Continuity and Limits - Intuition

Previously, we said that a function is continuous at a point $x = c$ if both the following conditions are satisfied:

i. We know what number we expect $f(x)$ to take at $x = c$; and

ii. $f(x)$ is actually that number when $x = c$.

How This Can Go Wrong

A.

B.

C.

\[\text{Definition} \quad \lim_{x \to c} f(x) = L \text{ if we can get } f(x) \text{ as close to } L \text{ as we want by taking } x \quad \quad \text{. (In words, we say} \]
\[\text{“the limit as } x \text{ goes to } c \text{ of } f(x) \text{ equals } L.”] \]

- In this situation, as we get very close to c from the horizontal direction, the graph of $f(x)$ gets very close to L in the vertical direction.

- Also notice that $x \to c$ means that x gets very close to c, but is not equal to c.

- We say $\lim_{x \to c} f(x)$ does not exist if there is no such number L.
Definition (Left and Right Limits)

\[\lim_{x \to c^+} f(x) \]

means that we only let \(x \) approach \(c \) from the \textit{positive side}. In terms of the graph, \(x \) is approaching \(c \) from the \textit{right}.

\[\lim_{x \to c^-} f(x) \]

means that we only let \(x \) approach \(c \) from the \textit{negative side}. In terms of the graph, \(x \) is approaching \(c \) from the \textit{left}.

Important point: \(\lim_{x \to c} f(x) \) exists and is equal to \(L \) if and only if

\[\lim_{x \to c^+} f(x) = L = \lim_{x \to c^-} f(x) \]

Question

1. By looking at \(\lim_{x \to 0^-} f(x) \) and \(\lim_{x \to 0^+} f(x) \), investigate \(\lim_{x \to 0} f(x) \) where

 (a) \(f(x) = \frac{|x|}{x} \)

 (b) \(f(x) = \frac{1}{x} \)

 (c) \(f(x) = \frac{1}{x^2} \)
Limit Laws

Here are properties that allow us to easily calculate limits. Note: To use them, \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) must exist.

- \(\lim_{x \to c} k = \) for any constant \(k \).
- \(\lim_{x \to c} x = \).
- \(\lim_{x \to c} [kf(x)] = \) for any constant \(k \).
- \(\lim_{x \to c} [f(x) + g(x)] = \).
- \(\lim_{x \to c} [f(x)g(x)] = \).
- \(\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \) if \(\lim_{x \to c} g(x) \neq 0 \).

Another Limit

Definition Limits at Infinity

We say \(\lim_{x \to \infty} f(x) = L \) if we can get \(f(x) \) as close to \(L \) as we please by taking \(x \).

Questions

2. Calculate the following limits (or show they don’t exist!):

 (a) \(\lim_{x \to 5} \frac{x^3 - x}{2x + 3} \)

 (b) \(\lim_{x \to \infty} \frac{3x^2 + 17x - 7}{2x^2 - 1} \)
(c) \[\lim_{{h \to 0}} \frac{2(h + 2)^2 - 2h^2}{h} \] (Hint: simplify first. You may need to refer to the limit rules above and to question 1.)

(d) Let

\[f(x) = \begin{cases}
 x - 5 & \text{if } x \geq 1 \\
 -4x & \text{if } x < 1
\end{cases} \]

Evaluate \(\lim_{{x \to 1}} f(x) \).

Definition (Continuity) A function is said to be **continuous** on an interval \([a, b]\) if, intuitively, you can draw the graph of \(f \) over that interval without lifting your pencil from the paper. The mathematical definition is that a function \(f \) is continuous at the point \(x = c \) if \(\lim_{{x \to c}} f(x) = f(c) \).

3. Find \(k \) such that the function

\[f(x) = \begin{cases}
 kx & \text{if } x \geq 1 \\
 x^2 + 2 & \text{if } x < 1
\end{cases} \]

is continuous.