From Times Gone By...

- If $f(x)=a^{x}$, then $f^{\prime}(x)=$ \qquad .
- The inverse function of $g(x)=10^{x}$ is $g^{-1}(x)=$ \qquad . The inverse function of $h(x)=e^{x}$ is $h^{-1}(x)=$ \qquad .
- The derivative of a composite function $f(g(x))$ is

$$
\frac{d}{d x} f(g(x))=
$$

Sketch!

Question

1. On the axes below, draw $f(x)=\ln (x)$, then sketch its derivative. Your answer should look like (part of) a curve you know pretty well....

Derivative of $\ln (x)$

Consider the equation $y=\ln (x)$.

Question

2. (a) Solve this equation for x .
(b) Use implicit differentiation to find $\frac{d y}{d x}$ in terms of y.
(c) Use the relationship in question 2 a to find the derivative of $\ln (x)$ in terms of x only.

Derivative of $\log (x)$

Question

3. Do all the above for $y=\log (x)$.

Derivatives of Logarithmic Functions

The derivative of $f(x)=\ln (x)$ is

$$
f^{\prime}(x)=\frac{d}{d x} \ln (x)=
$$

\qquad
The derivative of $f(x)=\log (x)$ is

$$
f^{\prime}(x)=\frac{d}{d x} \log (x)=
$$

\qquad

Questions

4. Differentiate the following functions:
(a) $f(x)=\ln (2 x+6)$
(b) $g(x)=\log \left(x^{2}\right)$
(c) $h(x)=\ln \left(x^{3}\right)$
(d) $y=6 x^{2} e^{x} \ln (x)$
5. Find the equation of the tangent line to the curve $f(x)=6 x \ln x$ at $x=3$.
