Review

1. (a) The Chain Rule states that:
 \[\frac{d}{dx}[f(g(x))] = \]
 (b) By taking the antiderivatives of both sides, we get:
 \[\int f'(g(x))g'(x) \, dx = \]

Method of \textbf{u}-substitution

2. (a) Suppose we want to evaluate \(\int f'(g(x))g'(x) \, dx \). Let \(u = g(x) \).
 Then \(du = \) \(dx \).
 (b) Hence,
 \[\int f'(g(x))g'(x) \, dx = \]
 \[= \]
 \[= \]
 (c) Note also that
 \[\int_a^b f'(g(x))g'(x) \, dx = \]
 \[= \]

Examples

Note: Not all of these require substitutions. One of the most important integration skills is spotting what is the easiest method to use for a given integral.

3. \(\int x(1 + x^2)^5 \, dx \)
4. \(\int_0^{\frac{\pi}{2}} \sin x \cos x \, dx \)

5. \(\int_0^1 \frac{x}{\sqrt{x^2+1}} \, dx \)

6. \(\int \frac{1}{3x+1} \, dx \)

7. \(\int \frac{1}{e^{3x}} \, dx \)
8. \(\int \sin^2 x \, dx \) (Hint: \(\cos 2x = 1 - 2\sin^2 x \))

9. \(\int_0^2 \frac{e^x}{1 + e^{2x}} \, dx \) (Hint: What’s another way to write \(e^{2x} \)? Rules of exponentials...)

10. \(\int \frac{\ln x}{x} \, dx \)

11. \(\int \cos^2 x \sin x \, dx \)
12. \(\int xe^{-x^2} \, dx \)

13. \(\int \tan x \, dx \) (Hint: write \(\tan x \) as a quotient of two other trig functions.)

14. \(\int \frac{2x}{\sqrt{1 - x^4}} \, dx \)

15. \(\int_0^1 x\sqrt{x+1} \, dx \) (Hint: Let \(u = x + 1 \). Then \(x = \ldots? \))