
105L Labs: Logarithm Plots

Logarithm Plots

Purpose In this lab you will learn how to determine if data points can be modeled by either a
power function y = ctk or by an exponential function y = cekt and you will learn how to choose
the constants c and k.

Preview The eighteenth and nineteenth century United States census data in the table below
can be well-represented by the function P (t) = 4.19e0.027t, where t is the number of years since
1790. The plot shows the function P (t) superimposed on a plot of the data from the table.

Year Population (millions)

1790 3.9

1800 5.3

1810 7.2

1820 9.6

1830 12.9

1840 17.1

1850 23.2

1860 31.4

1870 39.8

1880 50.2

1890 62.9
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You will learn how to test such data to determine if an exponential or power function fits the data
well and you will see how to determine the constants in the function. The function is called a
‘model’ for the data, and the constants are called the model’s ‘parameters’.

Overview We begin by creating some “data” points using an exponential function, but we will
pretend our data were gathered from an experiment. This will allow us to discover the original
functional relationship between the variables. Once we have the technique and concept in hand,
we can apply this knowledge to real data.

Part I: Semilog Plots—Beginning of the Experiment

Open the spreadsheet for this lab, make a copy, and rename it with your group names.

1. We will use the function y(t) = 3 · 2t to create some data points. In Column B of the first
tab of the spreadsheet for this lab, compute values for this function at the values of t given
in Column A.
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2. Insert a chart for y vs. t into your spreadsheet.

3. In Column C, insert values for ln(y).

4. Plot ln(y) vs. t1. What do you observe about this new graph?

An Explanation

First, a reminder of properties of logs:

Properties of Logs

ln(AB) = lnA+ lnB ln
(
A
B

)
= lnA− lnB ln(Ap) = p ln(A)

The type of graph that you just made is called a “semilog plot” because you used the logarithms
of the second coordinates in your plot rather than the original y values. (The prefix “semi” refers
to the fact that we did not take the logarithms of the first coordinate.)

In this case we created our own “data” from a known function so we could use that function to
explain what happened in the second graph.

The equation that expresses the relationship between y and t is

y = 3 · 2t.

Take the (natural) logarithm of both sides of the equation to get the new equation

ln y = ln(3 · 2t).

Applying some properties of logarithms, we see that

ln y = ln 3 + t · ln 2.

The last equation tells us that ln y is a linear function of t; i.e., a plot of (t, ln y) must be linear!

Looking for Exponential Models

The explanation above gives us the information we need to test data points for an exponential fit.
Suppose we have some data points (t, y) and suppose also that the semilog plot of these data points
is linear. This linearity of the semilog plot implies that

ln y = mt+ b for some constants m and b.

Making both sides of the equation an exponent of e, we get the equation

eln y = emt+b.
1To select non-contiguous columns, hold down the ctrl key (or the command key on a Mac).
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Simplifying this equation gives us

y = ebemt = cemt

where the two-symbol constant eb is replaced by the single symbol constant c.

We have shown that if the semilog plot is linear, then y = cemt for some constants c and m!

Part II: Semilog Plots—Completion of the Experiment

We pretend here that we do not know the precise relationship between t and y for the “data” points
in Part I. We have only the numbers in your spreadsheet. We deduce from the semilog plot that
a function of the form y = Cemt, for some constants m and C, should fit the data. We must now
find the constants m and C.

5. Using the semilog plot, fill in the following blank. You can use a linear trendline added to
your graph:

ln(y) = .

6. Solve your equation for y and simplify it to to find an equation of the form y = Cemt.

7. Fill in the blanks. If we can fit a linear function to a semilog plot, ln(y) = mt + b, then we
can recover an exponential, y = Cemt, where:

� m is the of the semilog plot;

� If b is the of the semilog plot, then C = .

8. We have outlined the procedure for testing data to determine if it can be fitted with an
exponential function and we have seen how to find such a function. If you’ve followed along
with the computations, then you probably found a function similar to

y = 3e0.69t = 3(1.9937)t.

But you know in this case that we used the function y = 3 · 2t to create the data which we
then used to “rediscover” the function. Explain why the function we fitted to our data is
slightly different from the original one.

