From Way Back When....

- The derivative of a function $f(x)$ at a point a is

$$
f^{\prime}(a)=
$$

- The derivative function of a function $f(x)$ is

$$
f^{\prime}(x)=
$$

\qquad

Tangent Lines and Linear Approximations

Question Let $f(x)=\sqrt{x}$.

1. Draw the graph of $f(x)$ for x in the domain $[0,8]$ on the axes below:

2. Find the equation for the tangent line to $f(x)$ at the point $x=4$ and draw it on top of the graph of $f(x)$. Try to be as precise as possible.
3. Draw a very small box around the point $(4,2)$.
(a) What do you notice? Can you explain your observation?
(b) Suppose you only have a very simple calculator with,,$+- \times$, and \div operators. Use your work above to find a good approximation of $\sqrt{4.1}$.
(c) Use your calculator to get the value of $\sqrt{4.1}$ to six decimal places. How far off was your approximation above?
4. Let's see what happens if we try to use the same idea to find $\sqrt{6}$:
(a) By looking at the graphs you draw on the previous page, do you expect that your approximation will be as good as your approximation of $\sqrt{4.1}$? Why or why not?
(b) Use the same method as above to approximate $\sqrt{6}$.
(c) Now use your calculator again to get the value of $\sqrt{6}$ to four decimal places. How far off was your approximation?

Definition When we refer to 'the linear approximation of $f(x)$ at a point $x=a$ ', we mean the tangent line to the graph of $f(x)$ at that point.

Questions

5. Let $y=\ln (x)$. Find the linear approximation at $x=1$. Then draw the curve and the tangent line, and use the latter to estimate $\ln (1.1)$. How far off is your approximation? Do the same for $\ln (1.5)$. Are your estimates overestimates of the true values of $\ln (x)$ at 1.1 and 1.5 or underestimates?
6. Use linear approximations to estimate $e^{0.1}$ and $e^{0.5}$. (Hint: where would it make sense to base your linear approximation?) Are your estimates of the values of e^{x} at 0.1 and 0.5 overestimates or underestimates? Draw a graph (and a tangent line) to explain your answers.
7. Consider the function graphed below

(a) Draw the tangent lines to curve at the point $x=-1.5$ and $x=1.25$.
(b) At $x=-1.5$, the linear approximation will overestimate/underestimate the value of the function at nearby points. (Cross out the wrong answer.)
(c) At $x=1.25$, the linear approximation will overestimate/underestimate the value of the function at nearby points. (Cross out the wrong answer.)
(d) Under what circumstances are (b) and (c) true? Why?
8. Suppose that $f(x)$ is differentiable function, that $f(4)=3$ and $f^{\prime}(4)=6$.
(a) Write down the linear approximation to $f(x)$ at $x=4$.
(b) Use your approximation to estimate $f(3.9)$.
(c) If $f^{\prime \prime}(x)<0$ on the interval [3.9, 4], is your estimate an overestimate or an underestimate?
