r,s) = 0 if (p, q) 6= (r, s) ,(1.3)

ip−qQ(v, v̄) > 0 for all 0 6= v ∈ V p,q .(1.4)

1.1.9. Example: weight one. The first Hodge–Riemann bilinear relation isQ(F 1, F 1) =

0. Note that F 1 is maximal with this property: (F 1)⊥ = F 1. The second Hodge–

Riemann bilinear relation is iQ(v, v̄) > 0 for all 0 6= v ∈ H1,0.

1.1.10. Example: weight two. The first Hodge–Riemann bilinear relation isQ(F 2, F 1) =

0. In this case we have (F 2)⊥ = F 1. The second Hodge–Riemann bilinear relation

asserts that −Q(u, u) > 0 for all 0 6= u ∈ H2,0 and Q(v, v) > 0 for all 0 6= v ∈ H1,1.

1.1.11. Example: weight three. The first Hodge–Riemann bilinear relation isQ(F 2, F 2) =

0. Again, F 2 is maximal with this property: (F 2)⊥ = F 2. The second Hodge–

Riemann bilinear relation is −iQ(u, ū) > 0 for all 0 6= u ∈ H3,0, and iQ(v, v̄) > 0 for

all 0 6= v ∈ H2,1.

1.1.12. Example: smooth projective varieties. Let X ⊂ PN be a projective manifold

of dimension d with hyperplane class ω ∈ H2(X,Z). Given n ≤ d, the primitive

cohomology

V = {α ∈ Hn(X,Q) | ωd−n+1 ∧ α = 0}

inherits the weight n Hodge decomposition

VC =
⊕
p+q=n

Hp,q(X) ∩ VC

from Hn(X,Q). The Hodge–Riemann bilinear relations for X assert that this Hodge

structure is polarized by

Q(α, β) = (−1)(d−n)(d−n−1)/2

∫
X

α ∧ β ∧ ωd−n .
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1.1.13. Exercise. The real automorphism group Aut(VR, Q) is isomorphic to:

• Sp(2g,R), where 2g = dimV , when n is odd;

• O(b, 2a), where

b =
∑
k

hm+2k,m−2k and 2a =
∑
k

hm+1+2k,m−1−2k ,

when n = 2m is even.

Verify this, at least for n ≤ 3.

1.1.14. Exercise. The assignment

H(u, v) = inQ(u, v̄)

defines a nondegenerate Hermitian form on VC of signature

• (g, g), where 2g = dimV , when n is odd;

• (b, 2a), when n = 2m is even.

Verify this, at least for n ≤ 3.

1.2. Period domains and compact duals. The first Hodge–Riemann bilinear re-

lation (1.3) asserts that the Hodge filtration (1.2) is Q–isotropic

Q(F p, F q) = 0 , for all p+ q = n+ 1 .

This is precisely the statement that the Hodge filtration is an element of the complex

flag manifold

(1.5) Ď = FlagQ(f , VC)

of Q–isotropic filtrations F = (F p) of VC. The variety Ď is the compact dual of the

period domain D (which will be defined next).
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1.2.1. Example: weight one. The compact dual is P1, when g = 1.

For g ≥ 1, the compact dual is the Lagrangian grassmannian LG(g,C2g) of

g-dimensional subspaces F 1 ⊂ VC =' C2g that are isotropic with respect to a nonde-

generate skew-symmetric bilinear form.

1.2.2. Example: weight two. The compact dual is the Grassmannian GrQ(a,C2a+b)

of a–dimensional subspaces F 2 ⊂ VC ' C2a+b that are isotropic with respect to the

nondegenerate, symmetric bilinear form Q.

1.2.3. Example: weight three. The compact dual is the isotropic flag manifold FlagQ(a, g;C2g),

consisting of pairs F 3 ⊂ F 2 with F 2 ∈ LG(g,C2g), dimC F
3 = a, and where g = a+ b.

1.2.4. Exercise. The complex automorphism group Aut(VC, Q) acts transitively on

Ď. Verify this, at least for weight n ≤ 3.

1.2.5. The period domain D = Dh,Q is the set of all Q-polarized Hodge structures on

V with Hodge numbers h.

1.2.6. Example: weight one. When g = 1 the period domain is the upper-half plane,

and Aut(VR, Q) = Sp(2,R) = SL(2,R) acts transitively.

For g ≥ 1, the period domain D = Sp(2g,R)/U(g) is the Siegel upper-half space

of symmetric g×g matrices with complex entries and positive definite imaginary part.

Alternatively D is the set of E ∈ LG(g,C2g) with the property that the Hermitian

form iQ(u, ū) restricts to be positive definite on E.

We recover the Hodge decomposition from E by setting H1,0 = E and H0,1 = E.

1.2.7. Example: weight two. The period domain D = O(b, 2a)/U(a) × O(b) is the

subset of elements E ∈ GrQ(a,C2a+b) on which the Hermitian bilinear form −Q(u, v̄)

restricts to be positive definite.

