Introduction

For many years now, you have been solving algebraic equations, such as

$$
2 x+1=0, x^{2}+3 x=1, e^{x}=7
$$

and so on. Today, we will begin to examine differential equations. First, let's think about what we already know:

1. (a) What does it mean to solve an algebraic equation? For example, what does it mean to solve $x^{2}+3 x+2=0$?
(b) How do you check a proposed solution to an algebraic equation? For example, how do you check if $x=-2$ is a solution to $x^{2}+4=-x^{3}$?
(c) Is it easier to solve an algebraic equation, or to check a proposed solution? Explain.
2. (a) Is the point $x=1, y=3$ (i.e. the point $(1,3)$) a solution to the equation $2 y+x=y+4$? Why?
(b) Is the point $(2,3)$ a solution to the equation $y^{2}+x=y+8$? Why?
(c) Is the point $(1,1)$ a solution to the equation $x^{2}=1-y^{2}$? Why?
(d) What does it mean to say that a point (a, b) is a solution to an equation?

Differential Equations

Definition Equations of the form $\frac{d y}{d x}=y^{2}, \frac{d y}{d x}=2 x$ or $\frac{d y}{d x}=y+x$ are called differential equations. In fact, any equation of the form $\frac{d y}{d t}=g(y, t)$ is a differential equation. $y=f(t)$ is a solution if when $f(t)$ is substituted for y in the expression $g(y, t)$, the result is $\frac{d y}{d t}$. In other words, like any other equation, when you substitute your answer into both sides of the equation, you get a true statement.

Differential Equations and Antidifferentiation

3. (a) Check if the function $y=x^{2}$ a solution to the equation $\frac{d y}{d x}=2 x$. Why?
(b) Consider the differential equation $\frac{d y}{d x}=\cos x$. Use antidifferentiation to find a solution of this equation. Can you find more than one solution? How many can you find? Graph a few of them on the set of axes below. How are they related to each other?

In general, differential equations do not have unique solutions. In fact, a differential equation often has an infinite number of solutions, as you saw above. The reason is that we antidifferentiate, we introduce an arbitrary constant: if $F(x)$ is an antiderivative of $f(x)$, then so is $F(x)+C$ for any value of C. When you are asked to solve a differential equation, you are required to find the general solution. That is, the solution with a constant in it.

Definition An initial value problem is an a differential equation with a specified value of the solution provided. Such a value is called an initial condition. Initial value problems most commonly have a unique solution.
4. (a) Solve the differential equation $\frac{d y}{d x}=2 e^{x}$.
(b) Solve the initial value problem $\frac{d y}{d x}=2 e^{x}, y(0)=3$.

Above, we saw differential equations of the form $\frac{d y}{d x}=f(x)$. We found that solving such an equation is just antidifferentiating $f(x)$. That is, the general solution is

$$
y(x)=\int f(x) d x
$$

Solving differential equations is not always as straightfoward as that, though!

More Complex Differential Equations

5. Consider the differential equation $\frac{d y}{d x}=x+y$.
(a) Why is the solution to this not $y(x)=\int x+y d x$? In fact, why does that integral not make any sense?
(b) i. Check if $y(x)=\frac{x^{2}}{2}$ is a solution to this equation.
ii. Check if $y(x)=e^{x}-x-1$ is a solution.
iii. Check if $y(x)=e^{x}-x+1$ is a solution.
iv. Check if $y(x)=2 e^{x}-x-1$ is a solution.
v. Is $y(x)=e^{x}-x+C$ a solution for any value of C ? What about $y(x)=$ $C e^{x}-x-1$?
vi. Solve the initial value problem $\frac{d y}{d x}=x+y, y(0)=4$.
6. Consider the differential equation $y^{\prime}(t)=y(t)$. Complete the blank: The solution to this differential equation is a function $y(t)$ whose derivative is equal to \qquad .
(a) What function $y(t)$ satisfies the sentence you just wrote down? Plug in to both sides of the equation to check it.
(b) Is the function $y(t)=2+e^{t}$ also a solution?
(c) Can you figure out another function that solves the equation? Check it!
(d) Can you write down the general solution to this equation?
7. Consider the differential equation $y^{\prime}(t)=2 y(t)$. Complete the blank: The solution to this differential equation is a function $y(t)$ whose derivative is equal to \qquad .
(a) Can you find one solution to this equation?
(b) Can you find another solution by adding a constant to your solution above?
(c) Write down the general solution to this equation.
(d) Solve the initial value problem $y^{\prime}(t)=2 y, y(0)=3$.
8. By considering the previous two questions, find the general solution of the differential equation $\frac{d y}{d x}=k y$, where k is a fixed constant. Then solve the following initial value problems:
(a) $\frac{d y}{d t}=k y, y(0)=2$.
(b) $\frac{d y}{d t}=k y, y(\ln 2)=2$.
(c) $\frac{d y}{d t}=k y, y(1)=2$.

