Back to Calculus...

- Given a function \(f(x) \), its *derivative function* is given by

 \[f'(x) = \quad \cdash \quad \]

- To approximate the derivative of a function at a point \(x = a \), we plug in small values of ___ into the *difference quotient*

 \[f'(a) \approx \quad \cdash \quad \]

- The quantity \(A \) is directly proportional to the quantity \(B \) if \(A = \quad \cdash \quad \).

Playing with Derivatives

Let \(f(x) = 2^x \) and \(g(x) = 3^x \). Using a spreadsheet to approximate the derivatives, fill out the following table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(\frac{f'(x)}{f(x)})</th>
<th>(g(x))</th>
<th>(g'(x))</th>
<th>(\frac{g'(x)}{g(x)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-4)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>(-3)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>(-2)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>(-1)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td></td>
</tr>
</tbody>
</table>

Sample calculation for \(x = -4 \):

Questions

1. It seems that \(f(x) \) is \quad \cdash \quad \quad \quad to its derivative. Mathematically, it seems that \(f'(x) = k \quad \cdash \quad \). Use the limit definition of the derivative to show that this is indeed the case. What can you say about \(k \)?
2. If \(h(x) = a^x \), show a similar relationship between \(h'(x) \) and \(h(x) \).

3. Fill in the following: if \(h(x) = a^x \), then
\[
h'(x) = k \text{____}, \quad \text{where} \quad k = \lim \text{______}.
\]

4. Suppose we could find a number \(a \) such that the constant of proportionality becomes 1? What would \(\frac{d}{dx} a^x \) be in that case? Using guess and check, estimate this \(a \) to two decimal places (take \(h = 0.001 \)).

Why \(e \) is Important in Calculus

Such an \(a \) satisfies \(\frac{a^h - 1}{h} \approx 1 \) for small \(h \). We can rewrite this as
\[
a \approx \frac{\ln(h + 1)}{\ln(h)}
\]
In the limit as \(h \to 0 \) we get a number we’ve encountered before: We define
\[
e = \lim_{h \to 0} (h + 1)^{\frac{1}{h}}.
\]
This is the same \(e \) we saw before, when we did compound interest and natural logs. Our previous results give us that

<table>
<thead>
<tr>
<th>Derivative of (e^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{d}{dx} e^x = e^x)</td>
</tr>
</tbody>
</table>

Page 2 of 3
Now, back to the general exponential function b^x. By the chain rule, $\frac{d}{dx}e^{kx} =$
Then, we note that

$$b^x =$$

so, using the chain rule result above:

$$\frac{d}{dx}b^x =$$

Derivatives of Exponential Functions

$$\frac{d}{dx}b^x =$$

Questions

5. Find the derivatives of the following functions:

 (a) $f(x) = 8x + 8^x$

 (b) $g(x) = e^2 - 2^x$

 (c) $h(x) = e^\pi + e^x + x^e$

6. Find the tangent line to x^2e^x at $x = 1$.

7. Find the tangent line to $e^{(x+1)^3}$ at $x = 1$ (Hint: see the triple chain rule from the last worksheet).