Composition of Functions

1. (a) Suppose \(f(x) = x^2 + 1 \) and \(g(x) = 2x - 1 \). Write simplified expressions for \(f(g(x)) \) and \(g(f(x)) \).

(b) Suppose \(f(x) = \frac{1}{x} \) and \(g(x) = \frac{1}{x^2 + 1} \). Write simplified expressions for \(f(g(x)) \) and \(g(f(x)) \).

(c) Suppose \(f(x) = \frac{x}{x^2} \) and \(g(x) = \sqrt{x^2 + x} \). Write simplified expressions for \(f(g(x)) \) and \(g(f(x)) \).

(d) Suppose \(f(x) = \frac{x + 1}{x - 1} \). Write a simplified expression for \(f(f(x)) \).

(e) Suppose \(f(x) = \sqrt{x + 1} \) and \(g(f(x)) = \frac{1}{3x + 1} \). Find an expression for \(g(x) \).

(f) Suppose \(f(x) = x + 1 \) and \(g(f(x)) = \frac{1}{x^2 - 1} \). Find an expression for \(g(x) \).

2. Let \(f(x) = x^2 - 4 \) and let \(g(x) = \sqrt{x} \). Find the domain of the function \(h(x) = g(f(x)) \).

3. The table below contains certain values of the functions \(h \) and \(k \). Fill in the table with values for the function \(g(x) = h(k(x)) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k(x))</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>(h(x))</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>(g(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. (a) Let \(T(t) \) be the average daily temperature (°F) in Durham, North Carolina, at time \(t \) (days from January 1). Let \(E(x) \) be the amount of electricity used (kilowatts) by the residents of Durham when the average daily temperature is \(x \) degrees. Describe the meaning of the function \(G(t) = E(T(t)) \) in practical terms. Include units in your answer.

(b) Let \(v(t) \) be the speed (meters per second) of a marathon runner \(t \) minutes from the start of the race. Let \(O(x) \) be the amount of oxygen (liters/min) required by this runner to maintain a speed of \(x \) meters per second. Explain the meaning of the function \(f(t) = O(v(t)) \) in practical terms. Include units in your answer.

(c) Let \(L(e) \) be the life expectancy (years) of a person with \(e \) years of education. Let \(E(i) \) be the average number of years of education obtained by people whose parents have an average annual income of \(i \) dollars. Describe the function \(f(i) = L(E(i)) \) in practical terms. Include units in your answer.
5. The graphs of the functions f and g are given below. Sketch the graphs of $f(g(x))$ and $g(f(x))$.

![Graphs of functions f and g]