Part III: US Population Data

9. Refer to the US population data shown in the preview. It is reproduced in the second tab of
your spreadsheet. Check to see that the semilog plot is approximately linear and construct
your own exponential function to fit the data.
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Part IV: Log-Log Plots—Power Function Fits

Another type of function that we often use to model data is the family of power functions y = ctk.
It is as easy to test for this type of fit as it was for the exponential fit. Indeed, we use the same
method to discover what kind of plot to use: take logarithms of the equation for a power function,
and use log properties to simplify the expression.

Assume that y = ctk. By taking logarithms of both sides, it follows that

ln y = ln(ctk)

= ln(c) + ln(tk)

= ln(c) + k ln(t).

Because c and k are constants, this equation implies ln(y) is a linear function of ln(t). The impli-
cation here is that if y = ctk, then a plot of the points (ln(t), ln(y)) will be a line and the slope of
this line is the degree of the power function. Plots of the points (ln(t), ln(y)) are called “log-log
plots.”

We can summarize these results as follows (fill in the blank):

� If the log-log plot is linear, then y = ctk for some constants c and k.

� The of the log-log plot is the exponent k.

10. The following data is found in the third tab of your spreadsheet. By adding data for the
natural log of columns A and B in columns C and D and plotting, show that the log-log plot
of the data is linear. Find a function that fits the data well and superimpose the function
over a scatter plot of the data. Make a semilog plot of the same data and compare that plot
to the log-log plot. Explain why the semilog plot has the shape that it does.

t .09 .24 .39 .54 .69 .84 .99

y 1.64 2.09 2.37 2.57 2.73 2.87 2.99

Part V: Concluding Cautions and Comments

In an earlier lab you learned how to find a linear function to fit data which appears to be approxi-
mately linear. In this lab you learned how to fit exponential and power functions to data. But you
should note that the only type of function we can identify simply by looking at its graph is a linear
function. Indeed, we found the exponential and power functions by recognizing a line on a semilog
or log-log plot.

11. (a) Test the data in the following tables (found in the fourth tab of your spreadsheet) to
determine if an exponential function could provide a good fit.

(b) If an exponential function is appropriate, then find it and make a graph of the exponential
function superimposed on a scatter plot of the data.
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(c) If using an exponential function is not appropriate, then explain carefully what conclu-
sions you can draw from the semilog plot. For example, if an exponential is not appropi-
rate, comment on whether the function increases (or decreases) faster (or slower) than
an exponential.

(d) If using an exponential function is not appropriate, repeat the three questions above
using a log-log plot to analyze whether a power functions fits.

t 1 2 3 4 5 6 7

y 3.65 3.18 2.77 2.40 2.09 1.82 1.58

t 1 2 3 4 5 6 7 8 9

y .111 .125 .143 .167 .200 .250 .333 .500 1.00

In general, many functions are not linear, exponential, or power. The world of functions covers a
far more general set of relationships than these three. Nonetheless, these relationships (especially
linear and exponential ones) arise so often in real world data that it is useful to understand them
specifically.
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Project: NC COVID Hospitalization Data - A Complex Log Model

The Data

This project will deal with COVID-19 hospitalization data over a number of weeks in 2020. You
will be given a seven day running average of the number of people hospitalized with COVID-19 in
North Carolina. That is, each data point will be the average number of people hospitalized with
COVID-19 over the previous seven days. You will create various plots of the data, and use ideas
from the lab to gain insight into the growth of COVID-19 in NC. You will then research factors
that may explain certain trends in the data, and try to gain insight into the decisions policymakers
made as the disease progressed. The data can be found in the spreadsheet associated to this lab,
in the NC COVID-19 Data tab.

Mathematical Preliminaries: Piecewise linear functions

Prior to beginning work with the data, we will need to review piecewise linear functions. The
answers to this section are not part of the report. However, you should complete this section prior
to beginning analysis of the data.

A function is piecewise linear if it can be written as piecewise function, where each piece is linear.
For example:

f(x) =

{
x+ 4 when 0 < x < 4

2x+ 1 when 4 ≤ x < 8
g(x) =

{
x+ 4 when 0 < x < 4

x2 when 4 ≤ x < 8

Piecewise Linear Not piecewise linear

1. Which of the following graphs represent piecewise linear functions on the domain 0 ≤ x ≤ 4?
For each function that is piecewise linear, compute a formula for it.
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2. Any linear function can be considered piecewise linear (with only one piece). However, the
reverse statement is not true: piecewise linear functions are not necessarily linear. Briefly
explain why this is the case, drawing one or more examples to illustrate your argument. Your
explanation should use the word ‘slope’.

