Continuity and Limits - Intuition

Previously, we said that a function is continuous at a point $x=c$ if both the following conditions are satisfied:
i We know what number we expect $f(x)$ to take at $x=c$; and
ii $f(x)$ is actually that number when $x=c$.

How This Can Go Wrong

A.
B.
C.

Definition $\lim _{x \rightarrow c} f(x)=L$ if we can get $f(x)$ as close to L as we want by taking x \qquad . (In words, we say "the limit as x goes to c of $f(x)$ equals $L . ")$

- In this situation, as we get very close to c from the horizontal direction, the graph of $f(x)$ gets very close to L in the vertical direction.
- Also notice that $x \rightarrow c$ means that x gets very close to c, but is not equal to c.
- We say $\lim _{x \rightarrow c} f(x)$ does not exist if there is no such number L.

Definition (Left and Right Limits)

$$
\lim _{x \rightarrow c^{+}} f(x)
$$

means that we only let x approach c from the positive side. In terms of the graph, x is approaching c from the right.

$$
\lim _{x \rightarrow c^{-}} f(x)
$$

means that we only let x approach c from the negative side. In terms of the graph, x is approaching c from the left.

Important point: $\lim _{x \rightarrow c} f(x)$ exists and is equal to L if and only if

$$
\lim _{x \rightarrow c^{+}} f(x)=L=\lim _{x \rightarrow c^{-}} f(x)
$$

Question

1. By looking at $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$, investigate $\lim _{x \rightarrow 0} f(x)$ where
(a) $f(x)=\frac{|x|}{x}$.
(b) $f(x)=\frac{1}{x}$
(c) $f(x)=\frac{1}{x^{2}}$

Limit Laws

Here are properties that allow us to easily calculate limits. Note: To use them, $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ must exist.

- $\lim _{x \rightarrow c} k=$ \qquad for any constant k.
- $\lim _{x \rightarrow c} x=$ \qquad .
- $\lim _{x \rightarrow c}[k f(x)]=$ \qquad for any constant k.
- $\lim _{x \rightarrow c}[f(x)+g(x)]=$ \qquad .
- $\lim _{x \rightarrow c}[f(x) g(x)]=$ \qquad
- $\lim _{x \rightarrow c}\left[\frac{f(x)}{g(x)}\right]=$ \qquad if $\lim _{x \rightarrow c} g(x) \neq 0$.

Another Limit

Definition Limits at Infinity

We say $\lim _{x \rightarrow \infty} f(x)=L$ if we can get $f(x)$ as close to L as we please by taking x \qquad .

Questions

2. Calculate the following limits (or show they don't exist!):
(a) $\lim _{x \rightarrow 5} \frac{x^{3}-x}{2 x+3}$
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+17 x-7}{2 x^{2}-1}$
(c) $\lim _{h \rightarrow 0} \frac{2(h+2)^{2}-2 h^{2}}{h}$ (Hint: simplify first. You may need to refer to the limit rules above and to question 1.)
(d) Let

$$
f(x)= \begin{cases}x-5 & \text { if } x \geq 1 \\ -4 x & \text { if } x<1\end{cases}
$$

Evaluate $\lim _{x \rightarrow 1} f(x)$.

Definition (Continuity) A function is said to be continuous on an interval $[a, b]$ if, intuitively, you can draw the graph of f over that interval without lifting your pencil from the paper. The mathematical definition is that a function f is continuous at the point $x=c$ if $\lim _{x \rightarrow c} f(x)=f(c)$.
3. Find k such that the function

$$
f(x)= \begin{cases}k x & \text { if } x \geq 1 \\ x^{2}+2 & \text { if } x<1\end{cases}
$$

is continuous.

