Introduction

1. Let $f(x)=2 x$. Consider the following function:

$$
F(x)=\int_{0}^{x} 2 t d t
$$

(a) Draw a graph of $f(x)$. On it, illustrate $F(1), F(2)$ and $F(3)$.
(b) What does $F(x)$ measure?
(c) Without further computation, how do you know $F(x)$ is increasing? Concave up?
(d) Calculate $F(1), F(2), F(3)$ and $F(-1)$.
(e) What function do you think $F(x)$ is?
(f) Use the FTC to prove your hypothesis from the previous question, then fill in the blanks below:

$$
\frac{d}{d x} \int_{0}^{x} 2 t d t=
$$

\qquad , so $\int_{0}^{x} 2 t d t$ is an \qquad of $f(x)=2 x$.
(g) Is $G(x)=\int_{2}^{x} 2 t d x$ also an antiderivative of $f(x)=2 x$? If so, what constant do $F(x)$ and $G(x)$ differ by?

Stuff from the Past that will be Important Today!

2. $\quad \star$ Extreme Value Theorem (105L Worksheet 11-3): If $f(t)$ is continuous on the closed interval $[a, b]$, then it has a \qquad and a
\qquad
\qquad on that interval.
$\star \star$ Bounding Integrals (106L Worksheet 6-3): If $m \leq f(t) \leq M$ for $a \leq t \leq b$, then

$$
\leq \int_{a}^{b} f(t) d t \leq
$$

FTC II

The Second Fundamental Theorem of Calculus

Let f be continuous on an interval. Then for x and a in that interval

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

3. Proof: Suppose $f(t)$ is a continuous function and let $g(x)=\int_{a}^{x} f(t) d t$.
(a) Then

$$
\begin{aligned}
& \frac{g(x+h)-g(x)}{h}=\frac{h}{\text { By }(\star) \text {, since } f(t) \text { is a continuous on }[x, x+h] \text {, th }} \\
& \text { and a largest value } M \text {. Then, by }(\star \star), \\
& \qquad \leq \int_{x}^{x+h} f(t) d t \leq
\end{aligned}
$$

(c) Dividing everything by h, we get

$$
m \leq \frac{\int_{x}^{x+h} f(t) d t}{h} \leq M
$$

(d) As $h \rightarrow 0$, what happens to the interval $[x, x+h]$?
(e) As $h \rightarrow 0$, what happens to m and M ?
(f) Therefore, $\frac{d}{d x} g(x)=\lim _{h \rightarrow 0} \frac{\int_{x}^{x+h} f(t) d t}{h}=$ \qquad
4. Recall that we were never able to antidifferentiate $e^{-x^{2}}$. Can you now write down an antiderivative for it?
5. Find the following derivative in two different ways: $\frac{d}{d x} \int_{2}^{x} \cos t d t$
(a) Using FTC I:
(b) Using FTC II:
6. Let $g(x)=\int_{1}^{x} \sqrt{1+t^{2}} d t$.
(a) What is $g^{\prime}(x)$?
(b) What is $g\left(x^{3}\right)$?
(c) What is $\frac{d}{d x} g\left(x^{3}\right)$? (Hint: you need the chain rule here. This is a composite function.)
7. (a) Find a function $g(x)$ such that $g^{\prime}(x)=\sqrt{1+x^{2}}$ and $g(2)=0$.
(b) Find a function $g(x)$ such that $g^{\prime}(x)=\sqrt{1+x^{2}}$ and $g(2)=10$.
8. Let $g(x)=\int_{0}^{x} f(t) d t$, with $f(x)$ is continuous. Crost out the wrong answer for each of the following:

- If $f(x)>0$ and $x>0$, then $g(x)$ is positive/negative and increasing/decreasing.
- If $f(x)>0$ and $x<0$, then $g(x)$ is positive/negative and increasing/decreasing.
- If $f(x)<0$ and $x>0$, then $g(x)$ is positive/negative and increasing/decreasing.
- If $f(x)<0$ and $x<0$, then $g(x)$ is positive/negative and increasing/decreasing.

9. What constant do the following two antiderivatives of $f(x)$ differ by?

$$
F(x)=\int_{-1}^{x} f(t) d t \quad G(x)=\int_{1}^{x} f(t) d t
$$

(Hint: draw pictures, and see Worksheet on Properties of Integrals, property 4!)

