Recall that \(\ln x \) means \(\log_e x \). Thus \((y = \ln x) \iff (x = e^y)\).
Also, \(\log x \) means \(\log_{10} x \). Thus \((y = \log x) \iff (x = 10^y)\).

1. Compute each of the following numbers without a calculator:
 (a) \(\ln 1 = \)
 (b) \(\ln e^{6.7} = \)
 (c) \(\log 10 = \)
 (d) \(\log 0.1 = \)
 (e) \(\log 1000 = \) (What log rule tells you this is triple log 10?)
 (f) \(\ln(-3) = \)

2. Simplify the following expressions without using a calculator.
 (a) \(\ln \left(\frac{1}{e^2} \right) \)
 (b) \(e^{2\ln 4} \)
 (c) \(\ln \left(\frac{\sqrt{e}}{e^3} \right) \)
 (d) \(e^{2\ln\sqrt{2}} = \)

3. Express the exponential function \(y = 3^t \) in the form \(y = e^{kt} \) for some \(k \).

4. Solve the equation \(d = 10 \ln \left(\frac{I}{I_0} \right) \) for \(I \).
1. Compute each of the following numbers without a calculator:
 (a) 0
 (b) 6.7
 (c) 1
 (d) −1
 (e) 3
 (f) Undefined.

2. Simplify the following expressions without using a calculator.
 (a) −2
 (b) 16
 (c) −2.5
 (d) 2

3. \(k = \ln 3 \)

4. \(I = I_0 e^{\frac{d}{m}} \)