Optimization I

1. You want to make a rectangular box with square base and open top that will have a volume of 270 cubic inches. The material for the bottom of the box costs 6 cents per square inch and the material for the sides costs 3 cents per square inch. Find the dimensions of the box that will minimize your total cost.

2. Evilcorp, the company you work for, wants to distribute millions of copies of a page of their advertising propaganda. The page is to contain 24 square inches of printed material, with margins of 1.5 inches at the top and bottom of the page, and 1 inch at the sides. Since paper is expensive, Evilcorp wants to minimize the amount of paper needed to print such a page. Find the dimensions (length and width) of the page that will minimize the total area.

3. For her birthday, your mother wants a painted jewelry box with a square base and a volume of 96 cubic inches. If the top of the box costs 6 cents per square inch to paint, and painting the sides and base of the box costs 3 cents per square inch, what dimensions of the box will minimize the total cost of painting?

4. Your rectangular box project (from problem 1) was so successful that you want to make a series of boxes with the same construction, but with varying volumes. Determine the dimensions that minimize the total cost in terms of V, the volume of the box in cubic inches.

5. Evilcorp tells you that the margin sizes they told you before are wrong (see problem 2), but that they haven’t figured out the new ones yet. Find the overall dimensions of the page that minimize the total area of paper, in terms of T and S, the top/bottom and left/right margin lengths.

6. Waste Management, Inc. makes small, heavy-duty cans (which are cylindrical with closed top and bottom, of course) out of two kinds of material. The material used to make the top and bottom of the can costs 6 cents per square inch, and the material used to make the curved surface of the can costs 3 cents per square inch. The company is willing to pay $1.44 for the material used in each can, but wants the can to hold as much waste as possible. If r is the radius and h is the height of the can, find the value of r that will maximize the amount of waste the can will be able to hold.

7. A rectangular box with square base and open top is constructed from two types of material. The material used to make the bottom of the box costs 10 cents per square inch, and the material used to make the rest of the box costs 6 cents per square inch. The total cost of the box is $3.00. If s is one side of the base of the box and h is the height, find the value of s that maximizes the volume V.
8. A wire 6 meters long is cut into twelve pieces, eight of one length and four of another. These pieces are welded together at right angles to form the frame of a box with a square base.

(a) Where should the wire be cut to maximize the volume of the box?
(b) Where should the cuts be made to maximize the total surface area of the box?

9. Being short on cash but big on land, you divide up the land behind your house into 200 plots and rent the space to local gardeners. When you charge $250 per season (per plot), all of your plots get rented. For every $10 increase in rent, 5 of your plots go unrented (gardeners don’t have that much money either). What rent should you charge to obtain the most amount of money in a season?

10. Waste Management, Inc. (see problem 6) makes another kind of can, one with a closed bottom but an open top. The material used to make the bottom of the can costs 5 cents per square inch, and the material used to make the curved surface of the can costs 3 cents per square inch. If the total cost of the can is to be no more than $7.35, what dimensions will give the can the greatest volume?

11. The Transcam company has just landed a big contract for steel wool. Because steel wool is relatively light, the shipping department wants to pack as much as possible into each box sent out to cut down on handling charges. The trucking company allows boxes to have a combined length and girth (the distance measured around the box perpendicular to its length) of no more than 108 inches. If the shipping department uses boxes with square ends, what box dimensions will maximize the volume the box can hold?

12. Suppose that Transcam (see problem 11) decides to ship its steel wool in cylindrical containers instead of boxes.

(a) What height and radius will maximize the volume of the cylindrical containers?
(b) Which is the better choice for Transcam, the box or the cylindrical container?
1. $\sqrt[3]{270}$ in $\times \sqrt[3]{270}$ in $\times \sqrt[3]{270}$ in.
2. 9 in \times 6 in.
3. 4 in \times 4 in \times 6 in.
4. $\sqrt[3]{V}$ in $\times \sqrt[3]{V}$ in $\times \sqrt[3]{V}$ in.
5. $\sqrt[5]{24T}$ in $\times \sqrt[5]{24S}$ in.
6. $r = \frac{2}{\sqrt{\pi}}$ in, $h = \frac{8}{\sqrt{\pi}}$ in.
7. $\sqrt{10}$ in $\times \sqrt{10}$ in $\times \frac{25}{3\sqrt{10}}$ in.
8. (a) All the pieces should be 0.5 meters long.
 (b) All the pieces should be 0.5 meters long.
9. 325.
10. $r = \frac{7}{\sqrt{\pi}}$ in, $h = \frac{35}{3\sqrt{\pi}}$ in.
11. 18 in \times 18 in \times 36 in.
12. (a) $r = \frac{36}{\pi}$ in, $h = 36$ in.
 (b) The volume of the cylinder is 14,851 in3. The volume of the rectangular box is 11,664 in3, so the cylinder is better.