We recover the Hodge decomposition from E by setting H2,0 = E and H0,2 = E,

and H1,1 = (E ⊕ E)⊥.
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1.2.8. Example: weight three. The period domain D = Sp(2g,R)/U(a) × U(b) is

the subset of filtrations (F 3 ⊂ F 2) ∈ FlagQ(a, g;C2g) with the property that the

Hermitian form −iQ(u, v̄) restricts to be positive definite on F 3, and nondegenerate

on F 2 with signature (a, b).

1.2.9. Exercise. The real automorphism group Aut(VR, Q) of §1.1.13 acts transitively

on D with compact isotropy H isomorphic to:

• U(hn,0)× · · · × U(hm+1,m), if n = 2m+ 1 is odd;

• U(hn,0)× · · · × U(hm+1,m−1)×O(hm,m), if n is even.

Verify this, at least for n ≤ 3.

1.2.10. Exercise.

(a) Show that D ⊂ Ď is open (in the analytic topology). In particular, D inherits

the structure of a complex manifold from Ď, and is a “flag domain” in the sense

of [Wol69, FHW06].

(b) The stabilizer of F ∈ Ď in Aut(VC, Q) is a parabolic subgroup P . Let U ⊂ P

denote the unipotent racial. Show that the compact isotropy H = Aut(VR, Q)∩P

is a real form of the reductive Levi quotient P/U .

1.2.11. Remark. The compact dual Ď parameterizes filtrations satisfying the first

Hodge–Riemann bilinear relation, and the period domain D ⊂ Ď parameterizes fil-

trations satisfying both Hodge–Riemann bilinear relations.

1.3. Hodge structures: a third definition. We have seen that a Hodge structure

may be defined by either a Hodge decomposition (1.1), or by a Hodge filtration (1.2).

There is a third definition by group homomorphisms. Let C× = C\{0} be the group

of nonzero complex numbers. Define a homomorphism

(1.6) ϕ̃ : C× → Aut(VR)
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by specifying

ϕ̃(z) = zpz̄q v , for all v ∈ V p,q ;

that is, we specify that the Hodge decomposition (1.1) is an eigenspace decomposition

for ϕ̃.

1.3.1. Observe that (1.6) satisfies ϕ(x) = xn Id, for all nonzero real numbers x ∈ R×.

1.3.2. Exercise.

(a) Verify that ϕ̃ does indeed take value in Aut(VR).

(b) Verify that the restriction ϕ̃|S1 takes value in Aut(VR, Q) if and only if the Hodge

structure is Q–polarized.

1.3.3. We wish to view C× as real group. At the very least you should think of it a

real Lie group. If you are familiar with algebraic groups, then you should think of

C× as the real points

S(R) =


 x −y

y x

 ∣∣∣∣∣∣ x, y ∈ R

x2 + y2 6= 0


of the Deligne torus, the R–algebraic group S = ResC/RGm,C. Likewise, we identify

S1 ⊂ C× with the maximal compact subgroup

U(R) =


 x −y

y x

 ∣∣∣∣∣∣ x, y ∈ R

x2 + y2 = 1

 .

1.3.4. Exercise. Conversely suppose that you are given a homomorphism (1.6), with

the property that ϕ̃|R× is defined over Q.

(a) Show that V = ⊕n∈Z Vn where

Vn = {v ∈ V | ϕ̃(x)(v) = xn Id , x ∈ R×} .

(b) Set V p,q = {v ∈ VC | ϕ̃(z)(v) = zpz̄q v , ∀ z ∈ C×}. Show that Vn,C = ⊕p+q=n V p,q

is a Hodge decomposition of weight n.



HODGE THEORY: A REPRESENTATION THEORETIC PERSPECTIVE 9

1.3.5. The upshot of the discussion above is that we may define a (real) Hodge struc-

ture as a homomorphism (1.6) of R–algebraic groups. The Hodge structure is rational

if ϕ̃|R× is defined over Q; it is pure of weight n ∈ Z if ϕ̃(r) = rn Id for all r ∈ R×; and

if the Hodge structure is Q–polarized, then ϕ = ϕ̃|S1 takes value in Aut(VR, Q). We

may identify the period domain D with the Aut(VR, Q) conjugacy classes of ϕ, and the

isotropy group H is clearly seen to be the centralizer of the circle ϕ : S1 → Aut(VR, Q).

1.4. Hodge groups and domains. The image ϕ(S1) ⊂ Aut(VR, Q) is an R–algebraic

subgroup. The Hodge group Gϕ ⊂ Aut(V,Q) is the Q–Zariski closure of ϕ(S1); that

is, Gϕ is the smallest Q–algebraic subgroup of Aut(V,Q) that contains ϕ(S1).

The Hodge (sub)domain is the real orbit Dϕ = Gϕ(R) · ϕ ⊂ D. The compact

dual is the complex orbit Ďϕ = Gϕ(C) · ϕ ⊂ Ď. Again, the complex stabilizer Pϕ ⊂

Gϕ(C) of ϕ is a parabolic subgroup (see §1.7.6 for a description of the Lie algebra),

and Ďϕ = Gϕ(C)/Pϕ is a generalized flag manifold (a.k.a. a rational homogeneous

variety). Likewise, the real stabilizer Hϕ ⊂ Gϕ of ϕ is (isomorphic to) a real form of

the Levi quotient Pϕ/Uϕ, where Uϕ is the unipotent radical of Pϕ.

