Differentiating Power Functions and Polynomials

Purpose

In this lab we will learn how to differentiate functions like $x^{3}+6 x^{2}+2 x+1$, called polynomials.

Part I: Review

Let's review some basic facts about derivatives. Earlier this semester, we computed the derivatives of constant functions and linear functions:

1. $\frac{d}{d x}(c)=$ \qquad $\frac{d}{d x}(m x+b)=$ \qquad
2. You may also have shown previously that $\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}, \frac{d}{d x}(\sqrt{x})=\frac{1}{2 \sqrt{x}}$ and $\frac{d}{d x}\left(\frac{1}{x^{2}}\right)=-\frac{2}{x^{3}}$. Pick one of these and write out the full calculation involving limits.
3. We know that if $\frac{d}{d x}(f(x))$, we can easily find $\frac{d}{d x}(c f(x))$ because:

$$
\begin{aligned}
\frac{d}{d x}(c f(x)) & =\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c(f(x+h)-f(x))}{h} \\
& =c \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =
\end{aligned}
$$

This is called the Constant Multiple Rule.
4. Similarly, if we know $\frac{d}{d x}(f(x))$ and $\frac{d}{d x}(g(x))$, we can easily find $\frac{d}{d x}(f(x)+g(x))$ because (fill in the calculation):

$$
\frac{d}{d x}(f(x)+g(x))=\lim _{h \rightarrow 0}
$$

This is called the Sum Rule.

Examples

5. Compute the following derivatives:
(a) $\frac{d}{d x}(\pi x)$
(b) $\frac{d}{d x}\left(\left(r^{2}+1\right) \frac{1}{x}\right)$
(c) $\frac{d}{d w}\left(3^{2 y-x}\right)$ (Hint: What is the independent variable?)

Part II: Differentiating Monomials - The Power Rule

A function of the form $f(x)=a x^{r}$ is called a monomial. In this part of the lab, we will learn how to find its derivative.
6. Multiply out each of the following:
(a) $(z-x)(z+x)$
(b) $(z-x)\left(z^{2}+z x+x^{2}\right)$
(c) $(z-x)\left(z^{3}+z^{2} x+z x^{2}+x^{3}\right)$
(d) $(z-x)\left(z^{4}+z^{3} x+z^{2} x^{2}+z x^{3}+x^{4}\right)$
7. Write out each of the following a product of $z-x$ and another polynomial:
(a) $z^{2}-x^{2}=(z-x)$ \qquad
(b) $z^{3}-x^{3}=(z-x)$ \qquad
(c) $z^{4}-x^{4}=(z-x)$ \qquad
(d) $z^{5}-x^{5}=(z-x)$ \qquad
(e) $z^{n}-x^{n}=(z-x)$ \qquad
8. In the factorization of $z^{3}-x^{3}$, how many terms are in the second factor? In general, in the factorization of $z^{n}-x^{n}$, how many terms are in the second factor?
9. By letting $z=x+h$ and carefully thinking about what z approaches as h approaches 0 , show that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} .
$$

10. Now use your factorization of $z^{n}-x^{n}$ above to find $\frac{d}{d x}\left(x^{n}\right)=\lim _{z \rightarrow x} \frac{z^{n}-x^{n}}{z-x}$.
11. Note that we have previously shown that $\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}, \frac{d}{d x}(\sqrt{x})=\frac{1}{2 \sqrt{x}}$ and $\frac{d}{d x}\left(\frac{1}{x^{2}}\right)=-\frac{2}{x^{3}}$. Rewrite each of these differentiation formulas using exponential notation (the first is done for you as an example):
(a) $\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}} \Leftrightarrow \frac{d}{d x}\left(x^{-1}\right)=-1 \cdot x^{-2}$
(b) $\frac{d}{d x}(\sqrt{x})=\frac{1}{2 \sqrt{x}}$
(c) $\frac{d}{d x}\left(\frac{1}{x^{2}}\right)=-\frac{2}{x^{3}}$

Notice that in each of these cases, we have that $\frac{d}{d x}\left(x^{r}\right)=r x^{r-1}$. This is called the Power Rule.
In Question 10 above, we showed that we have $\frac{d}{d x}\left(x^{r}\right)=r x^{r-1}$ whenever r is \qquad . Later in the semester we will show that this is true for any value of r, including fractions and negative numbers.

Differentiation Rules:

1. Power Rule: $\frac{d}{d x}\left(x^{r}\right)=r x^{r-1}$
2. Sum Rule: $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))$
3. Constant Multiple Rule: $\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))$

Part III: Differentiating Polynomials and Applications

12. Use these rules (and only these rules, no others!) to find the derivatives of the following functions:
(a) $y=-3 x^{4}-4 x^{3}-6 x+2$
(b) $y=3 t^{5}-5 \sqrt{t}+\frac{7}{t}$
(c) $y=z^{2}+\frac{1}{2 z}$
(d) $y=\frac{x^{2}+1}{x}$
(e) $y=(x+1)^{2}$
13. Find the equation of the tangent line to the graph of $y=2 x^{3}-2 x^{2}+1$ at $(1,1)$.
14. Suppose that $f(x)=x^{10}$. What is the smallest number n such that $f^{(n)}(x)=0$? (Recall that $f^{(n)}$ means the $n^{\text {th }}$ derivative.)
15. Find values of a and b such that the line $3 x+y=a$ is tangent to the graph of $f(x)=b x^{2}$ at $x=1$.
16. If n is even then the derivative of x^{n} is (choose one):
(a) an even function
(b) an odd function
(c) neither even nor odd
(d) not enough information

In a few complete sentences, and using a typical graph of a function of the form $f(x)=x^{n}$ for even n, explain why this should be true.
17. If n is odd then the derivative of x^{n} is (choose one):
(a) an even function
(b) an odd function
(c) neither even nor odd
(d) not enough information

In a few complete sentences, and using a typical graph of a function of the form $f(x)=x^{n}$ for odd n, explain why this should be true.
18. Consider the function $y=x^{5}+2 x$. What is the smallest slope that a line tangent to this curve can have?

Report

For the report, each group should hand in answers to the following questions: $7,10,13,15,17$.

