From Times Gone By...

- If \(f(x) = a^x \), then \(f'(x) = \) ________.

- The inverse function of \(g(x) = 10^x \) is \(g^{-1}(x) = \) _________. The inverse function of \(h(x) = e^x \) is \(h^{-1}(x) = \) _________.

- The derivative of a composite function \(f(g(x)) \) is

\[
\frac{d}{dx} f(g(x)) = \text{__________}.
\]

Sketch!

Question On the axes below, draw \(f(x) = \ln(x) \), then sketch its derivative. Your answer should look like (part of) a curve you know pretty well....

\[
\begin{array}{c}
| \hline \\
\hline \\
\hline
\end{array}
\]

Derivative of \(\ln(x) \)

Consider the equation \(y = \ln(x) \).

1. Solve this equation for \(x \).

2. Use implicit differentiation to find \(\frac{dy}{dx} \) in terms of \(y \).
3. Use the relationship in question 1 to find the derivative of \(\ln(x) \) in terms of \(x \) only.

Derivative of \(\log(x) \)

Do all the above for \(y = \log(x) \).

<table>
<thead>
<tr>
<th>Derivatives of Logarithmic Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The derivative of (f(x) = \ln(x)) is</td>
</tr>
<tr>
<td>(f'(x) = \frac{d}{dx} \ln(x) = \ldots)</td>
</tr>
<tr>
<td>The derivative of (f(x) = \log(x)) is</td>
</tr>
<tr>
<td>(f'(x) = \frac{d}{dx} \log(x) = \ldots)</td>
</tr>
</tbody>
</table>

Questions

1. Differentiate the following functions:

 (a) \(f(x) = \ln(2x + 6) \)
(b) \(g(x) = \log(x^2) \)

(c) \(h(x) = \ln(x^3) \)

(d) \(y = 6x^2e^x \ln(x) \)

2. Find the equation of the tangent line to the curve \(f(x) = 6x \ln x \) at \(x = 3 \).