To ease notation, from this point forward, we will often drop the subscript ϕ

from these objects.

1.5. Hodge tensors. Hodge groups are the symmetry groups of Hodge theory: G =

Gϕ is precisely the subgroup of Aut(V,Q) that acts trivially on all the Hodge tensors

of ϕ. A brief discussion follows; for details see [GGK12, Pat16].

1.5.1. Fix a Hodge structure ϕ : S1 → Aut(VR, Q). If the weight n = 2m is even, then

the Hodge classes of ϕ are the rational (m,m) classes V ∩ V m,m. These are precisely

the elements of V upon which the circle ϕ acts trivially. (A priori the intersection

may be trivial.) There are no Hodge classes in odd weight. But there may be Hodge

tensors.
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1.5.2. Exercise. Let

T (V ) =
⊕
k,`

V ⊗k ⊗ (V ∗)⊗`

denote the tensor algebra. The action of C× on VR (via ϕ̃) naturally induces an action

on T (VR). We also denote this induced action by ϕ̃ : C× → Aut(T (VR)). It naturally

defines a Hodge structure on T (V ) by

T (VC) =
⊕
p,q

T (V )p,q ,

where

T (V )p,q = {τ ∈ T (VC) | ϕ̃(z)τ = zpz̄qτ} .

1.5.3. The algebra of Hodge tensors is

Hg(ϕ) = T (V ) ∩
⊕
p

T (V )p,p .

These are precisely the (rational) elements of T (V ) upon which the circle S1 acts

trivially. The Hodge group is the stabilizer

Gϕ = {g ∈ Aut(V,Q) | g · τ = τ , ∀ τ ∈ Hg(ϕ)}

of the Hodge tensors.

1.5.4. Exercise. Verify that Q ∈ T (V ) is a Hodge tensor.

1.5.5. How to think of Hodge groups and domains. For a generic choice of ϕ ∈ D, we

will have Gϕ = Aut(V,Q). Essentially, the only Hodge tensor is the polarization Q.

At the other extreme, the Hodge group can be a torus. An example is the Hodge

structure of an elliptic curve with complex multiplication, where Gϕ(R) = ϕ(S1).

In general, the Hodge group is reductive, and has the property that Gϕ(R)

contains a compact maximal torus. Conversely, any such group may be realized as

a Hodge group. So for example, SU(a, b) may be realized as some Gϕ(R) so long as

a, b > 0; but SLkR can not, if k ≥ 3.
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For generic choice of Hodge structure ϕ ∈ D, the Hodge domain Dϕ is the

entire period domain. However, at the other extreme, when Gϕ is a torus, we have

Dϕ = {ϕ}.

In general, given another Hodge structure ϕ′ ∈ Dϕ, the Hodge groups and

domains will satisfy Gϕ′ ⊂ Gϕ, and Dϕ′ ⊂ Dϕ. In both cases, equality will hold for

generic choice of ϕ′ ∈ Dϕ.

When the containment D ⊂ D is strict, the Hodge domain is parameterizing

Hodge structures with nongeneric Hodge tensors.

1.6. Hodge representations. A (polarized) Hodge representation (of weight n) con-

sists of:

(i) a faithful morphism

ρ : G ↪→ Aut(V,Q)

of Q–algebraic groups, and

(ii) a nontrivial morphism ϕ : S1 → G(R) of R–algebraic groups such that the

eigenspaces

V p,q
ϕ = {v ∈ VC | ϕ(z) v = zp−q v} ,

are the summands in a weight n, Q–polarized Hodge decomposition

VC =
⊕
p+q=n

V p,q
ϕ .

A priori G contains the Hodge group Gϕ of ϕ. Replacing G with the Hodge group if

necessary we may assume without loss of generality that equality holds. ss

Additional discussion of Hodge representations may be found in [GGK12, HR20].

Set

G = G(R) and Ǧ = G(C) .
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1.6.1. Given a Hodge representation (ϕ, ρ), the circle ϕ may be viewed as an element

of the period domain D parameterizing Q–polarized Hodge structures on V with

Hodge numbers hp,q = dimC V
p,q
ϕ . Let D = G · ϕ ⊂ D be the Hodge domain. Note

that the inclusion ιρ : D ↪→ D is a G–equivariant embedding. In fact, this map is the

restriction to D of a Ǧ–equivariant embedding ιρ : Ď ↪→ Ď.

1.6.2. Exercise. As an abstract homogeneous space D does not depend on the choice

of ρ. Show that D = G/H is determined by ϕ : S1 → G alone.

1.6.3. Exercise. Show that ρ : G ↪→ Aut(V,Q) is a Hodge representation for every

choice of ϕ′ ∈ D.

1.7. Exercises on the induced Hodge structure on the Lie algebra. Fix a

Hodge structure ϕ with Hodge group G ⊂ Aut(V,Q), and let g be the Lie algebra.

