The Product Rule: The Product Rule states that:

\[
\frac{d}{dx}[u(x)v(x)] =
\]

Thus, we can apply the Fundamental Theorem of Calculus and obtain

\[
u(x)v(x) = \int + \int.
\]

Rearranging the terms, we get the

Integration by Parts Formula:

How do we pick \(u\) and \(dv\)? Well, to start with, \(dv\) should be easy to integrate!

Examples:

1. \(\int xe^x \, dx\)

 \[
 u = \quad dv =

 du = \quad v =
 \]

2. \(\int_1^2 \ln x \, dx\)

 \[
 u = \quad dv =

 du = \quad v =
 \]
3. \(\int x \ln x \, dx \)

4. \(\int_{0}^{\pi} x \sin x \, dx \)

5. \(\int_{0}^{1} x \sqrt{x + 1} \, dx \)
6. \[\int x^2 e^x \, dx \] (Hint: Integrate by parts twice)

7. \[\int \arctan x \, dx \] (Hint: Let \(u = \arctan x \).)
8. \(\int e^x \cos x \, dx \) (Hint: Integrate by parts twice.)

9. \(\int x(\ln x)^3 \, dx \) (Hint: Integrate by parts three times.)

10. \(\int xe^{x^2} \, dx \) (Hint: Don’t work too hard!)