Looking at the Data

In the spreadsheet provided, you will see a list of dates starting April 14 2020, and ending June 25
2020. The second column is the seven day average number of people hospitalized in North Carolina
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with COVID-19 2. As you may know, the early spread of a disease is often exponential.

3. If the spread of the disease over the given time period is indeed exponential, which type of
plot do you expect to be linear?

4. Create the plot from your previous answer for the given data (be sure to title your plot
and label the axes). Make the minimum of the y-axis 5.5. Was the growth in COVID-19
hospitalizations over this period exponential? Explain your answer.

Breaking Down the Data

5. Looking at your plot again, is it reasonable to say that it is is piecewise linear? Explain your
answer. At a glance, how many pieces would you divide the plot into?

6. We will focus on the three periods of growth of hospitalization. Find the dates on which
each of them starts and ends. You should decide what constitutues a beginning and end of a
growth period. Be sure to write down your criteria as well as your results.

7. Create three new plots, one for each of the three growth periods of the disease. Fit each with
a linear trendline and consider its equation to three significant figures (if you do this right,
that turns out to be four decimal places).

8. A linear log plot corresponds an equation ln y = mx + c. Noting that in an exponential
function y = Cekx, the constant k is the per capita growth rate of the function (for example,
y = e0.02x has a per capita growth rate of 0.02 per unit of time, or 2%), find the per capita
growth rates of hospitalizations during each of the three periods of growth. Express your
answers in percentages.

9. To get a handle on what the per capita growth rates mean, compute the doubling time (in
days) of hospitalizations during each of the three growth periods.

Lagging Indicators

It is often said that hospitalizations are a lagging indicator of disease infection. Since most people
do not exhibit symptoms of COVID-19 for a number of days after infection, and do not exhibit
severe symptoms a few days subsequent to initial ones, they are highly unlikely to be hospitalized
soon after infection. Therefore, the number of hospitalizations on a given day (or an average of
them), does not indicate currently occuring infections on that day. The notion of lagging indicator
originates from economics, but is very useful in epidemiology as well.

10. Do some research on the concept of lagging indicators (and their companion, leading indica-
tors), both in economic and epidemidological terms, then answer the following questions:

(a) Why might a lagging indicator not be useful in predicting current or future trends?

(b) What might be a leading indicator of COVID-19 infection?

2Source: https://covid19.ncdhhs.gov/dashboard/about-data
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(c) Explain why lagging indicators are relatively easy to measure, but best at evaluating
past policy decisions, rather than directly indicating at future ones. Likewise, explain
why leading indicators are difficult to measure, but useful in making policy decisions
about the near future.

11. In the case of COVID-19, hospitalizations lag infections by around 10 days. Looking back at
your division into periods of growth of hospitalizations in NC, find when they indicate periods
of growth of infection began and ended.

Your Report

You will use the data analysis above and research into NC COVID-19 policy (as well as other factors
affecting COVID-19 growth) to attempt to explain the periods of growth you found. You should
look into the details of NC’s shutdown policy, and evaluate the decisions made. For example:

� Does the data indicate that the shutdown was effective was in slowing infection?

� Does the data indicate that the end of the strictest phase of shutdown led to increased
infection?

� What event(s) might have led to the beginning of each of the growth periods? (Note: the
first growth period is simply the early infections in NC.)

You should keep in mind the concept of a lagging indicator, and that hospitalizations lag infection
by around ten days.

Your report should present your data analysis regarding the three periods of growth, and an eval-
uation of policy choices made in the light of it. Be sure to explain why your answers are best seen
in the light of evaluating past policy and events, and explain what measurements might be more
useful in setting future policy.

Your report will be assessed on the following criteria:

� Format: adheres to ‘Guidelines for Technical Writing in Math’, including legibility and
structure, figure labels and titles, citations, etc.

� Clarity: adheres to ‘Guidelines for Technical Writing in Math’, including grammar, appro-
priate attention to detail, awareness of audience, etc.

� Data Analysis: includes complete and correct mathematics, clear description of construction
of the model and criteria applied.

� Policy Evaluation: clear and well-supported discussion of the details of NC’s shutdown
policy and recommendations for the future based on your data analysis, including answering
all questions posed in Report instructions and demonstrating understanding of your model’s
parameters, limitations, and predictive power.
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