1.7.1. Exercise. Show that

(1.7) gC =
⊕
p∈Z

gp,−pϕ ,

where

gp,−pϕ = {X ∈ gC | Adϕ(z)(X) = z2pX}

= {X ∈ gC | X(V r,s
ϕ ) ⊂ V r+p,s−p

ϕ } .

1.7.2. Exercise. Show that (1.7) is a weight zero Hodge structure on g.

1.7.3. Exercise. Show that the Hodge structure is polarized by −κ, where κ is the

Killing form. In particular, given a Hodge structure as in §1.3.5, the pair (Ad, ϕ) is

always a Hodge representation (§1.6).

From this we may deduce that kC = ⊕p g2p,−2p is the complexification of a

maximal compact subalgebra k ⊂ gR. This is the unique maximal compact subalgebra

containing h.

1.7.4. Remark. The pair kC ⊂ gC is enough to determine the real form gR.
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1.7.5. Exercise. For convenience we set

gp = gp,−pϕ .

Show that [gp , gq] ⊂ gp+q.

1.7.6. Exercise. Let P ⊂ Ǧ be the complex stabilizer of ϕ. (In particular, Ď = Ǧ/P .)

Show that the Lie algebra is

p = F 0(gC) =
⊕
p≥0

gp .

1.7.7. Exercise. Let H = G∩P be the real stabilizer of ϕ. (In particular, D = G/H.)

Show that the Lie algebra satisfies

hC = g0 .

1.7.8. Exercise. Given a Hodge representation, define Tϕ ∈ End(VC) by specifying

that Tϕ(v) = 1
2
(p− q) v for all v ∈ V p,q

ϕ . In particular the Hodge decomposition is the

eigenspace decomposition of Tϕ.

Show that Tϕ ∈ igR.

1.7.9. Exercise. Fix a Cartan subalgebra t ⊂ gR containing iTϕ. Note that t is con-

tained in the Lie algebra h of the compact isotropy H ⊂ G. If Λrt ⊂ Λ ⊂ Λwt ⊂ t∗C is

the weight lattice of Ǧ, set Λ∗ = Hom(Λ, 2πiZ) ⊂ t, so that the exponential map iden-

tifies t/Λ∗ with a compact torus T ⊂ G. Show that 4πiTϕ ∈ Λ∗, and ϕ(e2πit) = 4πi t Tϕ

mod Λ∗.

In particular ∂ϕ
∂t

∣∣
t=1

= 4πi Tϕ, and suggests that we think of Tϕ as a (rescaled)

“infinitesimal Hodge structure”.

1.7.10. Exercise. Let ∆ ⊂ t∗C denote the roots of gC, and show that α(Tϕ) ∈ Z for all

α ∈ ∆. Show that

gp = {X ∈ gC | [Tϕ, X] = pX} .
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1.7.11. Exercise. Fix a choice of positive roots ∆+ ⊂ ∆ with the property that

α(Tϕ) ≥ 0 for all α > 0. Let Σ ⊂ ∆+ be the simple roots. Show that the sub-

space g1 generates the subalgebra F 1(gC) = ⊕p>0 g
p if and only if

(1.8) α(Tϕ) ∈ {0, 1} ∀ α ∈ Σ .

1.8. Period maps and the infinitesimal period relation. The infinitesimal pe-

riod relation (IPR) is differential constraint on period maps (§1.8.4). It is often

expressed as

dF p ⊂ F p−1 .

Let U = {z ∈ C s.t. |z| < 1} denote the unit disc in the complex plane.

Exercise 1.9. Suppose that D is a period domain parameterizing weight n = 1 polar-

ized Hodge structures. Prove that the IPR is trivial: that is, given any holomorphic

curve α : U→ Ď, we have (dF p)(α̇(t)) ⊂ F p−1
α(t) for all p.

Exercise 1.10. Suppose that D is a period domain parameterizing weight n = 2

polarized Hodge structures with Hodge numbers h = (1, h, 1). Prove that the IPR is

trivial: that is, given any holomorohic curve α : U→ Ď, we have (dF p)(α̇(t)) ⊂ F p−1
α(t)

for all p.

Exercise 1.11. Suppose that D is a period domain parameterizing weight n = 2

polarized Hodge structures with Hodge numbers h = (2, h, 2). Prove that there

exists a corank 1 subbundle T iprĎ of the holomorphic tangent bundle T Ď such that

(dF p)(α̇(t)) ⊂ F p−1
α(t) for all p if and only if α̇(t) ∈ T ipr

α(t)Ď for all t.

1.8.1. The IPR admits the following description as a homogeneous vector bundle.

The holomorphic tangent bundle is

TĎ = Ǧ×P (gC/p) .
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Set

F−1(gC) =
⊕
p≥−1

gp .

Then

T iprĎ = Ǧ ×P F−1(gC)/p

Restricting the tangent bundle to the domain, we may express this as

T iprD = G ×H g−1 .

1.8.2. Exercise. The horizontal bundle of TĎ contains a unique, minimal, bracket-

generating, homogeneous subbundle T hĎ. Show that

(1.12) T iprĎ ⊂ T hĎ ,

and that equality holds if and only if (1.8) holds.

