Past Differentiation...

The differentiation rules we've learned so far:

- Power Rule:
- Sum Rule:
- Difference Rule:
- Product Rule:
- Quotient Rule:

Motivation!

Questions

1. With the tools we have, how do we find $\frac{d}{d x}\left(x^{3}+1\right)^{3}$? Is there any easier way?
2. (a) (From a previous worksheet): Let $L(E)$ be the life expectancy (years) of a person with E years of education. Let $E(i)$ be the average number of years of education obtained by people whose parents have an average annual income of i dollars. Describe the function $L(E(i))$ in practical terms. Include units in your answer.
(b) What are the units of $\frac{d L}{d E}, \frac{d E}{d i}$, and $\frac{d L}{d i}$?

The Chain Rule

More general question: How do we differentiate the composition of two functions (functions inside of functions)?

The Chain Rule

If $f(x)$ and $g(x)$ are differentiable, then

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

If we let $z=g(x)$ and $y=f(z)$, then $y=f(g(x))$ and we can write the chain rule in the following way:

$$
\frac{d y}{d x}=\frac{d y}{d z} \cdot \frac{d z}{d x}
$$

Questions

3. Differentiate the functions below:
(a) $\left(x^{3}+1\right)^{3}$ (How does this compare to our answer above?)
(b) $\left(x^{2}+1\right)^{100}$
(c) $\left(8 x^{2}+2\right)^{7}$.
(d) $\left(\frac{1}{x^{2}}+x+1\right)^{3}$.
(e) $\left(\frac{(2 x+3)^{2}}{(x+1)^{3}}\right)^{\frac{3}{2}}$.
4. A new proof of the quotient rule using the chain and product rules:
5. Find the equation of the tangent line to $f(x)=\left(\frac{2}{x}-1\right)^{3}$ at the point where $x=3$.
6. The Triple Chain Rule: What about the composition of three functions, $f(g(h(x)))$? How would we differentiate that?

Homework Problems

You are driving north from Durham. The temperature gets colder and colder farther and farther north of Durham. The function $F(x)$ gives the temperature, in degrees Fahrenheit, x miles north of Durham. The function $s(t)$ gives your distance north of Durham, in miles, after you have been driving for t hours.

1. Explain the meaning of the function $f(t)=F(s(t))$.
2. What are the units of $f^{\prime}(t)$
3. Explain the meaning of each of the following (give units):
(a) $s(3)=160$
(b) $s^{\prime}(3)=80$
(c) $F(160)=75$
(d) $F^{\prime}(160)=-0.05$
4. After 3 hours of driving, how fast is the temperature changing outside your car? Give units. Use your answers from above.
5. $f^{\prime}(3)=$ \qquad (remember to use units)
6. Which of the following is the correct formula for $f^{\prime}(3)$? Circle your answer:

- $f^{\prime}(3)=F^{\prime}(3) \cdot s^{\prime}(3)$
- $f^{\prime}(3)=F^{\prime}\left(s^{\prime}(3)\right)$
- $f^{\prime}(3)=F^{\prime}(s(3)) \cdot s^{\prime}(3)$

