Review

Question

1. Assuming x and y are functions of t, compute the following derivatives. Note: these are implicit derivatives!
(a) $\frac{d}{d t} \sqrt{x^{2}+y^{2}}$
(b) $\frac{d}{d t} x^{2} y$

Related Rates

Questions

2. You are blowing up a spherical balloon at a rate of $50 \mathrm{~cm}^{3} / \mathrm{min}$.
(a) What is the volume V of the balloon when its radius is $r \mathrm{~cm}$?
(b) Since the radius is changing, it is a function of time. Differentiate your answer with respect to time, t.
(c) Use the fact that the rate of change of volume is $50 \mathrm{~cm}^{3} / \mathrm{min}$ and the previous answer to find the rate of change of the radius when the radius is 5 cm .
(d) What about when the radius is 10 cm ?
(e) Is the radius changing faster when the balloon has radius 5 cm or radius 10 cm ? Use the picture to explain why this makes sense. Note that the shaded areas are the same.

3. Suppose two cars leave an intersection simultaneously. One travels north at $30 \mathrm{mi} / \mathrm{hr}$, while the other travels east at $40 \mathrm{mi} / \mathrm{hr}$. How fast is the distance between the two changing after one minute?
4. The radius r and height h of a cone are related to the cone's volume V by the formula $V=(1 / 3) \pi r^{2} h$.
(a) How is $\frac{d V}{d t}$ related to $\frac{d h}{d t}$ if r is constant?
(b) How is $\frac{d V}{d t}$ related to $\frac{d r}{d t}$ if h is constant?
(c) How is $\frac{d V}{d t}$ related to $\frac{d r}{d t}$ and $\frac{d h}{d t}$ if neitherr nor h is constant?
5. The length l of a rectangle is decreasing at the rate of $2 \mathrm{~cm} / \mathrm{s}$ while the width w is increasing at the rate of $2 \mathrm{~cm} / \mathrm{s}$.
(a) When $l=12 \mathrm{~cm}$ and $w=5 \mathrm{~cm}$, what is the rate of change of the area of the rectangle? Is it increasing or decreasing?
(b) When $l=12 \mathrm{~cm}$ and $w=5 \mathrm{~cm}$, what is the rate of change of the perimeter of the rectangle? Is it increasing or decreasing?
6. The ideal gas law says \qquad . If the quantity of gas and temperature remain fixed, this becomes Boyle's Law. Then, the pressure P and the volume V satisfy $P V=k$ for some constant k. Suppose a certain quantity of gas occupies 10 cubic centimeters at a pressure of 2 atmospheres. If the pressure is increasing at a rate of 0.05 atmospheres per minute when the pressure is 2 atmospheres, find the rate at which the volume is changing at that moment. What are the units of your answer?
7. Suppose that we steal the world's largest marshmallow? ${ }^{1}$. It is a cylinder of volume 7300 cubic feet with a base radius of 12.5 feet. In order to make the world's largest s'more out of it, we heat it and find that the radius is changing at a rate of .6 feet per minute and the height is changing at a rate at a rate of .4 feet per minute. How fast is the volume changing just as we start to heat the marshmallow?

[^0]8. A manufacturer of tennis balls decides to increase production by 30 cans each day. The manufacturer has determined that the total revenue R (in dollars) from the sale of x cans of tennis balls in a day is approximately given by the function $R(x)=$ $2.14 x-0.0003 x^{2}$. Determine the rate of change of revenue with respect to time when the daily production level is 1200 cans. (Assume all cans are sold.)
9. Suppose that a drop of mist is a perfect sphere and that, through condensation, the drop picks up moisture at a rate proportional to its surface area. Show that under these circumstances the radius of the drop increases at a constant rate.
10. Water is draining at the rate of $50 \mathrm{~m}^{3} / \mathrm{min}$ from a shallow concrete conical reservoir (vertex down, i.e., the ice cream cone is right-side up). The conical reservoir has a top radius of 45 meters and a height of 6 meters.
(a) How fast is the water level falling when the water is 5 meters deep? (Convert your answer to cm/min.)
(b) How fast is the radius of the water's surface changing then? (Again, convert your answer to $\mathrm{cm} / \mathrm{min}$.)

[^0]: ${ }^{1}$ Found in Noble County, Indiana and weighing 2300 pounds