1.8.3. We may reduce to the case that equality holds in (1.12), but possibly at the

expense of the rational structure. The subalgebra g̃C ⊂ gC generated by g1 ⊕ g−1 is

semisimple and defined over R. (If the containment g̃C ⊂ gC is strict, then g̃C need

not be defined over Q.) Let G̃C ⊂ Ǧ be the corresponding Lie subgroup. The IPR

and horizontal subbundle coincide on the subvariety D̃ = G̃C ·ϕ ⊂ Ď. Moreover, any

horizontal submanifold of Ď passing though ϕ is necessarily contained in D̃.

We will assume that equality holds in (1.12).

1.8.4. Let B be a complex manifold with fundamental group π1(B). A period map is

a holomorphic map

Φ : B → Γ\D ,

where Γ ⊂ G(Q) is discrete (for example, Γ is a subgroup of G(Z)), and with

the properties that Φ is locally liftable and satisfies the infinitesimal period relation

dΦ(TbB) ⊂ T h
Φ(b)D.
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1.8.5. Example. Period maps arise when considering families of smooth projective

varieties. Specifically consider a proper, holomorphic submersion f : X → B. Then

Xb = f−1(b) is a family of compact complex manifolds. It is a smooth fibre bundle:

the fibres are all diffeomorphic, but not necessarily biholomorphic. (For example,

you might consider the elliptic curves Eτ = C/(Z + τZ) parameterized by points τ

in the upper half-plane.) If X ⊂ PN , then the Chern class of the hyperplane bundle

induces integral Kähler classes ωb ∈ H1,1(Xb)∩H2(Xb,Z). As discussed in §1.1.12 this

gives us a polarized Hodge structure on the primitive cohomology Vb ⊂ Hn(Xb,Q).

The fibres Vb patch together to define a vector bundle over B. The vector bundle is

equipped with a natural connection – the Gauss-Manin connection – which is flat.

So parallel transport may be used to identify each Vb with a fixed V = Vo, o ∈ B.

The identification is well-defined up to the action of the monodromy representation

π1(B, o) → Aut(V,Q). (The vector bundle is equipped with an underlying local

system B ×π1(B) VZ.) Under this identification, each b ∈ B defines a Hodge structure

on V ; that is, an element of Γ\D, where Γ ⊂ Aut(V,Q) is the image of the monodromy

representation. This is the period map Φf : B → Γ\D.

1.8.6. Example. The identity map Id : D → D will be a period map (§1.8.4) if and

only if the IPR is trivial; that is, if and only if T hĎ = TĎ. This is the case if and only

if gC = g1 ⊕ g0 ⊕ g−1; equivalently, D is Hermitian (equivalently, Ď is cominuscule).

1.8.7. Exercise. Assume the setting of §1.8.6, and fix a Hodge representation as in

§1.6.1. Show that the inclusion ιρ : D ↪→ D is a period map. (The substance of the

exercise is to show that the IPR is satisfied.)

2. The geometric realization problem

2.1. Open question: the geometric realization problem. Exercise 1.8.7 raises

a very interesting question: Can the image of the embedding ιρ : D ↪→ D be realized

geometrically? That is, does there exist a family f : X → B, as in §1.8.5 (or more
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generally, a motivic variation of Hodge structure, as in §2.3.2), so that the image

Φ(B) ⊂ Γ\D is an open subset of Γρ\D = Image{D ↪→ D � Γ\D}?

Following [Gro94], we will consider on the case that the Hodge representation

is of Calabi–Yau type. In this situation, there are invariants (characteristic forms)

that can determine whether or not a given period map Φf : B → Γ\D is a geometric

realization (Theorem 2.2). The Hodge representation is of Calabi-Yau type (CY) if

the first Hodge number hn,0 = dimCV
n,0 = 1. As the following two exercises indicate,

this restriction involves no real loss of information.

2.1.1. Exercise. Fix a Hodge representation (ρ, ϕ), as in §1.6, not necessarily of CY

type. Let d = hn,0 be the first Hodge number and set V ′ =
∧dV . Let ρ′ : G →

Aut(V ′) be the representation induced by ρ. Verify that ϕ defines a CY Hodge

structure on V ′.

This Hodge structure admits a natural polarization Q′ with the property that

ρ′ takes value in Aut(V ′, Q′), and in this way we obtain a Hodge representation (ρ′, ϕ)

of CY type.

2.1.2. Exercise. Verify that the Hodge domains D ⊂ D and D′ ⊂ D′ are isomorphic

as G–homogeneous manifolds (cf. §1.6.2).

2.2. Canonical CY Hodge representations over tube domains. The irreducible

Hermitian Hodge domains D admit canonical CY Hodge representations [Gro94,

SZ10]. The case that D is a tube domain is the simplest, in the sense that the

canonical representation is irreducible over C.1 The irreducible tube domains, and

their canonical (real2) CY Hodge representations are given in [Gro94]:

(a) For G/H = O(2, b)/(U(1) × O(b)) we have VC = C2+b (the irreducible repre-

sentation of highest weight ω1), and D = G/H is the period domain for weight

n = 2 Hodge structures with h2,0 = 1, cf. §1.2.7.

