Review - Exponential Functions

- An exponential function is any function of the form
 \[f(x) = \text{__________}, \]
 where \(a > 0 \).
- \(P_0 \) is the __________ of the function. In other words, \(P_0 \) is the __________ of the graph of the function.
- If \(a > 1 \), then the function is __________.
- If \(0 < a < 1 \), then the function is __________.
- A bank account that pays interest rate \(r \), compounded continuously, will yield __________ if we leave A in it for \(t \) years.

Logarithms

Question Is every exponential function invertible? How do you know?

On the last worksheet, you were asked to find the doubling time of a bank account with interest rate 5%, compounded continuously. This required you to solve the equation

\[2A = Ae^{0.05t} \]

for \(t \) (where \(A \) is the initial deposit). To do so, you plugged in various numbers for \(t \) until you got pretty close to the answer. This is a little unsatisfactory.

In other terms, if we define \(P(t) = Ae^{0.05t} \), we wish to compute __________.

If \(f(x) = 10^x \), then we define the \textit{logarithm base 10} of \(x \) to be \(f^{-1}(x) \). In other words

\[\log_{10} x = c \iff 10^c = x. \]

Often, we leave off the 10 and just write \(\log x \).

If \(f(x) = e^x \), then we define the \textit{logarithm base e} of \(x \) to be \(f^{-1}(x) \). In other words

\[\log_e x = c \iff e^c = x. \]

For reasons we’ll see next time, log base \(e \) is called the \textit{natural logarithm} and is most often written \(\log_e x = \ln x \).
Questions

1. What are the range and domain of \(\log x \)?

2. On the same axes, draw the graphs of \(10^x \) and \(\log x \). (Hint: recall that the graph of the inverse of a function \(f(x) \) is given by reflecting the graph of \(f(x) \) in the line ________).

3. Why does it make no sense to find \(\log(0) \)? What about \(\log(x) \) when \(x \) is negative?

4. Does \(\log(x) \) have a vertical asymptote? Where?

5. Do all the previous questions for \(\ln(x) \).
Properties of Logarithms

All the following properties can be deduced from the properties of exponents (eg $x^{a+b} = x^a x^b$):

<table>
<thead>
<tr>
<th>Logarithmic Property</th>
<th>Exponential Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log(AB) = \log A + \log B$</td>
<td>$\ln(AB) = \ln A + \ln B$</td>
</tr>
<tr>
<td>$\log \left(\frac{A}{B} \right) = \log A - \log B$</td>
<td>$\ln \left(\frac{A}{B} \right) = \ln A - \ln B$</td>
</tr>
<tr>
<td>$\log(A^p) = p \log(A)$</td>
<td>$\ln(A^p) = p \ln(A)$</td>
</tr>
<tr>
<td>$\log(10^x) = x$</td>
<td>$\ln(e^x) = x$</td>
</tr>
<tr>
<td>$10^{\log x} = x$</td>
<td>$e^{\ln x} = x$</td>
</tr>
</tbody>
</table>

Applications of Logs

Questions

1. Find the doubling time of a bank account that has 5% interest rate compounded continuously.

2. Suppose we start with 10 moles of radon-222, a radioactive element. After two days, we find that there are 6.943 moles of radon-222 remaining. Find the half-life of radon-222.

3. Find the inverses of the following functions:

 (a) $f(t) = 10(7)^t$

 (b) $g(t) = 2 \ln(t) + 5$
4. Solve the following equations:

(a) \(7^x = 2\)

(b) \(10^{2x+9} = 6 \cdot 7^{x-4}\)

(c) \(9^{7-2x} + 6 = e\)

5. Let \(f(t) = 7(2^t)\). Write \(f(t)\) in the form \(P_0e^{rt}\). (Hint: \(e^{rt} = (e^r)^t\). If you can figure out \(P_0\) and \(r\), you’re done...)

Note: As seen in the last question, it is possible to write any exponential function in the form \(P(t) = P_0e^{rt}\). This is far more common than \(P(t) = P_0a^t\), so we’ll be using it from now on.
Extra Homework Problems

1. (a) Can the log of a number be negative? Explain.

 (b) Can we take the log of a negative number? Explain.

2. State the domain and range of the function $y = \log(x)$.

3. Evaluate the following expressions without using a calculator.

 (a) $\log\left(\frac{1}{100}\right)$

 (b) $\log(200^2) - \log(40)$

 (c) $\log\left(\frac{1}{10,000}\right) + \log\sqrt{1,000}$

4. Let $x = \log A$ and $y = \log B$. Rewrite the following expressions in terms of x and y.

 (a) $\sqrt{\log(AB)}$

 (b) $\frac{\log B}{\log A}$

 (c) $\log\left(\sqrt{AB^{-2}}\right)$

 (d) $\log\left(\frac{A}{B}\right)$

5. If possible, use the properties of logarithms to find exact solutions of the the following equations for x.

 (a) $\log(1 - x) - \log(1 + x) = 2$

 (b) $\log(10x - 4) \cdot \log(16x^2) = 0$

 (c) $\frac{1}{5} \cdot 5^x - 25 = 100$

 (d) $\log(6x) - \log(2x - 1) = 2$
Answers to Extra Homework Problems

1. (a) Yes.
 (b) No.

2. Domain: all positive real numbers; Range: All real numbers.

3. (a) -2
 (b) 3
 (c) -2.5

4. (a) $\sqrt{x + y}$
 (b) $\frac{y}{x}$
 (c) $0.5x - 2y$
 (d) $x - y$

5. (a) $-\frac{99}{101}$
 (b) $-0.25, 0.25, 0.5$
 (c) 4
 (d) $\frac{50}{97}$