Transforming Functions by Addition

1. Suppose $f(x)=x^{2}$. Then write out expressions for:
(a) $f(x)+2$
(b) $f(x+2)$
2. On the axes below, draw the graphs of $f(x), y=f(x)+2$ and $y=f(x+2)$. Label your graphs and axes.

3. Fill in the blanks:
(a) If we start from the graph of a function $f(x)$, the graph of the function $f(x)+a$ has exactly the same shape, but is shifted \qquad by \qquad units.
(b) If we start from the graph of a function $f(x)$ the graph of the function $f(x+a)$ has exactly the same shape, but is shifted \qquad by \qquad units.
4. Given the graph of a function $f(x)$ below, draw the functions $f(x+3)$ and $f(x)-8$ on the same axes.

Transforming Functions by Multiplication

5. Suppose $f(x)=x(x-1)(x+1)$. Then write out expressions for:
(a) $f(2 x)$
(b) $2 f(x)$
6. On the axes below, draw the graphs of $f(x), f(2 x)$ and $2 f(x)$. Label your axes and graphs.

7. Fill in the blanks:
(a) If we start from the graph of a function $f(x)$, the graph of the function $a f(x)$ has the same shape, but is stretched \qquad by a factor of \qquad .
(b) If we start from the graph of a function $f(x)$ the graph of the function $f(a x)$ has exactly the same shape, but is stretched \qquad by a factor of \qquad .
8. Given the graph of a function $f(x)$ below, draw the functions $f(2 x)$ and $2 f(x)$ on the same axes.

Function Reflections

9. Suppose $f(x)=x(x-1)$. Then write out expressions for:
(a) $f(-x)$
(b) $-f(x)$
10. On the axes below, draw the graphs of $f(x),-f(x)$ and $f(-x)$. Label your axes and graphs.

11. Fill in the blanks:
(a) If we start from the graph of a function $f(x)$, the graph of the function $-f(x)$ is the same graph, but \qquad in the \qquad -axis.
(b) If we start from the graph of a function $f(x)$, the graph of the function $f(-x)$ is the same graph, but \qquad in the \qquad -axis.
12. Given the graph of the function $f(x)$ below, draw the functions $-f(x)$ and $f(-x)$ on the same axes.

Putting it all Together

Question

13. Consider the graph of $f(x)$ in the previous question.
(a) Can you figure out a possible formula for it? (Hint: think back to polynomials.)
(b) Write down a formula for $f(2(x-1))$. Simplify it, but do not FOIL. What are the roots of $f(2(x-1))$?
(c) On the axes below, draw the graphs of $f(x)$ and $f(2(x-1))$.

(d) By considering the zeros of $f(x)$ in part (1), of $f(2(x-1))$ in part (2), and the graphs in part (3), decide which of the following statements is true and which is false:
i. To get from $f(x)$ to $f(2(x-1))$ you first compress along the x-axis by a factor of 2 , then shift to the right by 1 .
ii. To get from $f(x)$ to $f(2(x-1))$ you first shift to the right by 1 , then compress along the x-axis by a factor of 2 .
14. Given a graph of $f(x)$, describe how you would go about drawing the graph of $f(6 x-3)$.
15. Given the graph of $f(x)$ below, draw the graph of $-2 f(0.5 x)-3$. (Hint: you might want to do this step-by-step using the axes below. Be sure to label each with what you're drawing!) As a bonus: can you identify (with a formula) the function you get at the end? Can you use that to identify the function of the original graph?

Extra Homework Problems

The graph of a function $f(x)$ is given in each of the problems below. In each problem, draw (on the same set of axes) the graph of the function(s) obtained from the given transformation(s) of $f(x)$.

1. Graph $f(x+2)$ and $f(x-1)$.

2. Graph $3 f(x), 0.5 f(x)$, and $-2 f(x)$.

3. Graph $f(3 x), f(0.5 x)$, and $f(-2 x)$.

4. Graph $f(0.5 x)-2$.

5. Graph $f(2 x-2)$ and $f(2(x-2))$.

6. Graph $-2 f(x+2)+1$.