1In the other cases, VC factors as UC ⊕ U∗C with UC and irreducible Ǧ–module.

2The constructions of [Gro94, SZ10] are over R.
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(b) For G/H = Sp(2g,R)/U(g) we have VC =
∧gC2g (the irreducible representation

of highest weight ωg), andD = G/H is the period domain for weight n = 1 Hodge

structures, cf. §1.2.6. The points ϕ ∈ D parameterize Hodge decompositions

C2g = Eϕ ⊕ Eϕ, and these induce the Hodge decompositions V p,q
ϕ = (

∧pEϕ) ⊗

(
∧qEϕ), as in §2.1.1.

(c) For G/H = U(n, n)/(U(n) × U(n)) we have VC =
∧nC2n (irreducible represen-

tation of highest weight ωn). The points ϕ ∈ D = G/H parameterize subspaces

E ∈ Gr(n,C2n) upon which the Hermitian form restricts to be positive definite.

The decomposition C2n = Eϕ ⊕ Eϕ is a weight one Hodge decomposition. The

induced Hodge decomposition is V p,q
ϕ = (

∧pEϕ)⊗ (
∧qEϕ).

(d) ForG/H = SO∗(4r)/U(2r), with r ≥ 2, VC is a Spinor representation (irreducible

representation of highest weight ω2r), the weight of the Hodge structure is n = r,

and the Hodge decomposition is V p,q
ϕ '

∧2pC2r.

(e) For D = G/H, with G the exceptional simple real Lie group of rank 7 having

the maximal compact subgroup H = U(1) ×µ3 E6, then VC is the irreducible

representation of highest weight ω7 and the Hodge structure is weight 3 with

Hodge numbers (1, 27, 27, 1).

2.3. Geometric realizations. Some of the examples in §2.2 admit geometric real-

izations:

2.3.1. K3 surfaces. The tube domain in §2.2(a) is a period domain. For certain values

of b, it is geometrically realized by families of K3 surfaces. And these Hodge structures

are of CY-type: the dimension of H2,0(K3) is 1.

2.3.2. Principally polarized abelian varieties. The tube domain in §2.2(b) is a period

domain. As such its is realized geometrically by principally polarized abelian varieties

(ppav) of genus g. In fact, the moduli space Ag = Γg\D, and the period map

is essentially the identity. Given A ∈ Ag, the Hodge decomposition H1(A,C) =



HODGE THEORY: A REPRESENTATION THEORETIC PERSPECTIVE 19

H1,0(A) ⊕ H0,1(A) induces a CY-type Hodge structure on
∧gH1(A,C). In this way

we obtain a motivic realization of the canonical CY Hodge representation over D

by mapping A ∈ Ag to the Hodge structure on
∧gH1(A,C) as in §2.1.1. (This is

an example of a “motivic” variation of Hodge structure: it is constructed from a

geometric family and certain linear/tensor operations.)

2.3.3. Calabi–Yau varieties. One may obtain a family f : X → B of n-folds by

resolution of double covers of Pn branched over 2n+2 hyperplanes in general position.

The resulting period map Φf : B → Γ\D has the same Hodge numbers as the CY

Hodge representation of §2.2(c). So it is natural to ask if this family is a geometric

realization of the corresponding embedding ιρ : D ↪→ D?

When n ≤ 2, the answer is “yes”. For n = 1 this is the classical case of

elliptic curves branched over fours points in P1. In the case n = 2 this was proved by

Matsumoto, Sasaki and Yoshida [MSY92].

However, when n ≥ 3 the family of Calabi–Yau’s does not realize the canonical

CY Hodge representation over D = U(n, n)/(U(n) × U(n)). This was proved by

Gerkmann, Sheng, van Straten and Zuo [GSvSZ13] in the n = 3 case, and their

argument was extended to n ≥ 3 by Sheng, Xu and Zuo [SXZ15]. The crux of the

argument is to show that the second characteristic forms do not agree.3

2.4. Characteristic forms. The compact dual is a flag manifold Ď = FlagQ(f , VC)

and so admits a tautological filtration

Fn ⊂ Fn−1 ⊂ · · · ⊂ F1 ⊂ F0

3A similar argument was used by Sasaki, Yamaguchi and Yoshida [SYY97] to disprove a related

conjecture on the projective solution of the system of hypergeometric equations associated with the

hyperplane configurations.
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of the trivial bundle F0 = Ď × VC over Ď. Given a holomorphic map ψ : M → Ď,4

let

Fpψ = ψ∗Fp

denote the pull-back to M . The map ψ satisfies the IPR (§1.8) if and only if

dFpψ ⊂ F
p−1
ψ ⊗ Ω1

M .