Higher Order Differential Equations

Definition The order of a differential equation is the highest derivative that appears in it. For example $\frac{d y}{d x}=x+y$ is a first order equation; $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=y$ is a second order equation.
9. Consider the differential equation $\frac{d^{2} y}{d x^{2}}=-9 y$.
(a) What is the order of this equation?
(b) Check that both $\sin (3 x)$ and $\cos (3 x)$ are solutions to this equation.
(c) Check that both $2 \sin (3 x)$ and $3 \cos (3 x)$ are solutions to this equation.
(d) Check that $2 \sin (3 x)+3 \cos (3 x)$ is a solution to this equation.
(e) Can you write down the general solution of this equation?
(f) Solve the initial value problems:
i. $\frac{d^{2} y}{d x^{2}}=-9 y, y(0)=1, y\left(\frac{\pi}{6}\right)=0$.
ii. $\frac{d^{2} y}{d x^{2}}=-9 y, y(0)=1, y^{\prime}(0)=2$.
(g) Graph the two solutions from the previous part below.

In general, an $n^{\text {th }}$ order differential equation has a general solution with n aribitrary constants in it.

As you can see, the solutions to a differential equation may not related to each other as simply as the ones in Question 3b above!

What we can and can't do (for now)

- The only differential equations we can currently solve analytically-that is, without (much) guessing-are those of the form

$$
\frac{d y}{d t}=f(t)
$$

such as $\frac{d y}{d t}=t^{2}$. We solve these by finding an \qquad of $f(t)$.

- We cannot (for now) solve equations like

$$
\frac{d y}{d t}=y^{2}
$$

We will do (some of) these later in the semester. For now, given a solution, we can check it.

- We cannot solve second (or higher) order differential equations other than $\frac{d^{2} y}{d t^{2}}=f(t)$. We will leave other second order equations for a later course.
- We can also check whether a given function solves a particular differential equation.

Homework Questions

1. Is the function $y=-\frac{1}{x}$ a solution to the equation $\frac{d y}{d x}=y^{2}$? Check that $y=\frac{1}{x}$ is not a solution. What about $y=-\frac{1}{x+c}$? Find a solution with $y(1)=-\frac{1}{2}$.
2. Above, you found that the general solution to $\frac{d y}{d x}=k y$ is $y(x)=C e^{k x}$. Graph solutions to the equation $\frac{d y}{d x}=3 y$ with $y(0)=1, y(0)=2$, and $y(0)=-1$ on the same set of axes.
3. What is the order of the differential equation $\frac{d^{3} y}{d x^{3}}=24 x$? Find its the general solution by antidifferentiating three times. Check that your solution has three arbitrary constants in it! Solve the initial value problems:
(a) $\frac{d^{3} y}{d x^{3}}=24 x, y(0)=1, y^{\prime}(0)=2, y^{\prime \prime}(0)=3$.
(b) $\frac{d^{3} y}{d x^{3}}=24 x, y(0)=1, y(1)=2, y(2)=3$.
4. Solve the following initial value problems by antidifferentiation:
(a) $\frac{d y}{d x}=x^{2}, y(1)=1$.
(b) $\frac{d^{2} h}{d t^{2}}=-32, h(0)=100, h^{\prime}(0)=10$. (See the Newton's Law of Motion lab!).
5. Find a function of the form $y=x^{n}$ that is a solution to the differential equation $\frac{1}{2} x \frac{d y}{d x}=y$.
