From Times Gone By...

• If \(f(x) = a^x \), then \(f'(x) = \) \underline{} .

• The inverse function of \(g(x) = 10^x \) is \(g^{-1}(x) = \) \underline{} . The inverse function of \(h(x) = e^x \) is \(h^{-1}(x) = \) \underline{} .

• The derivative of a composite function \(f(g(x)) \) is

\[
\frac{d}{dx} f(g(x)) = \underline{} .
\]

Sketch!

Question

1. On the axes below, draw \(f(x) = \ln(x) \), then sketch its derivative. Your answer should look like (part of) a curve you know pretty well....

Derivative of \(\ln(x) \)

Consider the equation \(y = \ln(x) \).

Question

2. (a) Solve this equation for \(x \).

(b) Use implicit differentiation to find \(\frac{dy}{dx} \) in terms of \(y \).
(c) Use the relationship in question 2a to find the derivative of \(\ln(x) \) in terms of \(x \) only.

Derivative of \(\log(x) \)

Question

3. Do all the above for \(y = \log(x) \).

<table>
<thead>
<tr>
<th>Derivatives of Logarithmic Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The derivative of (f(x) = \ln(x)) is</td>
</tr>
<tr>
<td>[f'(x) = \frac{d}{dx} \ln(x) = \text{_____}]</td>
</tr>
<tr>
<td>The derivative of (f(x) = \log(x)) is</td>
</tr>
<tr>
<td>[f'(x) = \frac{d}{dx} \log(x) = \text{_____}]</td>
</tr>
</tbody>
</table>

Questions

4. Differentiate the following functions:

(a) \(f(x) = \ln(2x + 6) \)
(b) \(g(x) = \log(x^2) \)

(c) \(h(x) = \ln(x^3) \)

(d) \(y = 6x^2e^x \ln(x) \)

5. Find the equation of the tangent line to the curve \(f(x) = 6x \ln x \) at \(x = 3 \).