A Key Tool!

The chain rule:

$$
\frac{d}{d x}(f(g(x)))=
$$

\qquad $-$

Implicit Differentiation

Questions

1. Consider the equation $x y+y=e^{x}$. This defines y as function of x. Find $y(x)$ and use it to find $\frac{d y}{d x}$.
2. Now, consider the equation $x^{2}+y^{2}=4$.
(a) What curve does this equation describe? Draw it!
(b) The equation $x^{2}+y^{2}=4$ does not define y as a function of x. Why not?
(c) However, "near the point $(0,2)$ ", y is function of a x. What is this function? What is the derivative of this function at $x=1$?
(d) Do the same for the point $(0,-2)$ (and $x=-1)$.
(e) Notice that in both the above cases, we can write $\frac{d y}{d x}=$ \qquad .
(f) Even though $x^{2}+y^{2}=4$ does not define y as a function of x, it is still close to a function that the derivative makes sense, and the usual rules apply. Let's pretend y is a function of x, differentiate both sides, and solve for $\frac{d y}{d x}$:
(g) Notice that $\frac{d y}{d x}$ depends on both x and y. For "normal" functions, the derivative should only depend on the independent variable. Why isn't this true for our equation?
(h) Are there any points where $\frac{d y}{d x}$ is not defined? What happens to the tangent line to the curve at these points?
3. Let's revisit $x y+y=e^{x}$. What is $\frac{d y}{d x}$? Check that it's the same as what you got previously!
4. Find the tangent line to $x^{2}+x y-y^{3}=x y^{2}$ at the point $(1,1)$.

Here's a picture of this curve. Odd, eh? What happens to $\frac{d y}{d x}$ at $(0,0)$ and $(1,-1)$? More on this in lab...

5. (a) Find $\frac{d y}{d x}$ if $e^{x}+e^{y^{2}}=3$.

That curve looks like this:

(b) As x approaches $-\infty$, what does $\frac{d y}{d x}$ approach? Make sure you see how this matches up with the graph!
(c) At the point $(\ln (2), 0)$, what is $\frac{d y}{d x}$? What direction is the tangent line at that point?
6. Where does the curve $y^{3}-x y=1$ have

- a vertical tangent? (Hint: see question 5 c .)
- a horizontal tangent? (Hint: if the tangent line is horizontal, what must $\frac{d y}{d x}$ be?)

Here's a picture of this curve. Check that your two answers above make sense in the context of the picture!

