From Times Gone By...

- If $f(x) = a^x$, then f'(x) =_____.
- The inverse function of $g(x) = 10^x$ is $g^{-1}(x) =$ _____. The inverse function of $h(x) = e^x$ is $h^{-1}(x) =$ _____.
- The derivative of a composite function f(g(x)) is

$$\frac{d}{dx}f(g(x)) = \underline{\qquad}.$$

Sketch!

Question

1. On the axes below, draw $f(x) = \ln(x)$, then sketch its derivative. Your answer should look like (part of) a curve you know pretty well....

Derivative of ln(x)

Consider the equation $y = \ln(x)$.

Question

- 2. (a) Solve this equation for x.
 - (b) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of y.

(c) Use the relationship in question 2a to find the derivative of $\ln(x)$ in terms of x only.

Derivative of $\log(x)$

Question

3. Do all the above for $y = \log(x)$.

Derivatives of Logarithmic Functions

The derivative of $f(x) = \ln(x)$ is

$$f'(x) = \frac{d}{dx}\ln(x) = \underline{\qquad}$$

The derivative of $f(x) = \log(x)$ is

$$f'(x) = \frac{d}{dx}\log(x) = \underline{\hspace{1cm}}$$

Questions

4. Differentiate the following functions:

(a)
$$f(x) = \ln(2x + 6)$$

(b)
$$g(x) = \log(x^2)$$

(c)
$$h(x) = \ln(x^3)$$

$$(d) y = 6x^2 e^x \ln(x)$$

5. Find the equation of the tangent line to the curve $f(x) = 6x \ln x$ at x = 3.