Back to Calculus...

- Given a function $f(x)$, its derivative function is given by

$$
f^{\prime}(x)=
$$

\qquad .

- To approximate the derivative of a function at a point $x=a$, we plug in small values of \qquad into the difference quotient

$$
f^{\prime}(a) \approx
$$

\qquad

- The quantity A is directly proportional to the quantity B if $A=$ \qquad .

Playing with Derivatives

Let $f(x)=2^{x}$ and $g(x)=3^{x}$. Using a spreadsheet to approximate the derivatives, fill out the following table.

x	$f(x)$	$f^{\prime}(x)$	$\frac{f^{\prime}(x)}{f(x)}$	$g(x)$	$g^{\prime}(x)$	$\frac{g^{\prime}(x)}{g(x)}$
-4						
-3						
-2						
-1						
0						
1						
2						
3						
4						

Sample calculation for $x=-4$:

Questions

1. It seems that $f(x)$ is \qquad
\qquad to its derivative. Mathematically, it seems that $f^{\prime}(x)=k$ \qquad . Use the limit definition of the derivative to show that this is indeed the case. What can you say about k ?
2. If $h(x)=a^{x}$, show a similar relationship between $h^{\prime}(x)$ and $h(x)$.
3. Fill in the following: if $h(x)=a^{x}$, then

$$
h^{\prime}(x)=k_{_}, \text {where } k=\lim
$$

4. Suppose we could find a number a such that the constant of proportionality becomes 1? What would $\frac{d}{d x} a^{x}$ be in that case? Using guess and check, estimate this a to two decimal places (take $h=0.001$).

Why e is Important in Calculus

Such an a satisfies $\frac{a^{h}-1}{h} \approx 1$ for small h. We can rewrite this as

$$
a \approx
$$

In the limit as $h \rightarrow 0$ we get a number we've encountered before: We define

$$
e=\lim _{h \rightarrow 0}(h+1)^{\frac{1}{h}} .
$$

This is the same e we saw before, when we did compound interest and natural logs. Our previous results give us that

$$
\begin{aligned}
& \hline \text { Derivative of } e^{x} \\
& \qquad \frac{d}{d x} e^{x}=e^{x}
\end{aligned}
$$

Now, back to the general exponential function b^{x}. By the chain rule, $\frac{d}{d x} e^{k x}=$
Then, we note that

$$
b^{x}=\quad=
$$

so, using the chain rule result above:

$$
\frac{d}{d x} b^{x}=\quad=
$$

Derivatives of Exponential Functions

$$
\frac{d}{d x} b^{x}=
$$

Questions

5. Find the derivatives of the following functions:
(a) $f(x)=8 x+8^{x}$
(b) $g(x)=e^{2}-2^{x}$
(c) $h(x)=e^{\pi}+e^{x}+x^{e}$
6. Find the tangent line to $x^{2} e^{x}$ at $x=1$.
7. Find the tangent line to $e^{(x+1)^{3}}$ at $x=1$ (Hint: see the triple chain rule from the last worksheet).
