The Product Rule:

1. (a) The Product Rule states that:

\[\frac{d}{dx} [u(x)v(x)] = \text{________________________} \]

(b) Thus, we can apply the Fundamental Theorem of Calculus and obtain

\[u(x)v(x) = \int + \int . \]

(c) We can now write \(du = u'(x) \, dx \) and \(dv = v'(x) \, dx \). Rearranging the terms, we get the

Integration by Parts Formula:

In order for this to be useful, the integral on the right needs to be easier than the integral on the left. How do we pick \(u \) and \(dv \)? Well, to start with, \(dv \) should to be easy to integrate!

Examples:

2. \[\int xe^x \, dx \]
 \[u = \quad dv = \]
 \[du = \quad v = \]

3. \[\int_1^2 \ln x \, dx \]
 \[u = \quad dv = \]
 \[du = \quad v = \]

4. \[\int x \ln x \, dx \]
5. \[\int_{0}^{\pi} x \sin x \, dx \]

6. \[\int_{0}^{1} x \sqrt{x + 1} \, dx \] (Compare to worksheet 7-2, Q15. Which method do you prefer?)

7. \[\int_{1}^{2} x^2 e^x \, dx \] (Hint: Integrate by parts twice)

8. \[\int \arctan x \, dx \] (Hint: Let \(u = \arctan x \).)
9. \[\int e^x \cos x \, dx \] (Hint: Integrate by parts twice, and carefully observe the equation you obtain.)

10. \[\int x (\ln x)^3 \, dx \] (Hint: Integrate by parts times.)

11. \[\int x e^{-x^2} \, dx \] (Hint: Don’t work too hard!)