In this case we obtain a vector bundle map

γψ : TM → Hom(Fnψ ,Fn−1
ψ /Fnψ) ;

sending ξ ∈ TxM to the linear map γψ,x(ξ) ∈ Hom(Fnψ,x,Fn−1
ψ,x /Fnψ,x) defined as fol-

lows. Fix a locally defined holomorphic vector field X on M extending ξ = Xx. Given

any v0 ∈ Fnψ,x, let v be a local section of Fnψ defined in a neighborhood of x and with

v(x) = v0. Then

γψ(ξ)(v0) := X(v)|x mod Fnψ,x

yields a well-defined map γψ(ξ) ∈ Hom(Fnψ , Fn−1
ψ /Fnψ). More generally there is a

vector bundle map

γkψ : SymkTM → Hom(Fnψ , Fn−kψ /Fn−k+1
ψ )

defined as follows. Given ξ1, . . . , ξk ∈ TxM , let X1, . . . , Xk be locally defined holo-

morphic vector fields extending the ξj = Xj,x. Given v0 and v as above, define

(2.1) γkψ(ξ1, . . . , ξk)(v0) := X1 · · ·Xk(v)|x mod Fn−k+1
ψ,x .

It is straightforward to confirm that γkψ is well-defined. This bundle map is the k-th

characteristic form of ψ : M → Ď. Let Ck
ψ ⊂ SymkT ∗M denote the image of the

dual map. In a mild abuse of terminology we will also call Ck
ψ the k–th characteristic

forms of ψ : M → Ď.

Recall the embedding ιρ : Ď ↪→ Ď of §1.6.1.

4We are interested in the case that ψ is either a local lift of the period map Φf : B → Γ\D

associated with a geometric family, as in §1.8.5, or is the embedding ιρ : D ↪→ D of §1.6.1.
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Theorem 2.2. The characteristic forms of ψ and ιρ are isomorphic if and only if

there exists g ∈ Aut(VC, Q) so that g ◦ ψ(M) is an open subset of ιρ(Ď).

See [Rob18] for a precise statement of the theorem.

The upshot is that if we have a period map Φf : B → Γ\D, then it will be a

geometric realization of D ↪→ D if and only if the characteristic forms of a local lift

of Φf are isomorphic to those of ιρ.

3. Characteristic cohomology of the infinitesimal period relation

Throughout this section we assume T iprĎ = T hĎ (§1.8.3).

A complex submanifold M ⊂ Ď is horizontal if it satisfies the IPR (§1.8);

that is, TxM ⊂ T h
x Ď. More generally, we say that an irreducible subvariety X ⊂ Ď is

horizontal if its smooth locus is. The image of a period map is horizontal by definition

(§1.8.4). Associated to the IPR is a “characteristic cohomology”, which we may think

of as being “universal” in the sense that it is the cohomology that induces ordinary

cohomology on all horizontal submanifolds M ⊂ Ď by virtue of their being solutions

of the system of differential equations.

The characteristic cohomology is relatively well understood over the compact

dual (§3.2), but several interesting questions are open over the Hodge domain (§3.3).

3.1. Definition. Like de Rham cohomology, the characteristic cohomology is defined

in terms of 1-forms. Let TRĎ denote the real tangent bundle, and let

T h
RĎ = (T hĎ ⊕ T hĎ) ∩ TRĎ

denote the real horizontal subbundle. Let Ann(T h
RĎ) ⊂ T ∗RĎ denote the annihilator

of the horizontal subbundle. Let A denote the ring of smooth, complex-valued dif-

ferential forms, and let I ⊂ A be the differential ideal generated by the sections of

Ann(T h
RĎ). That is, I is generated by smooth 1-forms α ∈ A1 that vanish on T h

RĎ.
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3.1.1. Exercise. Show that M is horizontal if and only if M is an integral submanifold

of I; that is, ϑ|M = 0 for all ϑ ∈ I.

In a mild abuse of notation, we will also call I the IPR.

By construction I is differentially closed dI ⊂ I. So that de Rham complex (A, d)

induces a quotient complex (A/I, d). The characteristic cohomology of the IPR is

H•I = H•(A/I, d) .

3.1.2. Exercise. Suppose that M ⊂ Ď is horizontal, and show that the characteristic

cohomology pulls back to the ordinary cohomology. That is, there is a natural map

H•I(Ď)→ H•(M,C).

3.2. Characteristic cohomology and Schubert classes. The compact dual Ď

decomposes as a disjoint union ∪w Cw of affine, quasi-projective varieties. Each of the

Schubert cells Cw is the orbit of a fixed Borel subgroup B ⊂ Ǧ. Their Zariski closures

Xw = Cw are Schubert varieties, and their homology classes xw generate H•(Ď,Z).

So it is natural to ask: which Schubert varieties are horizontal?

It turns out that there is a simple representation theoretic characterization of

the horizontal Schubert varieties [Rob14]. Briefly, to every xw there is associated a

collection of positive roots ∆(w) with the property that |∆(w)| = dimCXw. This

implies that dimCXw ≤
∑

α∈∆(w) α(T), cf. §1.7.10 and §1.7.11. Equality holds if and

only if Xw is horizontal.

