Review - Exponential Functions

- An exponential function is any function of the form

$$
f(x)=
$$

where $a>0$.

- P_{0} is the \qquad of the function. In other words, P_{0} is the \qquad $-$
\qquad of the graph of the function.
- If $a>1$, then the function is \qquad .
- If $0<a<1$, then the function is \qquad .
- A bank account that pays interest rate r, compounded continuously, will yield $\$$ \qquad if we leave $\$ A$ in it for t years.

Logarithms

Question Is every exponential function invertible? How do you know?

On the last worksheet, you were asked to find the doubling time of a bank account with interest rate 5%, compounded continuously. This required you to solve the equation

$$
2 A=A e^{0.05 t}
$$

for t (where A is the initial deposit). To do so, you plugged in various numbers for t until you got pretty close to the answer. This is a little unsatisfactory.

In other terms, if we define $P(t)=A e^{0.05 t}$, we wish to compute \qquad .

If $f(x)=10^{x}$, then we define the logarithm base 10 of x to be $f^{-1}(x)$. In other words

$$
\log _{10} x=c \Leftrightarrow 10^{c}=x
$$

Often, we leave off the 10 and just write $\log x$.

If $f(x)=e^{x}$, then we define the logarithm base e of x to be $f^{-1}(x)$. In other words

$$
\log _{e} x=c \Leftrightarrow e^{c}=x
$$

For reasons we'll see next time, \log base e is called the natural logarithm and is most often written $\log _{e} x=\ln x$.

Questions

1. (a) What are the range and domain of $\log x$?
(b) On the same axes, draw the graphs of 10^{x} and $\log x$. (Hint: recall that the graph of the inverse of a function $f(x)$ is given by reflecting the graph of $f(x)$ in the line \qquad).
(c) Why does it make no sense to find $\log (0)$? What about $\log (x)$ when x is negative?
(d) Does $\log (x)$ have a vertical asymptote? Where?
(e) Do all the previous questions for $\ln (x)$.

Properties of Logarithms

All the following properties can be deduced from the properties of exponents (eg $x^{a+b}=$ $\left.x^{a} x^{b}\right)$:

$$
\begin{array}{ll}
\hline \log (A B)=\log A+\log B & \ln (A B)=\ln A+\ln B \\
\log \left(\frac{A}{B}\right)=\log A-\log B & \ln \left(\frac{A}{B}\right)=\ln A-\ln B \\
\log \left(A^{p}\right)=p \log (A) & \ln \left(A^{p}\right)=p \ln (A) \\
\log \left(10^{x}\right)=x & \ln \left(e^{x}\right)=x \\
10^{\log x}=x & e^{\ln x}=x
\end{array}
$$

Applications of Logs

Questions

2. Find the doubling time of a bank account that has 5% interest rate compounded continuously.
3. Suppose we start with 10 moles of radon-222, a radioactive element. After two days, we find that there are 6.943 moles of radon- 222 remaining. Find the half-life of radon- 222 .
4. Find the inverses of the following functions:
(a) $f(t)=10(7)^{t}$
(b) $g(t)=2 \ln (t)+5$
5. Solve the following equations:
(a) $7^{x}=2$
(b) $10^{2 x+9}=6 \cdot 7^{x-4}$
(c) $9^{7-2 x}+6=e$
6. Let $f(t)=7\left(2^{t}\right)$. Write $f(t)$ in the form $P_{0} e^{r t}$. (Hint: $e^{r t}=\left(e^{r}\right)^{t}$. If you can figure out P_{0} and r, you're done...)

Note: As seen in the last question, it is possible to write any exponential function in the form $P(t)=P_{0} e^{r t}$. This is far more common than $P(t)=P_{0} a^{t}$, so we'll be using it from now on.

Homework Problems

1. (a) Can the \log of a number be negative? Explain.
(b) Can we take the log of a negative number? Explain.
2. State the domain and range of the function $y=\log (x)$.
3. Evaluate the following expressions without using a calculator.
(a) $\log \left(\frac{1}{100}\right)$
(b) $\log \left(200^{2}\right)-\log (40)$
(c) $\log \left(\frac{1}{10,000}\right)+\log \sqrt{1,000}$
4. Let $x=\log A$ and $y=\log B$. Rewrite the following expressions in terms of x and y.
(a) $\sqrt{\log (A B)}$
(b) $\frac{\log B}{\log A}$
(c) $\log \left(\sqrt{A} B^{-2}\right)$
(d) $\log \left(\frac{A}{B}\right)$
5. If possible, use the properties of logarithms to find exact solutions of the the following equations for x.
(a) $\log (1-x)-\log (1+x)=2$
(b) $\log (10 x-4) \cdot \log \left(16 x^{2}\right)=0$
(c) $\frac{1}{5} \cdot 5^{x}-25=100$
(d) $\log (6 x)-\log (2 x-1)=2$
