Integrating to Infinity

Up to now, we’ve only dealt with integrals over a finite domain \([a,b]\). In fact, if you look back to when we proved FTC I, you’ll see that it only deals with finite domains...

Definition Integrating over infinite domains (Part 1):

If \(f(x)\) is continuous on \((-\infty, \infty)\) then

\[
\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx \quad \text{and} \quad \int_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \, dx.
\]

These integrals are said to converge if the limits exist and are finite.

Examples

Compute the following integrals:

1. \(\int_{0}^{\infty} e^{-2x} \, dx\)

2. \(\int_{1}^{\infty} \frac{1}{x^2} \, dx\)

3. \(\int_{-\infty}^{1} \frac{1}{x} \, dx\)
Definition Integrating over infinite domains (Part 2):

If \(f(x) \) is continuous on \((-\infty, \infty)\) then

\[
\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_{a}^{\infty} f(x) \, dx,
\]

where \(a \) is any number. This integral only converges (i.e. only exists) when both integrals in the sum exist and are finite.

Example

4. Compute the integral \(\int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx \).

Exercises

Calculate the following integrals, if they converge.

5. \(\int_{0}^{\infty} \frac{e^x}{(e^x + 1)^2} \, dx \) (This is a substitution. Don’t forget to change bounds!)
6. $\int_{0}^{\infty} xe^{-x} \, dx$ (You may need L’Hopital’s rule somewhere along the way...)

7. $\int_{0}^{\infty} \frac{1}{(x + 4)^2} \, dx$

8. $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \csc^2(x) \, dx$ (Hint: $\csc^2(x) = \frac{\sec^2(x)}{\tan^2(x)}$)
9. The mass of pollutants over city up to height \(u \) meters is given by
\[
\int_0^u 25,600 \pi^{-0.0025h} \, dh
\]
kilograms. Compute the total mass of pollutants over the city. (Compare Varying Density Lab, Question 15.)

10. Compare the following integrals to other integrals to see if they converge.

(a) \(\int_2^\infty \frac{1}{\sqrt{x^2 - 1}} \, dx \)

(Hint: \(\sqrt{x^2 - 1} \) is a little smaller than \(\sqrt{x^2} = x \). What does that tell you about \(\frac{1}{\sqrt{x^2 - 1}} \) compared to \(\frac{1}{x} \)?)

(b) \(\int_0^\infty \frac{1}{e^x + 2^x} \, dx \)

\[
\int_0^\infty \frac{1}{e^x + 2^x} \, dx \leq \int_0^\infty \frac{1}{2e^x} \, dx \quad (\text{Since } e > 2)
\]
\[
= \frac{1}{2} \lim_{b \to \infty} \left(-e^{-x} \bigg|_0^b \right)
\]
\[
= \frac{1}{2}
\]

Since the original integrand is positive, and we know it’s less than \(\frac{1}{2} \), it must also converge (though we don’t know to what!).
(c) \[\int_{1}^{\infty} \frac{1 + \sin x}{x^2} \, dx \] (Hint: _____ \leq \sin(x) \leq _____)

11. Find c such that \[\int_{-\infty}^{\infty} f(t) \, dt = 1 \]

\[f(t) = \begin{cases}
cte^{-\frac{t}{2}} & t > 0 \\
0 & \text{otherwise}
\end{cases} \]