
105L Labs: Implicit Differentiation

Implicit Differentiation

Purpose

In this lab, we will explore curves that are defined implicitly. That is, curves that are not defined
as y = f(x), but rather as a relationship between x and y.

Part I: A Curve We Know

Consider the equation x2 + y2 = 9.

1. (a) What shape does this equation describe? Why?

(b) Why can we not solve for y in this case? That is, why can’t we just write this in the
form y = f(x)?

(c) Plot the curve described by this equation. Be sure to label the axes.

(d) Is the point (1, 2) on this curve? Why or why not? What about the point
(
− 3√

2
, 3√

2

)
?

(e) Without differentiating, find the equations of the tangent lines to the curve at the fol-
lowing points. (Hint: draw the lines!)

i. (0, 3)

ii. (−3, 0)

2. Use the technique of implicit differentiation you learned in class to find dy
dx as a function of x

and y.

3. Use your previous answer to find the the equation of the tangent to the curve at the point(
− 3√

2
, 3√

2

)
.

4. What happens to dy
dx at the point (−3, 0)? How could you have told this just by looking at

the graph of the curve you plotted above?

5. Suppose that the point (a, b) is on the curve.

(a) What is the slope of the tangent line to the curve at this point (in terms of a and b)?

(b) What is the slope of the line connecting this point to the origin (0, 0)?
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(c) What is the relationship between the slopes of these two lines?

(d) What does this show about circles?

Part II: The Folium of Descartes

In 1638, the famous mathematician and philosopher René Descartes challenged his colleague Pierre
de Fermat to find a general formula for the slope of the implicitly defined curve

x3 + y3 = 2xy.

We will start this part of the lab by doing the same.

Here is a plot of this curve, often called the Folium of Descartes, from the Latin word ‘folium’,
meaning ‘leaf’:
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−1
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2

6. Show that the points (0, 0) and (1, 1) are on this curve.

7. Does this curve have a tangent line at the point (0, 0)? Explain.

8. Find dy
dx in terms of x and y using implicit differentiation.

9. What happens to dy
dx at the point (0, 0)? How does that fit in with your answer to question

7?

10. To find where a curve has a horizontal tanggent line, we set dy
dx to 0 and solve. When we use

implicit differentiation, we often need another step. This question explores the issue.
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(a) Set your dy
dx found in the previous question to 0 and solve for y.

(b) Keeping in mind that any point on the curve has to satisfy the relationship x3+y3 = 2xy,
find the point(s) where the curve has a horizontal tangent line. Find these point(s) on
the curve above.

11. Use a similar technique to the one employed in the previous question to find all points on the
curve where it has a vertical tangent line.

Part III: A Disconnected Curve

We’ve seen that curves defined implicitly can have some strange properties:

� They sometimes do not define y as a function of x. That is, they fail to pass the
test.

� They can cross themselves. At such points, they fail to have a well-defined
line.

In this part, we will investigate yet another such property that distinguishes implicitly defined
curves from explicitly defined curves: they can be disconnected without being discontinuous and
with no vertical asymptotes.

Consider the equation
y2 = (x+ 2)(x− 1)(x− 2).

This is an example of an elliptic curve. The study of elliptic curves has important applications
in cryptography (code making and breaking) as well as in the prime factorization of large whole
numbers (these two applications are in fact closely related). The graph of this curve is shown below:
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4

12. By looking at the graph above, find all points on the curve where it has a vertical tangent
line.
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13. Use implicit differentiation to find dy
dx in terms of x and y.

14. Check your answer to question 12 above using the expression you just found for dy
dx and the

technique you learned in the previous part (Question 10).

15. Find all points on the curve where it has a horizontal tangent line. Verify your answer using
the graph above.

16. Explain why the curve is not defined for x < −2 or for 1 < x < 2. (Hint: look at the graph
of (x+ 2)(x− 1)(x− 2).)

17. Find the equations of the tangent lines to the curve when x = 0.
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Report – Pick a Curve

For this report, pick one of the following two curves and answer the questions on the back side of
this page.

The Devil’s Curve

−20 −15 −10 −5 5 10 15 20

−10
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5

10

x

y

y2(y2 − 96) = x2(x2 − 100)

The Hippopede

−4 −3 −2 −1 1 2 3 4
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−1

1
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x

y

(x2 + y2)2 = 16x2 + y2

5



105L Labs: Implicit Differentiation

Questions

1. Research the curve online and write a short paragraph about its history, the etymology of its
name, and so on.

2. Why was it necessary to define your curve implicitly? In other words, why can’t it be written
in the from y = f(x)?

3. On the plot of your chosen graph, show all vertical and horizontal tangent lines.

4. By using implicit differentiation, find dy
dx for your chosen curve.

5. Using your derivative from the previous question, compute exactly the locations of all the
vertical and horizontal tangent lines.

6. Each curve have exactly one point where dy
dx is an indeterminate value. Compute that point.

What happens on your chosen curve at that point? (Be sure to check that your point is
indeed on the curve!)
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