And one may show that the a homology class y ∈ H•(Ď,Z) may be represented

by a horizontal subvariety only if it is a linear combination of horizontal Schubert

classes. Reciprocally, the characteristic cohomology is spanned by the classes dual to

the Schubert classes. More precisely, let xw ∈ H•(Ď,Z) the cohomology classes dual

to the Schubert classes xw. Then the kernel of the natural projectionH•(Ď)→ H•I(Ď)

is spanned by the {xw |Xw is not horizontal}. Together these results imply that there

is a nondegenerate Poincaré pairing between the characteristic cohomology and the
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I–homology H•,I = span{[Y ] ∈ H•(Ď) | Y is horizontal}. For details and precise

statements see [Rob16, §4].

3.3. Characteristic cohomology over Hodge domains. The characteristic co-

homology over D is less well-understood, and there are a number of interesting open

questions. What we can say is the following. The cohomology H•I(D) may be realized

as the cohomology of the total complex of a double complex of G–invariant differential

operators on homogeneous vector bundles [Rob16, §5]. Using this complex, one may

show that there is an integer ν = ν(D) > 0 so that: Hk
I (D) ' Hk(D); in particular,

Hk
I (D) is finite dimensional when k < ν, and zero when k < ν is odd. One may also

show that the characteristic cohomology in degree k < ν satisfies a local Poincarè

Lemma [Rob16, §6].

The integer is defined as follows. Let g− = ⊕p>0 g
−p. The Lie algebra cohomol-

ogy H`(g−,C) decomposes into a direct sum of T–eigenspaces with integer eigenvalues

`, `+ 1, . . . ,m(`). The integer ν is the largest value of ` for which m(`) = `.

3.3.1. Example. In the case that D is Hermitian the IPR is trivial (§1.8.6); equiv-

alently, I = 0. In this case D is bounded domain in Cd, where d = dimCD and

ν = d.

3.3.2. Example. The simplest nontrivial case is that T hD ⊂ TD has corank one.

When Ǧ is simple, these compact duals are adjoint varieties. Examples include the

flag variety Flag(1, k,Ck+1) of lines in hyperplanes; and the Grassmannian GrQ(2, VC)

of 2-planes that are isotropic with respect to a non-degenerate symmetric bilinear

form. In this case dimCĎ = 2ν + 1.

3.3.3. Open question: computation of cohomology. What can be said about H•I(D)

as a G–module?
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3.3.4. Open question: invariant cohomology. Since the period map takes value in

Γ\D, it is natural to ask: what can be said about the Γ–invariant cohomology

H•I(D)Γ? (The G–invariant cohomology H•I(D)G is computed in [Rob14].)

3.3.5. Open question: mixed Hodge structure on the characteristic cohomology? Con-

sider a period map Φ : B → Γ\D as in §1.8.4. In many cases of interest the complex

manifold B is a smooth quasi-projective variety. We may assume without loss of gen-

erality that Φ is proper [Gri70, p. 158]. Then the proper mapping theorem implies

that the image ℘ = Φ(B) is a complex analytic space.5 It is expected that mixed

Hodge structures (§3.3.6) on ℘ arise universally, in the sense that they are induced

from objects on Γ\D. Is there a mixed Hodge structure on H•I(D)Γ?

3.3.6. Mixed Hodge structures. Because, with the exception of §3.3.5, these lectures

concern (pure) Hodge structures, rather than mixed Hodge structures, I will be very

brief here.

A mixed Hodge structure on V is given by two filtrations: a decreasing filtration

F • of VC, as in (1.2), and a rational increasing filtration W0 ⊂ W1 ⊂ · · · ⊂ W2n = V

with the property that F • induces a weight ` Hodge structure on GrW` = W`/W`−1.

Mixed Hodge structures arise in (at least) three contexts. Deligne [Del74] has

shown that the cohomology Hn(X,Q) of an algebraic variety X admits a (functorial)

mixed Hodge structure. Here X need not be smooth or closed. However, when X is

smooth and closed, Delignes MHS is the (usual) Hodge structure of §1.1.7. For an

expository introduction to mixed Hodge structures on algebraic varieties see [Dur83];

for a thorough treatment see [PS08].

5The image ℘ = Φ(B) ⊂ Γ\D will be quasi-projective when Γ is arithmetic [BBT18]. This

is striking because in “most” cases, the complex manifold Γ\D admits no compatible algebraic

structure [GRT14]. (If Γ is not arithmetic, one may take an arithmetic group Γ′ ⊃ Γ and compose

the period map with the surjection Γ\D � Γ′\D. Then ℘ will be a finite cover of the quasi-projective

image ℘′.)
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Asymptotically the pure Hodge structures parameterized by a period map de-

generate to mixed Hodge structures. (There the weight filtration W is the Jacobson–

Morosov filtration of a nilpotent operator known as a logarithm of (local) mon-

odromy.) For an expository account, and further references, see [Rob17].

The Hard Lefschetz Theorem and Hodge–Riemann bilinear relations of “polar-

ized mixed Hodge structures” have found applications in combinatorics. See [Bak18]

for an expository overview of recent applications; and [Rob21] for an introduction to

the linear structures underlying the Hard Lefschetz Theorem and Hodge–Riemann

bilinear relations.
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